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ON SUPER (a, d)-EAT VALUATION OF SUBDIVIDED CATERPILLAR

A. RAHEEM1, M. JAVAID2, M. A. UMAR3, G. C. LAU4, §

Abstract. Let G = (V (G), E(G)) be a graph with v = |V (G)| vertices and e = |E(G)|
edges. A bijective function λ : V (G) ∪ E(G) ↔ {1, 2, . . . , v + e} is called an (a, d)-
edge antimagic total (EAT) labeling(valuation) if the weight of all the edges {w(xy) :
xy ∈ E(G)} form an arithmetic sequence starting with first term a and having common
difference d, where w(xy) = λ(x) + λ(y) + λ(xy). And, if λ(V ) = {1, 2, . . . , v} then G
is super (a, d)-edge antimagic total(EAT) graph. In this paper, we determine the super
(a,d)-edge antimagic total (EAT) labeling of the subdivided caterpillar for different values
of the parameter d.

Keywords: caterpillar, subdivided caterpillar, super(a, d)-EAT graph.
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1. Introduction and Preliminaries

Throughout in this paper, all graphs are simple, finite, and undirected. The graph G
has the vertex-set V (G) and edge-set E(G). A general reference for graph-theoretic ideas
can be consult[23]. A labeling (or valuation) of a graph is a mapping that carries graph
elements to positive numbers. In this paper the domain will be the set of all vertices
and edges and such a labeling is called a total labeling. Some labeling use the vertex-
set only, or the edge-set only, and we shall call them vertex-labelings and edge-labelings
respectively. A number of classification studies on edge antimagic total graphs has been
intensively investigated. For further detail study on the antimagic labeling [13] a dynamic
survey of graph labeling. The subject of edge-magic total labeling of graphs has its origin
in the work of Kotzig and Rosa [16, 17], on what they called magic valuations of graphs.
The notion of super edge-magic total labeling was introduced by Enomoto et al. [8] and
they proposed following conjecture:
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Conjecture: Every tree admits a super edge-magic total labeling.

In the support of this conjecture, many authors have considered super edge-magic total
labeling for some particular classes of trees for example [3, 5, 10, 12, 14, 15, 20, 19]. How-
ever, this conjecture still remains open. Lee and Shah [18] have verified this conjecture
for trees on at most 17 vertices with a computer help. Kotzig and Rosa [16] proved that
every caterpillar is super edge-magic total. Sugeng et al.[22] proved some results related
to super (a, d)-edge antimagic total labeling of stars and caterpillars for different values
of the parameter d. Baca et al. [5] proved that disjoint union of caterpillars also admits
super (a, d)-edge antimagic total labeling. Baca et al. [4] presented that if a tree with
order greater or equal to 2 is super (a, d)-edge antimagic total then d must be less or
equal to 3. In the present paper we find the super (a, d)-edge antimagic total labeling on
subdivided caterpillar for d = {0, 1, 2}.

A graph G is called (a, d)-edge antimagic total ((a, d)-EAT) if there exist integers a >
0, d ≥ 0 and a bijective mapping λ : V (G) ∪ E(G) ↔ {1, 2, . . . , v + e} such that W =
{w(xy) : xy ∈ E(G)} forms an arithmetic sequence starting from a with common differ-
ence d, where w(xy) = λ(x) + λ(y) + λ(xy). W is called the set of edge-weights of the
graph G. And, if λ(V (G)) = {1, 2, . . . , v} then G is super (a, d)-edge antimagic total graph.

In a caterpillar, if we subdivide the end edges then the resulting graph is called a subdivided
caterpillar. It is denoted byG ∼= ζ(α1, α2, α3, . . . , αn : n, l), where α1 = (m1,1,m1,2,m1,3, . . . ,
m1,l), α2 = (m2,1,m2,2,m2,3, . . . ,m2,l), . . . , αn = (mn,1,mn,2,mn,3, . . . ,mn,l).
The vertex-set and edge-set are defined as follow:

V (G) = {ci : 1 ≤ i ≤ n} ∪ {api,ri,r : 1 ≤ i ≤ n, 1 ≤ pi,r ≤ mi,r, 1 ≤ r ≤ l}

and

E(G) = {cici+1 : 1 ≤ i ≤ n− 1} ∪ {api,ri,r a
pi,r+1

i,r : 1 ≤ i ≤ n, 1 ≤ pi,r ≤ mi,r − 1, 1 ≤ r ≤ l}

{a1i,rci : 1 ≤ i ≤ n, 1 ≤ r ≤ l}
�

2. Main Results

Let us consider the following important Proposition that gives a necessary and sufficient
condition for a graph to be super (a, d)-EAT labeling.

