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ON THE GENERALIZED VECTOR EQUILIBRIUM PROBLEM

MOHAMMAD REZA OMIDI 1, §

Abstract. In this paper, first a maximal element lemma is proven, then by using prop-
erties of the nonlinear function, an existence theorem for generalize vector equilibirium
problems is proven. Finally, an example in order to support the main results is given.
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1. Introduction

Throughout in this paper, following notations were used. Let X1, X2 and Y1, Y2 stand
for topological vector spaces(for short, t.v.s.) and Pi be a proper, closed and convex cone
of Yi with intPi 6= ∅, where intPi denotes the topological interior of Pi, for i = 1, 2. Let
Ki be a nonempty convex subset of Xi,

Fi : K1 ×K2 ×Ki → 2Yi

be a set-valued function with nonempty values, where 2Yi denots the class of all subsets
of Yi, for i = 1, 2. Now, we are ready to introduce the following problem which is called
generalized vector equilibrium problem(in short, GVEP):
Find x∗ = (x∗1, x

∗
2) ∈ K1 ×K2 such that

Fi(x
∗
1, x
∗
2, yi) ∩ −intPi = ∅, (1)

for each i = 1, 2, and for all yi ∈ Ki.

Remark 1.1. The GVEP is a generalization of all the following problems:

(i) If we take P1 = P2;
f1 : K1 ×K2 → X1

and
f2 : K1 ×K2 → X2

are two single-valued mappings, and

F1(x, y, z) = {f1(z, y)− f1(x, y)},
and

F2(x, y, z) = {f2(x, z)− f2(x, y)},
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for all (x, y, z) ∈ K1×K2×K2, then (1) reduces to the symmetric vector equilibrium
problem which was studied in [11].

(ii) If f1 : K1 ×K1 → 2Y1 , F2 = {0Y2} and

F1(x, y, z) = {f1(x, z)},
where (x, y, z) ∈ K1 ×K2 ×K1, then (1) is the vector equilibrium problem which
was introduced by Blum and Oettli [4]. For more details please refer to [7, 5, 13, 14]
and the references therein.

(iii) We can state the classical vector variational inequality problem which was intro-
duced by Giannessi [5] in the form of GVEP as follows:
Let T : K1 → L(X1, X2), we define

F1(x1, x2, y1) = T (x1)(y1 − x1),
for every (x1, x2, y1) ∈ K1 ×K2 ×K1 and

F2 = {0Y2},
where L(X1, X2) denotes the space of all continuous linear operators from X1 to
X2.

(iv) Finally, if we take P1 = [0,+∞], Y1 = R,K1 ⊆ R, then (1) reduces to the scalar
equilibrium problem for

F1 : K1 ×K1 → 2R,

which was studied by many authors (see, for example,[15, 12] and the references
therein).

2. Preliminaries

In this section, the nonlinear scalarization function and some of its important properties
are introduced. Also, the maximal element lemma and the notion of KKM function and
Ky Fan’s lemma are stated.

Definition 2.1. [3, 1] Let X be a topological vector space with the closed, convex and
pointed cone P . The nonlinear scalarization function (with respect to P and e) is defined
as follows

ξe(x) := inf{r ∈ R : re− x ∈ P},
where x ∈ X, e ∈ intP and ξe is a function from X in to R.

The following lemma characterizes some of the important properties of the nonlinear
scalarization function which are used in the sequel.

Lemma 2.1. [8, 3] Let X be a t.v.s. and P a proper, closed and convex cone of X with
e ∈ intP . Then for each r ∈ R and x ∈ X the following statements are satisfied.

(i) ξe(x) = min{r ∈ R : re− x ∈ P}.
(ii) ξe(x) ≤ r ⇐⇒ re− x ∈ P .
(iii) ξe(x) < r ⇐⇒ re− x ∈ intP .
(iv) ξe(x) = r ⇐⇒ x ∈ re− ∂P , where ∂P is the topological boundary of P .
(v) y2 − y1 ∈ P =⇒ ξe(y1) ≤ ξe(y2).
(vi) The function ξe is continuous, positively homogeneous and subadditive(that is sub-

linear) on X.

