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SOME BOUNDS ON THE SEIDEL ENERGY OF GRAPHS

GÜLİSTAN KAYA GÖK1, §

Abstract. This paper includes new bounds concepting the Seidel incidence energy. In
the sequel, improved bounds about the Seidel Laplacian energy concerned with the edges
and the vertices are established.
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1. Introduction

Let G be a simple, finite, connected graphs with the vertex set V (G) and the edge set
E(G). The maximum degree is denoted by ∆ and the minimum degree is denoted by δ.

The Seidel matrix is defined as nxn real symmetric matrix S(G) = sij where sij = −1
if the vertices vi is adjacent to vj , (vi ∼ vj), sij = 1 if the vertices vi 6∼ vj and sij = 0 if
i = j. The eigenvalues of the Seidel matrix labeled as µ1 ≥ µ2 ≥ ... ≥ µn.

The Seidel Laplacian matrix SL(G) is DS(G) − S(G). The Seidel Laplacian energy of

S(G) is SLE = SLE(G) =
∑n

i=1 |µLi − (n − 1) +
4m

n
|. Let µL1 ,µL2 ,...,µLn be eigenvalues

of the Seidel Laplacian matrix of G. Also, let µLi − (n − 1) +
4m

n
be denoted by Ti. So,

SLE(G) =
∑n

i=1 |Ti|. [4, 11, 12] contain these equations.

The Seidel signless Laplacian matrix is represented by SL+(G) such that µL
+

1 , µL
+

2 ,...,µL
+

n

are the eigenvalues of the Seidel signless Laplacian matrix. In this matrix, µL
+

1 ≤ maxi∈V 2di.
See details in [3].

The structure of this paper is as the following: In Section 2, some proved lemmas are
focused. In third section, some results on upper and lower bound for Seidel incidence
energy of graphs with some fixed parameters are obtained. Also, Seidel signless Laplacian
energy of graphs and Seidel Laplacian energy are pointed out. In the sequel, some lemmas
are outlined and some results using the vertices, the edges and the degrees are improved.
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2. Preliminaries

In this section, some back-ground material that is needed for later sections will be given.

Lemma 2.1 (10). Let ki, ti ∈ R, i = 1, 2, ..., n. Let k, t,K and T be real constants such
that, 0 < k ≤ ki ≤ K and 0 < t ≤ ti ≤ T . Then,

|n
n∑

i=1

kiti −
n∑

i=1

ki

n∑
i=1

ti| ≤ γ(n)(K − k)(T − t)

where γ(n) = n[n2 ]([1− 1
n ][n2 ]).

Lemma 2.2 (5). Let ai, bi ∈ R+, 1 ≤ i ≤ n. Then,

n∑
i=1

b2i + rR
n∑

i=1

a2i ≤ (r +R)
n∑

i=1

aibi

where r,R ∈ R such that rai ≤ bi ≤ Rai. (R = maxsi, r = minsi).

Let xi ∈ R+ for 1 ≤ i ≤ s. Mt is defined as

M1 =
x1 + x2 + ...+ xs

s
,

M2 =
x1x2 + x1x3 + ...+ x1xs + x2x3 + ...+ xs−1xs

1
2s(s− 1)

,

...

Ms−1 =
x1x2...xs−1 + x1x2...xs−2xs + ...+ x2x3...xs−1xs

s
,

Ms =x1x2...xs.

(See details in [6].)

Lemma 2.3 (1). Let x1, x2, ..., xs be real nonnegative numbers. Then

M1 ≥M
1
2
2 ≥M

1
3
3 ≥ ... ≥M

1
s
s .

This equality gives if and only if x1 = x2 = ... = xs.

Lemma 2.4 (12). Suppose G is a graph and G has n vertices and m edges. Thus,

n∑
i=1

µLi = n(n− 1)− 4m,

K =

n∑
i=1

(µLi )2 = n2(n− 1)− 8m(n− 1) + 4M1(G)

where M1(G) =
∑n

i=1 d
2
i is called the first Zagreb index, for details see [2].

3. MAIN RESULTS

3.1. On The Seidel Incidence Energy. Let SI(G) be Seidel incidence matrix of G.
Let SIE(G) be Seidel incidence energy of S(G) such that SIE(G) =

∑n
i=1 si. s1,s2,...,sn

are singular values of the Seidel incidence matrix and si =
√
µL

+

i . (see [7, 8, 9])
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Lemma 3.1. Let G be a graph with n vertices, m edges and SIE(G) be incidence energy
of the Seidel matrix of G. Then,

SIE(G) ≤
√
n(n− 1)− 4m.

Proof. Let SL+(G) be signless Laplacian matrix of G and µL
+

1 , µL
+

2 , ..., µL
+

n be eigenvalues
of this matrix. Using the Cauchy-Schwarz inequality,

SIE2(G) = (
n∑

i=1

si)
2 ≤

n∑
i=1

(si)
2 (1)

=
n∑

i=1

(

√
µL

+

i )2 (2)

=
n∑

i=1

(µL
+

i ). (3)

Since the Lemma 2.4. states that trace[SL(G)] =
∑n

i=1(µ
L
i ) and trace[SL(G)] = trace[SL+(G)]

then
∑n

i=1(µ
L+

i ) = n(n− 1)− 4m. Therefore,

SIE(G) ≤
√
n(n− 1)− 4m.