Proposition 2.1. [4] If a (v, e)-graph G has a (s, d)-EAV labeling then

(i) G has a super (s+ v + 1, d+ 1)-EAT labeling,
(ii) G has a super (s+ v + e, d− 1)-EAT labeling.

�
Theorem 2.1. The graph G ∼= ζ(α1, α2, α3, . . . , αn : n, 5) is a super (a, 0)-EAT labeling
with a = 2v + s − 1 and super (a, 2)-EAT labeling with a = v + s + 1, where m ≥ 3
and m ≡ 1(mod 2), n ≥ 2, l = 5, α1 = (m,m,m,m, 2m) and α2 = α3 = · · · = αn =
(2m, 2m−1,m−1,m, 2m), s = (3m+2)+(4m−1)bn2 c+4m(dn2 e−1)+2 and v = |V (G)|.

Proof. Let us denote v = |V (G)| and e = |E(G)| then v = 8mn−2m−n+2 and e = v−1.
The vertex-set and edge-set of the graph G as following:
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V (G) = {ci : 1 ≤ i ≤ n} ∪ {api,ri,r : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir, 1 ≤ r ≤ 5}

E(G) = {cici+1 : 1 ≤ i ≤ n− 1} ∪ {apirir a
pir+1
ir : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir − 1, 1 ≤ r ≤ 5}

{a1irci : 1 ≤ i ≤ n, 1 ≤ r ≤ 5}

Now, we define the labeling λ : V → {1, 2, . . . , v} as follows:
Throughout the labeling we will consider
α = 8m− 1 and
η = (3m+ 2) + (4m− 1)bn2 c+ 4m(dn2 e − 1)

λ(ci) =


η +m for i = 1

η + α
2 (i− 3) + (9m− 1) for i ≥ 3, odd

α
2 (i− 2) + (5m+ 2) for i = even

When i = 1 and 1 ≤ r ≤ 5
for p1,r = 1, 3, 5, . . . ,m1,r

λ(u) =



p1,1+1
2 for u = a

p1,1
11 ,

(m+ 2)− p1,2+1
2 for u = a

p1,2
1,2 ,

(m+ 1) +
p1,3+1

2 for u = a
p1,3
1,3 ,

(2m+ 3)− p1,4+1
2 for u = a

p1,4
1,4 ,

3(m+ 1)− p1,5+1
2 for u = a

p1,5
1,5 ,

and for p1r = 2, 4, 6, . . . ,m1r − 1;

