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APPROXIMATION BY STANCU TYPE

JAKIMOVSKI-LEVIATAN-PǍLTǍNEA OPERATORS

ALOK KUMAR1, VANDANA2, §

Abstract. The present article deals with the general family of summation-integral type
operators. Here, we introduce the Stancu type generalization of the Jakimovski-Leviatan-
Pǎltǎnea operators and study Voronovskaja-type asymptotic theorem, local approxima-
tion, weighted approximation, rate of convergence and pointwise estimates using the
Lipschitz type maximal function. Also, we propose a king type modification of these
operators to obtain better estimates.

Keywords: Voronovskaja-type theorem, K-functional, Appell polynomials, rate of con-
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1. Introduction

In approximation theory, the positive approximation processes discovered by Korovkin
play a central role and arise in a natural way in many problems connected with functional
analysis, harmonic analysis, measure theory, partial differential equations and probability
theory. The most useful examples of such operators are Szász [33] operators.
Szász [33] defined the positive linear operators:

Sn(f, x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
,

where x ∈ [0,∞) and f ∈ C[0,∞) whenever the above sum converges. Motivated by
this work, many researchers have investigated several important properties of the above
operators.
Later, Jakimovski and Leviatan [9] gave a generalization of Szász operators by using the

Appell polynomials. Let g(z) =

∞∑
k=0

akz
k(a0 6= 0) be an analytic function in the disk
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|z| < R, (R > 1) and g(1) 6= 0. It is well known that the Appell polynomials pk(x) are
defined by the following generating functions

g(u)eux =
∞∑
k=0

pk(x)uk, (1)

with the condition that pk(x) ≥ 0 for every x ∈ [0,∞). Jakimovski and Leviatan [9]
introduced the following positive linear operators:

Pn(f, x) =
e−nx

g(1)

∞∑
k=0

pk(nx)f

(
k

n

)
.

For the special case g(z) = 1 the operators Pn reduced to Szász operators. Karaisa [10] gave
Durrmeyer type generalization of these operators and investigate different approximation
properties. In order to modify the Phillips operators based on parameter ρ > 0 Pǎltǎnea
[29] proposed the generalization of the well known Phillips operators [30], which provide
the link with Szász operators as ρ→∞.
For f ∈ C[0,∞), Verma and Gupta [34] introduced the Jakimovski-Leviatan-Pǎltǎnea
operators:

Mn,ρ(f, x) =

∞∑
k=1

ln,k(x)

∫ ∞
0

Θρ
n,k(x)f(t)dt+ ln,0(x)f(0), (2)

where ln,k(x) = e−nx

g(1) pk(nx) and Θρ
n,k(x) =

nρ

Γ(kρ)
e−nρt(nρt)kρ−1.

For g(z) = 1 and ρ = 1 the operators (2) reduced to Phillips operators. In [34] Verma and
Gupta studied some approximation properties and asymptotic formula for the operators
Mn,ρ. Very recently, Goyal and Agrawal [8] studied direct approximation theorem and
rate of convergence for the functions having a derivative of bounded variation for these
operators.
In the recent years, Stancu type generalization of the certain operators introduced by
several researchers and obtained different type of approximation properties of many oper-
ators, we refer some of the important papers in this direction as [1], [11], [15], [17], [21],
[32], [35] etc.
Inspired by the above work, We introduce the Stancu type generalization of the Jakimovski-
Leviatan-Pǎltǎnea operators as follows:

Mα,β
n,ρ (f, x) =

∞∑
k=1

ln,k(x)

∫ ∞
0

Θρ
n,k(x)f

(
nt+ α

n+ β

)
dt+ ln,0(x)f

(
α

n+ β

)
. (3)

Taking α = β = 0 in (3), we get the Jakimovski-Leviatan-Pǎltǎnea operators (2).
The aim of this paper is to study the basic convergence theorem, Voronovskaja-type as-
ymptotic formula, rate of convergence, weighted approximation and pointwise estimation
of the operators (3). Further, to obtain better approximation, we also propose modification
of the operators (3) using King type approach.