�

Theorem 3.1. Let G be a graph with m edges and n vertices. Thus, SIE(G) is bounded
with

i)

SIE(G) ≥
n(n− 1)− 4m+ n

√
detSL+(G)∏n−1

i=2 µ
L+

i

(2 maxi∈V (2di))
. (4)

ii)

SIE(G) ≥
√
n(n(n− 1)− 4m)− γ(n)(

√
∆−

√
δ)2. (5)

Proof. i) Let s1 be the smallest singular value and sn be the largest singular value of S(G).
Suppose ai = 1 and bi = si, 1 ≤ i ≤ n. Using Lemma 2.2 implies that

n∑
i=1

s2i + sns1

n∑
i=1

1 ≤ (sn + s1)
n∑

i=1

si. (6)

Hence,

n∑
i=1

(

√
µL

+

i )2 + n(

√
µL+

n µL
+

1 ) ≤ (

√
µL+

n +

√
µL

+

1 )(SIE(G)). (7)

By Lemma 3.1, it is readily seen that,

n(n− 1)− 4m+ n

√
detSL+(G)∏n−1

i=2 µ
L+

i

≤ (

√
µL+

n +

√
µL

+

1 )(SIE(G)). (8)
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Since µL
+

1 ≥ µL+

2 ≥, ...,≥ µL+

n and µL
+

1 ≤ maxi∈V (2di), then

n(n− 1)− 4m+ n

√
detSL+(G)∏n−1

i=2 µ
L+

i

≤ (2 max
i∈V

(2di))(SIE(G)). (9)

Therefore, it is expressed that

SIE(G) ≥
n(n− 1)− 4m+ n

√
detSL+(G)∏n−1

i=2 µ
L+

i

(2 maxi∈V (2di))
. (10)

ii) Setting ki = si, ti = si, k = t = sn and K = T = s1, i = 1, 2, ..., n. Using Lemma 2.1
the inequality becomes

|n
n∑

i=1

(si)
2 − (

n∑
i=1

si)
2| ≤ γ(n)(s1 − sn)2 (11)

|n
n∑

i=1

µL
+

i − (SIE(G))2| ≤ γ(n)(

√
µL

+

1 −
√
µL+

n )2. (12)

By Lemma 3.1, it is seen that

SIE(G) ≥
√
n(n(n− 1)− 4m)− γ(n)(

√
µL

+

1 −
√
µL+

n )2. (13)

Since µL
+

n ≤ µL
+

1 ≤ maxi∈V (2di), then µL
+

1 = ∆ and µL
+

n = δ. Thus, it can be expressed
that

SIE(G) ≥
√
n(n(n− 1)− 4m)− γ(n)(

√
∆−

√
δ)2. (14)

�

3.2. On The Seidel Laplacian Energy. A lot of results have been improved for the
Seidel Laplacian energy. Knowing the value of the previous studies, the bounds can be
sharpened. Before stating the theorems, several lemmas in terms of n, m and degrees
are given in this paper. Then, different bounds are found for the Seidel Laplacian energy
concerned with the Zagreb index. In addition, the complement of a graph is considered
and an equation between the Seidel Laplacian energy of graph and its complement is
obtained.

Theorem 3.2. Let G be a graph and SLE(G) be an Seidel Laplacian energy of G. Let G
has n vertices with m edges. Thus,

SLE(G) ≥
√

2n

n+ 1
(K − (2n− 1)((n− 1)− 4m

n
)2). (15)

Proof. Assume that s = n, xi = |Ti| and t = n(n − 1) for i = 1, 2, ..., n. According to
Lemma 2.3, M1 equals to

M1 =

∑n
i=1 |Ti|
n

. (16)
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For j 6= i,

M2 =
2

t

n∑
i=1

n∑
j=1

|Ti||Tj | (17)

=
2

t
((

n∑
i=1

|Ti|)2 − (
n∑

j=1

|Tj |2)) (18)

=
2

t
(SLE(G)2 −

n∑
j=1

|µLj − ((n− 1)− 4m

n
)|2) (19)

=
2

t
(SLE(G)2 −

n∑
j=1

(µLj )2 + 2((n− 1)− 4m

n
)(

n∑
j=1

µLj ) (20)

−((n− 1)− 4m

n
)2. (21)

The Lemma 2.4 implies that

M2 =
2

t
(SLE(G)2 −K + 2((n− 1)− 4m

n
)(n(n− 1)− 4m) (22)

−((n− 1)− 4m

n
)2 (23)

=
2

t
(SLE(G)2 −K + (2n− 1)((n− 1)− 4m

n
)2. (24)

(25)

It is known that M1 ≥M
1
2
2 . Therefore,∑n

i=1 |Ti|
n

≥
√

2

t
(SLE(G)2 −K + (2n− 1)((n− 1)− 4m

n
)2) (26)