λ(u) =



η +
p1,1
2 for u = a

p1,1
1,1 ,

η +m− p1,2
2 for u = a

p1,2
1,2 ,

η +m+
p1,3
2 for u = a

p1,3
1,3 ,

η + 2m− p1,4
2 for u = a

p1,4
1,4 ,

η + (3m− 1)− p1,5
2 for u = a

p1,5
1,5 ,

When i = even and 1 ≤ r ≤ 5 :
For pi,r = 1, 3, 5, . . . ,mir

λ(u) =



η + α
(
i−2
2

)
+ (3m− 1) +

pi,1+1
2 for u = a

pi,1
1,1 ,

η + α
(
i−2
2

)
+ 5m− pi,2+1

2 for u = a
pi,2
1,2 ,

η + α
(
i−2
2

)
+ (5m− 1) +

pi,3+1
2 for u = a

pi,3
1,3 ,

η + α
(
i−2
2

)
+ 6m− pi,4+1

2 for u = a
pi,4
1,4 ,

η + α
(
i−2
2

)
+ 7m− pi,5+1

2 for u = a
pi,5
1,5 ,

and for pi,r = 2, 4, 6, . . . ,mi,r − 1

λ(u) =



α
(
i−2
2

)
+ (3m+ 2) +

pi,1
2 for u = a

pi,1
1,1 ,

α
(
i−2
2

)
+ (5m+ 2)− pi,2

2 for u = a
pi,2
1,2 ,

α
(
i−2
2

)
+ (5m+ 2) +

pi,3
2 for u = a

pi,3
1,3 ,

α
(
i−2
2

)
+ (6m+ 2)− pi,4

2 for u = a
pi,4
1,4 ,

α
(
i−2
2

)
+ (7m+ 2)− pi,5

2 for u = a
pi,5
1,5 ,
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When i ≥ 3 and odd and 1 ≤ r ≤ 5
For pi,r = 1, 3, 5, . . . ,mi,r

λ(u) =



α
(
i−3
2

)
+ (7m+ 1) +

pi,1+1
2 for u = a

pi,1
1,1 ,

α
(
i−3
2

)
+ (9m+ 2)− pi,2+1

2 for u = a
pi,2
1,2 ,

α
(
i−3
2

)
+ (9m+ 1) +

pi,3+1
2 for u = a

pi,3
1,3 ,

α
(
i−3
2

)
+ (10m+ 2)− pi,4+1

2 for u = a
pi,4
1,4 ,

α
(
i−3
2

)
+ (11m+ 2)− pi,5+1

2 for u = a
pi,5
1,5 ,

and for pi,r = 2, 4, 6, . . . ,mi,r − 1

λ(u) =



η + α
(
i−3
2

)
+ (7m− 1) +

pi,1
2 for u = a

pi,1
1,1 ,

η + α
(
i−3
2

)
+ (9m− 1)− pi,2

2 for u = a
pi,2
1,2 ,

η + α
(
i−3
2

)
+ (9m− 1) +

pi,3
2 for u = a

pi,3
1,3 ,

η + α
(
i−3
2

)
+ (10m− 1)− pi,4

2 for u = a
pi,4
1,4 ,

η + α
(
i−3
2

)
+ (11m− 1)− pi,5

2 for u = a
pi,5
1,5 ,

The set of all edge-sums generated by the above scheme of labeling forms a consecutive
integer sequence s = (η + 1) + 1, (η + 1) + 2, . . . , (η + 1) + e. Therefore, by Proposition
2.1, λ can be extended to a super (a, 0)-EAT labeling and obtain the magic constant
a = 2v + s − 1 = η + 16mn − 4m − 2n + 5. Similarly, by the Proposition 2.1, λ can be
extended to a super (a, 2)-EAT labeling and obtain the magic constant a = v + 1 + s =
η + 8mn− 2m− n+ 5. �
Theorem 2.2. The graph G ∼= ζ(α1, α2, α3, . . . , αn : n, 5) is a super (a, 1)-EAT la-
beling with a = s + 3

2v if v is even, where m ≥ 3 and m ≡ 1(mod 2), n ≥ 2, l =
5, α1 = (m,m,m,m, 2m) and α2 = α3 = · · · = αn = (2m, 2m − 1,m − 1,m, 2m − 1),
s = (3m+ 2) + (4m− 1)bn2 c+ 4m(dn2 e − 1) + 2 and v = |V (G)|.

Proof. Let us suppose v = |V (G)| and e = |E(G)| then v = 8mn − 2m − n + 2 and
e = v − 1. We denote the vertex and edge sets of G as follows:

V (G) = {ci : 1 ≤ i ≤ n} ∪ {api,ri,r : 1 ≤ i ≤ n, 1 ≤ pi,r ≤ mi,r, 1 ≤ r ≤ 5}

E(G) = {cici+1 : 1 ≤ i ≤ n− 1} ∪ {apirir a
pir+1

ir : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir − 1, 1 ≤ r ≤ 5}
{a1irci : 1 ≤ i ≤ n, 1 ≤ r ≤ 5}

Now we define the labeling λ : V (G) ∪ E(G)→ {1, 2, . . . , v + e} as in theorem 2.1.