2. Auxiliary results

In this section we collect some results about the operators Mα,β
n,ρ useful in the sequel.

Let ei(t) = ti, i = 0, 1, 2.

Lemma 2.1. [34] For Mn,ρ(t
m, x),m = 0, 1, 2, we have

(1) Mn,ρ(e0, x) = 1;
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(2) Mn,ρ(e1, x) = x+ g′(1)
ng(1) ;

(3) Mn,ρ(e2, x) = ρn2x2+nx(1+ρ)
n2ρ

+ ρ(2nx+1)+1
n2ρ

g′(1)
g(1) + g′′(1)

n2g(1)
.

Lemma 2.2. For the operators Mα,β
n,ρ (f, x) as defined in (3), the following equalities holds

(1) Mα,β
n,ρ (e0, x) = 1;

(2) Mα,β
n,ρ (e1, x) = nx+α

n+β + g′(1)
(n+β)g(1) ;

(3) Mα,β
n,ρ (e2, x) = ρn2x2+nx(1+ρ+2αρ)

ρ(n+β)2
+ ρ(2nx+1)+1

ρ(n+β)2
g′(1)
g(1) + g′′(1)+2αg′(1)+α2g(1)

(n+β)2g(1)
.

Proof. For x ∈ [0,∞), in view of Lemma 2.1, we have Mα,β
n,ρ (e0, x) = 1.

The first order moment is given by

Mα,β
n,ρ (e1, x) =

n

n+ β
Mn,ρ(e1, x) +

α

n+ β
=
nx+ α

n+ β
+

g′(1)

(n+ β)g(1)
.

The second order moment is given by

Mα,β
n,ρ (e2, x) =

(
n

n+ β

)2

Mn,ρ(e2, x) +
2nα

(n+ β)2
Mn,ρ(e1, x) +

(
α

n+ β

)2

=
ρn2x2 + nx(1 + ρ+ 2αρ)

ρ(n+ β)2
+
ρ(2nx+ 1) + 1

ρ(n+ β)2
g′(1)

g(1)
+
g′′(1) + 2αg′(1) + α2g(1)

(n+ β)2g(1)
.

�

Lemma 2.3. For f ∈ CB[0,∞) (space of all real valued bounded and uniformly con-
tinuous functions on [0,∞) endowed with the norm ‖ f ‖= sup{|f(x)| : x ∈ [0,∞)}),

‖Mα,β
n,ρ (f) ‖≤‖ f ‖.

Proof. In view of (3) and Lemma 2.2, the proof of this lemma easily follows. �

Remark 2.1. From Lemma 2.2 it follows

Mα,β
n,ρ (t− x, x) =

α− βx
n+ β

+
g′(1)

(n+ β)g(1)

and

Mα,β
n,ρ

(
(t− x)2, x

)
=

β2x2

(n+ β)2
+

{
n(1 + ρ)− 2ραβ

ρ(n+ β)2
− 2β

(n+ β)2
g′(1)

g(1)

}
x

+
ρ(g′′(1) + 2αg′(1) + α2g(1)) + (ρ+ 1)g′(1)

ρ(n+ β)2g(1)
.

3. Main Results

In this section we establish some approximation properties in several settings. For the
reader’s convenience we split up this section in more subsections.

Theorem 3.1. Let f ∈ C[0,∞). Then lim
n→∞

Mα,β
n,ρ (f, x) = f(x), uniformly in each compact

subset of [0,∞).

Proof. In view of Lemma 2.2, we get limn→∞M
α,β
n,ρ (ei, x) = xi, i = 0, 1, 2, uniformly

in each compact subset of [0,∞). Applying Bohman-Korovkin Theorem, it follows that

lim
n→∞

Mα,β
n,ρ (f, x) = f(x), uniformly in each compact subset of [0,∞). �
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3.1. Voronovskaja-type theorem. In this section we prove Voronvoskaja-type asymp-

totic theorem for the operators Mα,β
n,ρ .