SLE(G)2

n2
≥ 2

t
(SLE(G)2 −K + (2n− 1)((n− 1)− 4m

n
)2) (27)

SLE(G)2 ≥ 2n

n+ 1
(K − (2n− 1)((n− 1)− 4m

n
)2) (28)

Hence,

SLE(G) ≥
√

2n

n+ 1
(K − (2n− 1)((n− 1)− 4m

n
)2). (29)

�

Lemma 3.2. Let T1 be µL1 − (n− 1) +
4m

n
with m 6= 0. Then,

T1 ≥ ∆ + n+ 2 +
4m

n
. (30)

Proof. It is known that µL1 ≥ ∆ + 1 in [4]. From here, T1 ≥ ∆ + n+ 2 +
4m

n
. �

Lemma 3.3. Suppose G is a graph and the edge of G is m (m 6= 0). Also, let P =
(K1 − (T1)

2)(K2 − (T1)
2). Then,

P ≤ 16M1(G1)M1(G2) (31)

+4N(M1(G1) +M1(G2)) +N2 (32)
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where K1 =
∑n

i=1(Ti)
2 and K2 =

∑n
i=1(Tj)

2.

Proof. Let N = −(
4∆m+ 16m+ 16m2

n
− 16m2

n2
+ 8m + (∆ − 2)2 − n(2∆ + 5)). Since

T1 ≥ ∆ + 2 + n+
4m

n
, the result follows that

P ≥ (n(n− 1)) + 4M1(G1)−
16m2

n
− (∆ + 2 + n+

4m

n
)2 (33)

(n(n− 1)) + 4M1(G2)−
16m2

n
− (∆ + 2 + n+

4m

n
)2 (34)

=16M1(G1)M1(G2) + 4N(M1(G1) +M1(G2)) +N2. (35)

�

Theorem 3.3. If G is a graph of order n with m (m 6= 0) edges then,

(SLE(G1)) + (SLE(G2)) ≤
8m

n
+ 4 + 2n+ 2∆ (36)

+
√

4M1(G1 +G2)− 8n3 − 32mn+ 2N +X (37)

where X =
√

16M1(G1) +M1(G2) + 4N(M1(G1) +M1(G2)− 2n3 − 8mn) +N2.

Proof. Let Ti = µLi − (n− 1) +
4m

n
and Tj = µLj − (n− 1) +

4m

n
then

n∑
i=2

(|Ti|+ |Tj |)2 ≤
n∑

i=2

|Ti|2 +
n∑

i=2

|Tj |2 + 2

√√√√ n∑
i=2

|Ti|2
n∑

i=2

|Tj |2 (38)

≤
n∑

i=1

|Ti|2 +

n∑
i=1

|Tj |2 − 2|T1|2 (39)

+2

√√√√(

n∑
i=1

|Ti|2 − |T1|2)(
n∑

i=1

|Tj |2 − |T1|2) (40)

=K1 +K2 − 2|T1|2 + 2
√

(K1 − |T1|2)(K2 − |T1|2) (41)

=K1 +K2 − 2|T1|2 + 2
√
P . (42)

By Lemma 3.3 and Lemma 3.2,
n∑

i=2

(|Ti|+ |Tj |)2 ≤ K1 +K2 − 2|T1|2 (43)

+2
√

16M1(G1)M1(G2) + 4N(M1(G1) +M1(G2)) +N2 (44)

≤ K1 +K2 − 2(∆ + n+ 2 +
4m

n
)2 (45)

+2
√

16M1(G1)M1(G2) + 4N(M1(G1) +M1(G2)) +N2. (46)

Since, (M1(G1) +M1(G2)) = M1(G1 +G2)− 2n3 − 8mn, then

n∑
i=2

(|Ti|+ |Tj |)2 ≤ 4M1(G1 +G2)− 8n3 − 32mn+ 2N (47)

+
√

16M1(G1) +M1(G2) + 4N(M1(G1) +M1(G2)− 2n3 − 8mn) +N2. (48)
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Hence,

(SLE(G1)) + (SLE(G2)) ≤
8m

n
+ 4 + 2n+ 2∆ (49)

+
√

4M1(G1 +G2)− 8n3 − 32mn+ 2N +X. (50)

�

Proposition 3.1. If µLi , cµLi are the Seidel Laplacian eigenvalues of G and cG, respectively
then SLE(G) = SLE(cG) with i = 1, 2, ..., n.

Proof. If µLi is the eigenvalue of G, then −µLi is the eigenvalue of the complement of G(cG).

Since cTi = −µLi − (n− 1) +
4m̄

n
, then

Ti +c Ti = µLi − (n− 1) +
4m

n
+−µLi − (n− 1) +

4m̄

n
. (51)

Since m+ m̄ =
n(n− 1)

2
, then Ti +c Ti = 0. Thus, SLE(G) = SLE(cG). �

4. Conclusions

In this study, some results on bounds are focused for Seidel incidence energy of graphs
with some fixed parameters. Also, Seidel signless Laplacian energy of graphs is improved.
In addition, Seidel Laplacian energy is investigated and some results are obtained using
the vertices, the edges and the degrees.
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