It follows that the edge-weights of all edges of G constitute an arithmetic sequence
s = (η + 1) + 1, (η + 1) + 2, . . . , (η + 1) + e, with common difference 1. We denote it
by A = {ai : 1 ≤ i ≤ e}. Now for G we complete the edge labeling λ for super (a, 1)-
edge antimagic total labeling with values in the arithmetic sequence v+ 1, v+ 2, . . . , v+ e
with common difference 1. Let us denote it by B = {bj : 1 ≤ j ≤ e}. Define C =
{a2i−1 +be−i+1 : 1 ≤ i ≤ e+1

2 }∪{a2j +b e−1
2

−j+1 : 1 ≤ j ≤ e+1
2 −1}. It is easy to see that C

constitute an arithmetic sequence with d = 1 and a = s+ 3
2v = η+2+ 3

2(8mn−2m−n+2).
Since all vertices receive the smallest labels so λ is a super (a, 1)-edge antimagic total
labeling. �
Theorem 2.3. The graph G ∼= ζ(α1, α2, α3, . . . , αn : n, 5) is a super (a, 0)-EAT labeling
with a = 2v + s − 1 and super (a, 2)-EAT labeling with a = v + s + 1, where m ≥ 3
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and m ≡ 1(mod 2), n ≥ 2, l = 5, α1 = (m,m,m,m, 2m, 4m) and α2 = α3 = · · · = αn =
(2m, 2m−1,m−1,m, 2m, 4m), s = (5m+2)+(8m−1)bn2 c+8m(dn2 e−1)+2 and v = |V (G)|.

Proof. Let us suppose v = |V (G)| and e = |E(G)| then v = 16mn − 6m − n + 2 and
e = v − 1. We denote the vertex and edge sets of G as follows:

V (G) = {ci : 1 ≤ i ≤ n} ∪ {apirir : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir, 1 ≤ r ≤ 5}

E(G) = {cici+1 : 1 ≤ i ≤ n− 1} ∪ {apirir a
pir+1

ir : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir − 1, 1 ≤ r ≤ 5}
{a1irci : 1 ≤ i ≤ n, 1 ≤ r ≤ 5}

Now, we define the labeling λ : V (G)→ {1, 2, . . . , v} as follows:
α = 16m− 1 and
η = (5m+ 2) + (8m− 1)bn2 c+ 8m(dn2 e − 1)

λ(ci) =


η +m for i = 1

η + α
2 (i− 3) + (17m− 1) for i ≥ 3, odd

α
2 (i− 2) + (9m+ 2) for i = even

When i = 1 and 1 ≤ r ≤ 6
for p1,r = 1, 3, 5, . . . ,m1,r

λ(u) =



p1,1+1
2 for u = a

p1,1
1,1 ,

(m+ 2)− p1,2+1
2 for u = a

p1,2
1,2 ,

(m+ 1) +
p1,3+1

2 for u = a
p1,3
1,3 ,

(2m+ 3)− p1,4+1
2 for u = a

p1,4
1,4 ,

3(m+ 1)− p1,5+1
2 for u = a

p1,5
1,5 ,

(5m+ 3)− p1,6+1
2 for u = a

p1,6
1,6 ,

and for p1,r = 2, 4, 6, . . . ,m1,r − 1;

λ(u) =



η +
p1,1
2 for u = a

p1,1
1,1 ,

η +m− p1,2
2 for u = a

p1,2
1,2 ,

η +m+
p1,3
2 for u = a

p1,3
1,3 ,

η + 2m− p1,4
2 for u = a

p1,4
1,4 ,

η + (3m− 1)− p1,5
2 for u = a

p1,5
1,5 ,

η + (5m− 1)− p1,6
2 for u = a

p1,6
1,6 ,

When i = even and 1 ≤ r ≤ 6
for pi,r = 1, 3, 5, . . . ,mi,r :

λ(u) =



η + α
(
i−2
2

)
+ (5m− 1) +

pi,1+1
2 for u = a

pi,1
1,1 ,

η + α
(
i−2
2

)
+ 9m− pi,2+1

2 for u = a
pi,2
1,2 ,

η + α
(
i−3
2

)
+ (9m− 1) +

pi,3+1
2 for u = a

pi,3
1,3 ,

η + α
(
i−2
2

)
+ 10m− pi,4+1

2 for u = a
pi,4
1,4 ,

η + α
(
i−2
2

)
+ 11m− pi,5+1

2 for u = a
pi,5
1,5 ,

η + α
(
i−2
2

)
+ 13m− pi,6+1

2 for u = a
pi,6
1,6 ,
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and for pi,r = 2, 4, 6, . . . ,mi,r − 1