Theorem 3.2. Let f ∈ CB[0,∞). If f ′, f ′′ exists at a fixed point x ∈ [0,∞), then we have

lim
n→∞

n
(
Mα,β
n,ρ (f, x)− f(x)

)
=

(
(α− βx) +

g′(1)

g(1)

)
f ′(x) +

x

2

(
1 +

1

ρ

)
f ′′(x).

Proof. Let x ∈ [0,∞) be fixed. By Taylor’s expansion of f , we can write

f(t) = f(x) + (t− x)f ′(x) +
(t− x)2

2!
f ′′(x) + r(t, x)(t− x)2, (4)

where r(t, x) is the Peano form of remainder, r(t, x) ∈ CB[0,∞) and lim
t→x

r(t, x) = 0.

Applying Mα,β
n,ρ on both sides of (4), we have

n
(
Mα,β
n,ρ (f, x)− f(x)

)
= nf ′(x)Mα,β

n,ρ (t− x, x) +
f ′′(x)

2!
nMα,β

n,ρ

(
(t− x)2, x

)
+nMα,β

n,ρ

(
r(t, x)(t− x)2, x

)
.

In view of Remark 2.1, we have

lim
n→∞

nMα,β
n,ρ (t− x, x) =

(
(α− βx) +

g′(1)

g(1)

)
(5)

and

lim
n→∞

nMα,β
n,ρ

(
(t− x)2, x

)
= x

(
1 +

1

ρ

)
. (6)

Now, we shall show that

lim
n→∞

nMα,β
n,ρ

(
r(t, x)(t− x)2, x

)
= 0.

By using Cauchy-Schwarz inequality, we have

Mα,β
n,ρ

(
r(t, x)(t− x)2, x

)
≤

(
Mα,β
n,ρ (r2(t, x), x)

)1/2 (
Mα,β
n,ρ ((t− x)4, x)

)1/2
. (7)

We observe that r2(x, x) = 0 and r2(., x) ∈ CB[0,∞). Then, it follows that

lim
n→∞

Mα,β
n,ρ (r2(t, x), x) = r2(x, x) = 0, (8)

in view of fact that Mα,β
n,ρ ((t− x)4, x) = O

(
1

n2

)
.

Now, from (7) and (8) we obtain

lim
n→∞

nMα,β
n,ρ

(
r(t, x)(t− x)2, x

)
= 0. (9)

From (5), (6) and (9), we get the required result. �

3.2. Local approximation. For CB[0,∞), let us consider the following K-functional:

K2(f, δ) = inf
g∈W 2

{‖ f − g ‖ +δ ‖ g′′ ‖},

where δ > 0 and W 2 = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)}. By, p. 177, Theorem 2.4 in
[2], there exists an absolute constant C > 0 such that

K2(f, δ) ≤ Cω2(f,
√
δ), (10)
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where ω2(f,
√
δ) = sup0<h≤

√
δ supx∈[0,∞) | f(x + 2h) − 2f(x + h) + f(x) | is the second

order modulus of smoothness of f . By ω1(f, δ) = sup0<h≤δ supx∈[0,∞) | f(x + h) − f(x) |
we denote the first order modulus of continuity of f ∈ CB[0,∞).

Theorem 3.3. For f ∈ CB[0,∞), we have

|Mα,β
n,ρ (f, x)− f(x) | ≤ Cω2 (f, δ) + ω1

(
f,

∣∣∣∣α− βxn+ β
+

g′(1)

(n+ β)g(1)

∣∣∣∣) ,
where

δ =

√
Mα,β
n,ρ ((t− x)2, x) +

(
α− βx
n+ β

+
g′(1)

(n+ β)g(1)

)2

.

Proof. For x ∈ [0,∞), we consider the auxiliary operators M
α,β
n,ρ as follows:

M
α,β
n,ρ (f ;x) = Mα,β

n,ρ (f, x)− f
(
nx+ α

n+ β
+

g′(1)

(n+ β)g(1)

)
+ f(x). (11)

From Lemma 2.2, we observe that the operators M
α,β
n,ρ are linear and preserve the linear

functions.
Hence

M
α,β
n,ρ (t− x, x) = 0. (12)

Let h ∈W 2 and x, t ∈ [0,∞). By Taylor’s expansion we have

h(t) = h(x) + (t− x)h′(x) +

∫ t

x
(t− v)h′′(v)dv.

Applying M
α,β
n,ρ on both sides of the above equation and using (12), we get

M
α,β
n,ρ (h, x)− h(x) = M

α,β
n,ρ

(∫ t

x
(t− v)h′′(v)dv, x

)
.

Thus, by (11) we get

|Mα,β
n,ρ (h, x)− h(x)| ≤ Mα,β

n,ρ

(∣∣∣∣ ∫ t

x
(t− v)h′′(v)dv

∣∣∣∣, x)

+

∣∣∣∣ ∫ nx+α
n+β

+
g′(1)

(n+β)g(1)

x

(
nx+ α

n+ β
+

g′(1)

(n+ β)g(1)
− v
)
h′′(v)dv

∣∣∣∣
≤

(
Mα,β
n,ρ ((t− x)2, x) +

(
α− βx
n+ β

+
g′(1)

(n+ β)g(1)

)2)
‖ h′′ ‖

≤ δ2 ‖ h′′ ‖ .

Since |Mα,β
n,ρ (f, x)| ≤‖ f ‖, it follows

|Mα,β
n,ρ (f, x)− f(x)| ≤ |Mα,β

n,ρ (f − h, x)|+ |(f − h)(x)|

+|Mα,β
n,ρ (h, x)− h(x)|+

∣∣∣∣f (nx+ α

n+ β
+

g′(1)

(n+ β)g(1)

)
− f(x)

∣∣∣∣
≤ ‖ f − h ‖ +δ2 ‖ h′′ ‖ +

∣∣∣∣f (nx+ α

n+ β
+

g′(1)

(n+ β)g(1)

)
− f(x)

∣∣∣∣.
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Taking infimum over all h ∈W 2, we get

|Mα,β
n,ρ (f, x)− f(x) | ≤ K2

(
f, δ2

)
+ ω1

(
f,

∣∣∣∣α− βxn+ β
+

g′(1)

(n+ β)g(1)

∣∣∣∣) .
In view of (10), we get

|Mα,β
n,ρ (f, x)− f(x) | ≤ Cω2 (f, δ) + ω1

(
f,

∣∣∣∣α− βxn+ β
+

g′(1)

(n+ β)g(1)

∣∣∣∣) .
�

3.3. Rate of convergence. Let ωa(f, δ) denote the usual modulus of continuity of f on
the closed interval [0, a], a > 0 and it is given by the relation

ωa(f, δ) = sup
|t−x|≤δ

sup
x,t∈[0,a]

|f(t)− f(x)|.

We observe that for a function f ∈ CB[0,∞), the modulus of continuity ωa(f, δ) tends to
zero.

Theorem 3.4. Let f ∈ CB[0,∞) and ωa+1(f, δ) be its modulus of continuity on the finite
interval [0, a+ 1] ⊂ [0,∞), where a > 0. Then, we have

|Mα,β
n,ρ (f, x)− f(x)| ≤ 6Mf (1 + a2)Mα,β

n,ρ ((t− x)2, x) + 2ωa+1

(
f,

√
Mα,β
n,ρ ((t− x)2, x)

)
,

where Mf is a constant depending only on f .