λ(u) =



α
(
i−2
2

)
+ (5m+ 2) +

pi,1
2 for u = a

pi,1
1,1 ,

α
(
i−2
2

)
+ (9m+ 2)− pi,2

2 for u = a
pi,2
1,2 ,

α
(
i−2
2

)
+ (9m+ 2) +

pi,3
2 for u = a

pi,3
1,3 ,

α
(
i−2
2

)
+ (10m+ 2)− pi,4

2 for u = a
pi,4
1,4 ,

α
(
i−2
2

)
+ (11m+ 2)− pi,5

2 for u = a
pi,5
1,5 ,

α
(
i−2
2

)
+ (13m+ 2)− pi,6

2 for u = a
pi,6
1,6 ,

When i ≥ 3 odd 1 ≤ r ≤ 6 : and for pi,r = 1, 3, 5, . . . ,mi,r

λ(u) =



α
(
i−3
2

)
+ (13m+ 1) +

pi,1+1
2 for u = a

pi,1
1,1 ,

α
(
i−3
2

)
+ (17m+ 2)− pi,2+1

2 for u = a
pi,2
1,2 ,

α
(
i−3
2

)
+ (17m+ 1) +

pi,3+1
2 for u = a

pi,3
1,3 ,

α
(
i−3
2

)
+ (18m+ 2)− pi,4+1

2 for u = a
pi,4
1,4 ,

α
(
i−3
2

)
+ (19m+ 2)− pi,5+1

2 for u = a
pi,5
1,5 ,

α
(
i−3
2

)
+ (21m+ 2)− pi,6+1

2 for u = a
pi,6
1,6 ,

and for pi,r = 2, 4, 6, . . . ,mi,r − 1

λ(u) =



η + α
(
i−3
2

)
+ (13m− 1) +

pi,1
2 for u = a

pi,1
1,1 ,

η + α
(
i−3
2

)
+ (17m− 1)− pi,2

2 for u = a
pi,2
1,2 ,

η + α
(
i−3
2

)
+ (17m− 1) +

pi,3
2 for u = a

pi,3
1,3 ,

η + α
(
i−3
2

)
+ 18m− pi,4

2 for u = a
pi,4
1,4 ,

η + α
(
i−3
2

)
+ (19m− 1)− pi,5

2 for u = a
pi,5
1,5 ,

η + α
(
i−3
2

)
+ (21m− 1)− pi,6

2 for u = a
pi,6
1,6 ,

The set of all edge-sums generated by the above labeling scheme forms a consecutive
integer sequence s = (η + 1) + 1; (η + 1) + 2, . . . , (η + 1) + e. Therefore, by Proposition
2.1, λ can be extended to a super (a, 0)-EAT labeling and we obtain the magic constant
a = 2v + s − 1 = η + 32mn − 12m − 2n + 5. Similarly, by Proposition 2.1, λ can be
extended to a super (a, 2)-EAT labeling and we obtain the magic constant a = v+ 1 + s =
η + 16mn− 6m− n+ 5. �
Theorem 2.4. The graph G ∼= ζ(α1, α2, α3, . . . , αn : n, 5) is a super (a, 1)-EAT la-
beling with a = s + 3

2v if v is even, where m ≥ 3 and m ≡ 1(mod 2), n ≥ 2, l =
5, α1 = (m,m,m,m, 2m, 4m) and α2 = α3 = · · · = αn = (2m, 2m− 1,m− 1,m, 2m, 4m),
s = (5m+ 2) + (8m− 1)bn2 c+ 8m(dn2 e − 1) + 2 and v = |V (G)|.