Proof. For x ∈ [0, a] and t > a+ 1. Since t− x > 1, we have

|f(t)− f(x)| ≤Mf (2 + x2 + t2) ≤Mf (t− x)2(2 + 3x2 + 2(t− x)2) ≤ 6Mf (1 + a2)(t− x)2.

For x ∈ [0, a] and t ≤ a+ 1, we have

|f(t)− f(x)| ≤ ωa+1(f, |t− x|) ≤
(

1 +
|t− x|
δ

)
ωa+1(f, δ), δ > 0.

From the above, we have

|f(t)− f(x)| ≤ 6Mf (1 + a2)(t− x)2 +

(
1 +
|t− x|
δ

)
ωa+1(f, δ),

for x ∈ [0, a] and t ≥ 0. Thus

|Mα,β
n,ρ (f, x)− f(x)| ≤ 6Mf (1 + a2)(Mα,β

n,ρ ((t− x)2, x))

+ωa+1(f, δ)

(
1 +

1

δ
(Mα,β

n,ρ ((t− x)2, x))
1
2

)
Applying Cauchy-Schwarz’s inequality, we get

|Mα,β
n,ρ (f, x)− f(x)| ≤ 6Mf (1 + a2)Mα,β

n,ρ ((t− x)2, x) + 2ωa+1

(
f,

√
Mα,β
n,ρ ((t− x)2, x)

)
,

on choosing δ =

√
Mα,β
n,ρ ((t− x)2, x). This completes the proof of theorem. �
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3.4. Weighted approximation. Let Bν [0,∞) denote the weighted space of real-valued
functions f defined on [0,∞) with the property |f(x)| ≤Mfν(x) for all x ∈ [0,∞), where
ν(x) is a weight function and Mf is a constant depending on the function f . We also
consider the weighted subspace Cν [0,∞) of Bν [0,∞) given by Cν [0,∞) = {f ∈ Bν [0,∞) :
f is continuous on [0,∞)} and C∗ν [0,∞) denotes the subspace of all functions f ∈ Cν [0,∞)

for which lim
|x|→∞

f(x)

ν(x)
exists finitely.

It is obvious that C∗ν [0,∞) ⊂ Cν [0,∞) ⊂ Bν [0,∞). The space Bν [0,∞) is a normed linear
space with the following norm:

‖ f ‖ν= sup
x∈[0,∞)

|f(x)|
ν(x)

.

The following results on the sequence of positive linear operators in these spaces are given
in [3], [4].

Lemma 3.1. ([3], [4]) The sequence of positive linear operators (Ln)n≥1 which act from
Cν [0,∞) to Bν [0,∞) if and only if there exists a positive constant k such that Ln(ν, x) ≤
kν(x), i.e. ‖ Ln(ν) ‖ν≤ k.

Theorem 3.5. ([3], [4]) Let (Ln)n≥1 be the sequence of positive linear operators which act
from Cν [0,∞) to Bν [0,∞) satisfying the conditions

lim
n→∞

‖ Ln(tk)− xk ‖ν= 0, k = 0, 1, 2,

then for any function f ∈ C∗ν [0,∞)

lim
n→∞

‖ Ln(f)− f ‖ν= 0.

Lemma 3.2. Let ν(x) = 1 + x2 be a weight function. If f ∈ Cν [0,∞), then

‖Mα,β
n,ρ (ν) ‖ν≤ 1 +M.

Proof. Using Lemma 2.2, we have

Mα,β
n,ρ (ν, x) = 1 +

n2x2

(n+ β)2
+

(
n(1 + ρ+ 2αρ)

ρ(n+ β)2
+

2n

(n+ β)2
g′(1)

g(1)

)
x

+
g′′(1) + 2αg′(1) + α2g(1)

(n+ β)2g(1)
+

ρ+ 1

ρ(n+ β)2
g′(1)

g(1)
.

Then

‖Mα,β
n,ρ (ν) ‖ν ≤ 1 +

n2ρ+ n(1 + ρ+ 2αρ)

ρ(n+ β)2
+

2ng′(1)

(n+ β)2g(1)

+
ρ(g′′(1) + 2αg′(1) + α2g(1)) + (ρ+ 1)g′(1)

ρ(n+ β)2g(1)

there exists a positive constant M such that

‖Mα,β
n,ρ (ν) ‖ν≤ 1 +M

so the proof is completed. �

By using Lemma 3.2 we can easily see that the operators Mα,β
n,ρ defined by (3) act from

Cν [0,∞) to Bν [0,∞).

Theorem 3.6. For every f ∈ C∗ν [0,∞), we have

lim
n→∞

‖Mα,β
n,ρ (f)− f ‖ν= 0.
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Proof. From [3], we know that it is sufficient to verify the following three conditions

lim
n→∞

‖Mα,β
n,ρ (tk)− xk ‖ν= 0, k = 0, 1, 2. (13)

Since Mα,β
n,ρ (1, x) = 1, the condition in (13) holds for k = 0.

For k = 1, we have

‖Mα,β
n,ρ (t)− x ‖ν ≤

∣∣∣∣ β

n+ β

∣∣∣∣ sup
x∈[0,∞)

x

1 + x2
+

∣∣∣∣αg(1) + g′(1)

(n+ β)g(1)

∣∣∣∣ sup
x∈[0,∞)

1

1 + x2

≤
∣∣∣∣(α+ β)g(1) + g′(1)

(n+ β)g(1)

∣∣∣∣
which implies that lim

n→∞
‖Mα,β

n,ρ (t)− x ‖ν= 0.

Similarly, we can write for k = 2

‖Mα,β
n,ρ (t2)− x2 ‖ν ≤

∣∣∣∣β2 + 2nβ

(n+ β)2

∣∣∣∣+

∣∣∣∣n(1 + ρ+ 2αρ)

ρ(n+ β)2
+

2n

(n+ β)2
g′(1)

g(1)

∣∣∣∣
+

∣∣∣∣ρ(g′′(1) + 2αg′(1) + α2g(1)) + (ρ+ 1)g′(1)

ρ(n+ β)2g(1)

∣∣∣∣ ,
which implies that lim

n→∞
‖Mα,β

n,ρ (t2)− x2 ‖ν= 0.

This completes the proof of theorem. �

3.5. Pointwise Estimates. We know that a function f ∈ C[0,∞) is in LipM (η) on E,
η ∈ (0, 1], E⊂ [0,∞) if it satisfies the condition

|f(t)− f(x)| ≤M |t− x|η, t ∈ [0,∞) and x ∈ E,
where M is a constant depending only on η and f .

Theorem 3.7. Let f ∈ C[0,∞) ∩ LipM (η), E ⊂ [0,∞) and η ∈ (0, 1]. Then, we have

|Mα,β
n,ρ (f, x)− f(x)| ≤ M

((
Mα,β
n,ρ ((t− x)2, x)

)η/2
+ 2dη(x,E)

)
, x ∈ [0,∞),

where M is a constant depending on η and f and d(x,E) is the distance between x and E
defined as d(x,E) = inf{|t− x| : t ∈ E}.

Proof. Let E be the closure of E in [0,∞). Then, there exists at least one point x0 ∈ E
such that d(x,E) = |x− x0|. By our hypothesis and the monotonicity of Mα,β

n,ρ , we get

|Mα,β
n,ρ (f, x)− f(x)| ≤ Mα,β

n,ρ (|f(t)− f(x0)|, x) +Mα,β
n,ρ (|f(x)− f(x0)|, x)

≤ M
(
Mα,β
n,ρ (|t− x0|η, x) + |x− x0|η

)
≤ M

(
Mα,β
n,ρ (|t− x|η, x) + 2|x− x0|η

)
.