Proof. Let us consider v = |V (G)| and e = |E(G)| then v = 16mn − 6m − n + 2 and
e = v − 1. We denote the vertex and edge sets of G as follows:

V (G) = {ci : 1 ≤ i ≤ n} ∪ {apirir : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir, 1 ≤ r ≤ 5}

E(G) = {cici+1 : 1 ≤ i ≤ n− 1} ∪ {apirir a
pir+1

ir : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir − 1, 1 ≤ r ≤ 5}
{a1irci : 1 ≤ i ≤ n, 1 ≤ r ≤ 5}

Now we define the labeling λ : V (G) ∪ E(G)→ {1, 2, . . . , v + e} as in theorem 2.3.
It follows that the edge-weights of all edges of G constitute an arithmetic sequence s =
(η + 1) + 1, (η + 1) + 2, . . . , (η + 1) + e, with common difference 1. We denote it by
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A = {ai : 1 ≤ i ≤ e}. Now for G we complete the edge labeling λ for super (a, 1)-edge
antimagic total labeling with values in the arithmetic sequence v + 1, v + 2, . . . , v + e
with common difference 1. Let us denote it by B = {bj : 1 ≤ j ≤ e}. Define C =
{a2i−1 +be−i+1 : 1 ≤ i ≤ e+1

2 }∪{a2j +b e−1
2

−j+1 : 1 ≤ j ≤ e+1
2 −1}. It is easy to see that C

constitute an arithmetic sequence with d = 1 and a = s+ 3
2v = η+2+ 3

2(16mn−6m−n+2).
Since all vertices receive the smallest labels so λ is a super (a, 1)-edge antimagic total
labeling. �
Theorem 2.5. The graph G ∼= ζ(α1, α2, α3, . . . , αn : n, l) is a super (a, 0)-EAT la-
beling with a = 2v + s − 1 and super (a, 2)-EAT labeling with a = v + s + 1, where
m ≥ 3 and m ≡ 1(mod 2), n ≥ 2, l = 5, α1 = (m,m,m,m,m5, . . . ,ml) and α2 =

α3 = · · · = αn = (ml,ml − 1,m − 1,m,m5, . . . ,ml), s =

(
l∑

p=5
[m2p−5] + 2m+ 2

)
+(

l∑
p=5

[m2p−5] +m− 1 +m2l−4

)
bn2 c+

(
l∑

p=5
[m2p−5] +m+m2l−4

)(
dn2 e − 1

)
+ 2, mp =

m2p−5 for 5 ≤ p ≤ l and v = |V (G)|.

Proof. Let us consider v = |V (G)|, e = |E(G)| then v = (2mn + 2m − n + 2) + m(n −

1)2l−3 + n
l∑

p=5
[m2p−4] and e = v − 1. We denote the vertex and edge sets of G as follows:

V (G) = {ci : 1 ≤ i ≤ n} ∪ {apirir : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir, 1 ≤ r ≤ 5}

E(G) = {cici+1 : 1 ≤ i ≤ n− 1} ∪ {apirir a
pir+1

ir : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir − 1, 1 ≤ r ≤ 5}
{a1irci : 1 ≤ i ≤ n, 1 ≤ r ≤ 5}

Now, we define the labeling λ : V (G)→ {1, 2, . . . , v} as follows:
Throughout the labeling we will consider

a =
l∑

p=5
[m2p−5 + 2] + 2m+ 2,

b =
l∑

p=5
[m2p−5] +m− 1 +m2l−4,

c =
l∑

p=5
[m2p−5] +m+m2l−4,

d =
l∑

p=5
[m2p−5] + 2m− 1,

α =
l∑

p=5
[m2p−4] +m2l−3 + 5m− 1,

η = a+ bbn2 c+ c (dn2e − 1)

λ(ci) =


η +m for i = 1

η + α
2 (i− 3) + (m2l−4 + c+ d) for i ≥ 3, odd

α
2 (i− 2) + (m− 1)2l−4 + a for i = even
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When i = 1:
for p1r = 1, 3, 5, . . . ,m1r, where r = 1, 2, 3, 4 and 5 ≤ r ≤ l, we define