Now, applying Hölder’s inequality with p =
2

η
and q =

2

2− η
, we obtain

|Mα,β
n,ρ (f, x)− f(x)| ≤M

((
Mα,β
n,ρ (|t− x|2, x)

)η/2
+ 2dη(x,E)

)
,

from which the desired result immediate. �
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Next, we obtain the local direct estimate of the operators defined in (3), using the
Lipschitz-type maximal function of order η introduced by B. Lenze [19] as

ω̃η(f, x) = sup
t6=x, t∈[0,∞)

|f(t)− f(x)|
|t− x|η

, x ∈ [0,∞) and η ∈ (0, 1]. (14)

Theorem 3.8. Let f ∈ CB[0,∞) and 0 < η ≤ 1. Then, for all x ∈ [0,∞) we have

|Mα,β
n,ρ (f, x)− f(x)| ≤ ω̃η(f, x)

(
Mα,β
n,ρ ((t− x)2, x)

)η/2
.

Proof. From the equation (14), we have

|Mα,β
n,ρ (f, x)− f(x)| ≤ ω̃η(f, x)Mα,β

n,ρ (|t− x|η, x).

Applying the Hölder’s inequality with p =
2

η
and q =

2

2− η
, we get

|Mα,β
n,ρ (f, x)− f(x)| ≤ ω̃η(f, x)Mα,β

n,ρ ((t− x)2, x)
η
2 ≤ ω̃η(f, x)

(
Mα,β
n,ρ ((t− x)2, x)

)η/2
.

Thus, the proof is completed. �

For a, b > 0, Özarslan and Aktuğlu [28] consider the Lipschitz-type space with two
parameters:

Lip
(a,b)
M (η) =

(
f ∈ C[0,∞) : |f(t)− f(x)| ≤M |t− x|η

(t+ ax2 + bx)η/2
; x, t ∈ [0,∞)

)
,

where M is any positive constant and 0 < η ≤ 1.

Theorem 3.9. For f ∈ Lip(a,b)M (η). Then, for all x > 0, we have

|Mα,β
n,ρ (f, x)− f(x)| ≤M

(
Mα,β
n,ρ ((t− x)2, x)

ax2 + bx

)η/2
.

Proof. First we prove the theorem for η = 1. Then, for f ∈ Lip(a,b)M (1), and x ∈ [0,∞), we
have

|Mα,β
n,ρ (f, x)− f(x)| ≤ MMα,β

n,ρ

(
|t− x|

(t+ ax2 + bx)1/2
, x

)
≤ M

(ax2 + bx)1/2
Mα,β
n,ρ (|t− x|, x).

Applying Cauchy-Schwarz inequality, we get

|Mα,β
n,ρ (f, x)− f(x)| ≤ M

(ax2 + bx)1/2

(
Mα,β
n,ρ ((t− x)2, x)

)1/2
≤ M

(
Mα,β
n,ρ ((t− x)2, x)

ax2 + bx

)1/2

.

Now, we prove that the result is true for 0 < η < 1. Then, for f ∈ Lip
(a,b)
M (η), and

x ∈ [0,∞), we get

|Mα,β
n,ρ (f, x)− f(x)| ≤ M

(ax2 + bx)η/2
Mα,β
n,ρ (|t− x|η, x).
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Taking p = 1
η and q = 2

2−η , applying the Hölder’s inequality, we have

|Mα,β
n,ρ (f, x)− f(x)| ≤ M

(ax2 + bx)η/2

(
Mα,β
n,ρ (|t− x|, x)

)η
.

Finally by Cauchy-Schwarz inequality, we get

|Mα,β
n,ρ (f, x)− f(x)| ≤ M

(
Mα,β
n,ρ ((t− x)2, x)

ax2 + bx

)η/2
.