λ(u) =


p1,1+1

2 for u = ap1111 ,

(m+ 2)− p1,2+1
2 for u = a

p1,2
1,2 ,

(m+ 1) +
p1,3+1

2 for u = a
p1,3
1,3 ,

(2m+ 3)− p1,4+1
2 for u = a

p1,4
1,4 ,

λ(a
p1,r
i,r ) = (2m+ 3) +

r∑
k=5

[m2k−5]− p1,r+1
2 respectively and for p1,r = 2, 4, 6, . . . ,m1,r − 1,

where where r = 1, 2, 3, 4 and 5 ≤ r ≤ l, we define

λ(u) =


η +

p1,1
2 for u = a

p1,1
1,1 ,

η +m− p1,2
2 for u = a

p1,2
1,2 ,

η +m+
p1,3
2 for u = a

p1,3
1,3 ,

η + 2m− p1,4
2 for u = a

p1,4
1,4 ,

λ(a
p1,r
i,r ) = η + 2m− 1 +

r∑
k=5

[m2k−5]− p1,r
2 respectively.

When i =even
for pi,r = 1, 3, 5, . . . ,mi,r; where r = 1, 2, 3, 4 and 5 ≤ r ≤ l, we define

λ(u) =


η + α

(
i−2
2

)
+ d+

pi,1+1
2 for u = a

pi,1
1,1 ,

η + α
(
i−2
2

)
+ d+m2l−4 + 1− pi,2+1

2 for u = a
pi,2
1,2 ,

η + α
(
i−2
2

)
+ d+m2l−4 +

pi,3+1
2 for u = a

pi,3
1,3 ,

η + α
(
i−2
2

)
+ d+m+m2l−4 + 4− pi,4+1

2 for u = a
pi,4
1,4 ,

λ(a
pi,r
i,r ) = η + α

(
i−2
2

)
+

r∑
k=5

[m2k−5] + d+m+m2l−4 + 1− pi,r+1
2 respectively.

and for pi,r = 2, 4, 6, . . . ,mi,r − 1; where r = 1, 2, 3, 4 and 5 ≤ r ≤ l, we define

λ(u) =



a+ α
(
i−2
2

)
+

pi,1
2 for u = a

pi,1
11 ,

c+ α
(
i−2
2

)
+ (m+ 2)− pi,2

2 for u = a
pi,2
1,2 ,

c+ α
(
i−2
2

)
+ (m+ 2) +

pi,3
2 for u = a

pi,3
1,3 ,

c+ α
(
i−2
2

)
+ 2(m+ 1)− pi,4

2 for u = a
pi,4
1,4 ,

α
(
i−2
2

)
+ (11m+ 2)− pi,5

2 for u = a
pi,5
1,5 ,

α
(
i−2
2

)
+ (13m+ 2)− pi,6

2 for u = a
pi,6
1,6 ,

λ(a
pi,r
i,r ) = c+ α

(
i−2
2

)
+ (2m+) +

r∑
k=5

[m2k−5]− pi,r
2 respectively.

When i ≥ 3 odd: and for pi,r = 1, 3, 5, . . . ,mi,r, where r = 1, 2, 3, 4 and 5 ≤ r ≤ l, we
define

λ(u) =


(a+ b) + α

(
i−3
2

)
+ (13m+ 1) +

pi,1+1
2 for u = a

pi,1
1,1 ,

(a+ b) + α
(
i−3
2

)
+m2l−4 + 1− pi,2+1

2 for u = a
pi,2
1,2 ,

(a+ b) + α
(
i−3
2

)
+ +m2l−4 +

pi,3+1
2 for u = a

pi,3
1,3 ,

(a+ b) + α
(
i−3
2

)
+m+ 1 +m2l−4 − pi,4+1

2 for u = a
pi,4
1,4 ,
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λ(a
pi,r
i,r ) = (a+ b) + α

(
i−3
2

)
+

r∑
k=5

[m2k−5] + (m+ 4) +m2l−4 − pir+1
2 respectively.

and for pi,r = 2, 4, 6, . . . ,mi,r − 1, where r = 1, 2, 3, 4 and 5 ≤ r ≤ l, we define

λ(u) =


(c+ d) + η + α

(
i−3
2

)
+

pi,1
2 for u = a

pi,1
1,1 ,

(c+ d) + η + α
(
i−3
2

)
+m2l−4 − pi,2

2 for u = a
pi,2
1,2 ,

(c+ d) + η + α
(
i−3
2

)
+m2l−4 +

pi,3
2 for u = a

pi,3
1,3 ,

(c+ d) + η + α
(
i−3
2

)
+m2l−4 +m− pi,4

2 textfor u = a
pi,4
1,4 ,

λ(a
pi,r
i,r ) = (c+ d) + η + α

(
i−3
2

)
+

r∑
k=5

[m2k−5] +m+m2l−4 − pi,r
2 respectively.