�

4. King’s Approach

To make the convergence faster, King [18] proposed an approach to modify the classical
Bernstein polynomial, so that the sequence preserve test functions e0 and e2, where ei(t) =
ti, i = 0, 1, 2. After this approach many researcher contributed in this direction.

As the operator Mα,β
n,ρ (f, x) defined in (3) preserve only the constant functions so further

modification of these operators is proposed to be made so that the modified operators
preserve the constant as well as linear functions.
For this purpose the modification of (3) is defined as

M̂α,β
n,ρ (f, x) =

∞∑
k=1

ln,k(rn(x))

∫ ∞
0

Θρ
n,k(x)f

(
nt+ α

n+ β

)
dt+ ln,0(rn(x))f

(
α

n+ β

)
(15)

where rn(x) = (n+β)x−α
n − g′(1)

ng(1) for x ∈ In = [ α
n+β ,∞).

Lemma 4.1. For every x ∈ In, we have

(1) M̂α,β
n,ρ (e0, x) = 1;

(2) M̂α,β
n,ρ (e1, x) = x;

(3) M̂α,β
n,ρ (e2, x) = x2+

1 + ρ

ρ(n+ β)
x−α

2ρ+ αρ+ α

ρ(n+ β)2
−1 + ρ+ 3αρ

ρ(n+ β)2
g′(1)

g(1)
+

(
g′(1)

(n+ β)g(1)

)2

.

Consequently, for each x ∈ In, we have the following equalities

M̂α,β
n,ρ (t− x, x) = 0

M̂α,β
n,ρ ((t− x)2, x) =

1 + ρ

ρ(n+ β)
x− α2ρ+ αρ+ α

ρ(n+ β)2
− 1 + ρ+ 3αρ

ρ(n+ β)2
g′(1)

g(1)
+

(
g′(1)

(n+ β)g(1)

)2

.

Theorem 4.1. For f ∈ CB(In), C ′ > 0, we have

|M̂α,β
n,ρ (f, x)− f(x)| ≤ C ′ω2

(
f,

√
M̂α,β
n,ρ ((t− x)2, x)

)
,

Proof. Let h ∈W 2 and x, t ∈ In. Using the Taylor’s expansion we have

h(t) = h(x) + (t− x)h′(x) +

∫ t

x
(t− v)h′′(v)dv.

Applying M̂α,β
n,ρ on both sides and using Lemma 3.1, we get

M̂α,β
n,ρ (h, x)− h(x) = M̂α,β

n,ρ

(∫ t

x
(t− v)h′′(v)dv, x

)
.



946 TWMS J. APP. ENG. MATH. V.9, N.4, 2019

Obviously, we have

∣∣∣∣∫ t

x
(t− v)h′′(v)dv

∣∣∣∣ ≤ (t− x)2‖h′′‖.

Therefore

| M̂α,β
n,ρ (h, x)− h(x) |≤ M̂α,β

n,ρ ((t− x)2, x) ‖ h′′ ‖ .

Since | M̂α,β
n,ρ (f, x) |≤ ‖f‖, we get

| M̂α,β
n,ρ (f, x)− f(x) | ≤ | M̂α,β

n,ρ (f − h, x) | + | (f − h)(x) | + | M̂α,β
n,ρ (h, x)− h(x) |

≤ ‖f − h‖+ M̂α,β
n,ρ ((t− x)2, x)‖h′′‖.

Finally, taking the infimum over all h ∈W 2 and using (10) we obtain

| M̂α,β
n,ρ (f, x)− f(x) |≤ C ′ω2

(
f,

√
M̂α,β
n,ρ ((t− x)2, x)

)
.

�

Theorem 4.2. Let f ∈ CB(In). If f ′′ exists at a fixed point x ∈ In, then we have

lim
n→∞

n
(
M̂α,β
n,ρ (f, x)− f(x)

)
=
x

2

(
1 +

1

ρ

)
f ′′(x).

The proof follows along the lines of Theorem 3.2.
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