The set of all edge-sums generated by the above labeling scheme forms a consecutive
integer sequence s = (η + 1) + 1, (η + 1) + 2, . . . , (η + 1) + e. Therefore, by Proposition
2.1, λ can be extended to a super (a, 0)-EAT labeling and obtain the magic constant

a = 2v+ s− 1 = η+ 1 + 2(2mn+ 2m−n+ 2) +m(n− 1)2l−2 +n
l∑

p=5
[m2p−3]. Similarly,by

Proposition 2.1, λ can be extended to a super (a, 2)-EAT labeling and we obtain the magic

constant a = v + 1 + s = η + 3 + (2mn+ 2m− n+ 2) +m(n− 1)2l−3 + n
l∑

p=5
[m2p−4]. �

Theorem 2.6. The graph G ∼= ζ(α1, α2, α3, . . . , αn : n, l) is a super (a, 1)-EAT label-
ing with a = s + 3

2v if v is even, where m ≥ 3 and m ≡ 1(mod 2), n ≥ 2, l = 5, α1 =
(m,m,m,m,m5, . . . ,ml) and α2 = α3 = · · · = αn = (ml,ml−1,m−1,m,m5, . . . ,ml), s =(

l∑
p=5

[m2p−5] + 2m+ 2

)
+

(
l∑

p=5
[m2p−5] +m− 1 +m2l−4

)
bn2 c+

(
l∑

p=5
[m2p−5] +m+m2l−4

)(
dn2 e − 1

)
+

2, mp = m2p−5 for 5 ≤ p ≤ l and v = |V (G)|.

Proof. Let us suppose v = |V (G)| and e = |E(G)| then v = (2mn+ 2m−n+ 2) +m(n−

1)2l−3 + n
l∑

p=5
[m2p−4] and e = v − 1. We denote the vertex and edge sets of G as follows:

V (G) = {ci : 1 ≤ i ≤ n} ∪ {apirir : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir, 1 ≤ r ≤ 5}

E(G) = {cici+1 : 1 ≤ i ≤ n− 1} ∪ {apirir a
pir+1

ir : 1 ≤ i ≤ n, 1 ≤ pir ≤ mir − 1, 1 ≤ r ≤ 5}
{a1irci : 1 ≤ i ≤ n, 1 ≤ r ≤ 5}

Now, we define the labeling λ : V (G)∪E(G)→ {1, 2, . . . , v+e} as in theorem 2.5. It follows
that the edge-weights of all edges of G constitute an arithmetic sequence s = (η + 1) +
1, (η+1)+2, . . . , (η+1)+e, with common difference 1. We denote it by A = |ai : 1 ≤ i ≤ e|.
Now for G we complete the edge labeling λ for super (a, 1)-edge antimagic total labeling
with values in the arithmetic sequence v+1, v+2, . . . , v+e with common difference 1. Let
us denote it by B = {bj : 1 ≤ j ≤ e}. Define C = {a2i−1 + be−i+1 : 1 ≤ i ≤ e+1

2 } ∪ {a2j +

b e−1
2

−j+1 : 1 ≤ j ≤ e+1
2 −1}. It is easy to see that C constitute an arithmetic sequence with

d = 1 and a = s+ 3
2v = η+ 2 + 3

2

(
(2mn+ 2m− n+ 2) +m(n− 1)2l−3 + n

l∑
p=5

[m2p−4]

)
.

Since all vertices receive the smallest labels so λ is a super (a, 1)-edge antimagic total
labeling. �
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3. Conclusion

In this paper, we have proved the super (a,d)-EAT labeling of the subdivided caterpillar
G ∼= ζ(α1, α2, α3, . . . , αn : n, l),. However, the problem for super (a,d)-EAT labeling is still
open for α1 6= α2 6=, ..., 6= αn different values of magic constant.
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