For proving an existence result of the equilibrium problems Ky Fan’s lemma plays a
key role. We are going now to state it.
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Definition 2.2. [9] Let K be a nonempty subset of topological vector space X. A set-valued
function T : K → 2X is called a KKM-function if, for every finite subset {x1, x2, ..., xn}
of K, conv{x1, x2, ..., xn} is contained in ∪ni=1T (xi), where conv denotes the convex hull.

Ky Fan in 1984 obtained the following result, which is known as Ky Fan’s lemma.

Lemma 2.2. (Ky Fan-1984) [9] Let K be a nonempty convex subset of topological vector
space X and T : K → 2X be a KKM function with closed values in K. Assume that there
exists a nonempty compact convex subset B of K such that ∩x∈BT (x) is compact. Then

∩x∈KT (x) 6= ∅.

Definition 2.3. Let T be a multivalued function on a set K. The element x ∈ K is called
“maximal”, if T (x) is empty.

The existence of maximal elements for multivalued function in topological vector spaces
and its important applications to mathematical economies have been studied by many
authors in both mathematics and economies, see, for example, [10, 6]. Moreover, maximal
element lemma plays a crucial role in the establishment of the existence of solutions for
GVEP.

3. Main results

In this section, new existence results for the Equilibrium Problem is proven. An imme-
diate consequence of the Ky Fan’s lemma, is the following result.

Lemma 3.1. Let Ki be a nonempty convex subset of a t.v.s. Xi and Ti : K1×K2 −→ 2Ki

be a set-valued function, K = K1 ×K2, for i = 1, 2, such that

(i) for each (x1, x2) ∈ K1 ×K2, Ti(x1, x2) is convex, for i = 1, 2,
(ii) for each (x1, x2) ∈ K1 ×K2, x1 /∈ T1(x1, x2) and x2 /∈ T2(x1, x2),

(iii) for each yi ∈ Ki, T
−1
i (yi) = {x ∈ K : yi ∈ Ti(x)} is open in K, for i = 1, 2,

(iv) there exist a nonempty compact convex subset N of K and a nonempty compact
subset Ei of Ki, for i = 1, 2, such that

T1(x) ∩ E1 6= ∅ or T2(x) ∩ E2 6= ∅,
for all x ∈ K rN.

Then there exists x∗ ∈ K such that Ti(x
∗) = ∅, for i = 1, 2.

Proof. g : K = K1 ×K2 → 2K is defined as follows

g(x1, x2) = K r (T−11 (x1) ∪ T−12 (x2)),

where (x1, x2) ∈ K1 ×K2. By (iii), g(x1, x2) is closed for each (x1, x2) ∈ K1 ×K2. It can
be verified that g is a KKM function. To verify this, let A = {z1, z2, ..., zn} ⊆ K1 ×K2,
where zi = (z1i , z

2
i ) and show that

convA ⊂ ∪ni=1g(zi).

Let z = (z1, z2) ∈ convA and z /∈ ∪ni=1g(zi), then

z = (z1, z2) =
n∑

i=1

λizi = (
n∑

i=1

λiz
1
i ,

n∑
i=1

λiz
2
i ),

where
∑n

i=1 λi = 1 and λi ≥ 0 for all i. Therefore

z1 =

n∑
i=1

λiz
1
i and z2 =

n∑
i=1

λiz
2
i .
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On the other word

z /∈ ∪ni=1g(zi) = ∪ni=1(K r (T−11 (z1i ) ∪ T−12 (z2i ))),

hence z ∈ T−11 (z1i ) or z ∈ T−12 (z2i ), for i = 1, 2, ..., n. Therefore z1i ∈ T1(z) or z2i ∈ T2(z),
for i = 1, 2, ..., n. Now

z1 =
n∑

i=1

λiz
1
i ∈ T1(z) = T1(z

1, z2)

or

z2 =

n∑
i=1

λiz
2
i ∈ T2(z) = T2(z

1, z2),

which is contradicted by (ii) and this completes the proof of the assertion. Moreover, it
follows from condition (iv) that ⋂

x=(x1,x2)∈E1×E2

g(x) ⊆ N.

Because, if y ∈
⋂

x∈E1×E2
g(x), then

y /∈ T−11 (x1) ∪ T−12 (x2),

for every x = (x1, x2) ∈ E1 × E2, that is x1 /∈ T1(y) , x2 /∈ T2(y). Therefore

E1 ∩ T1(y) = ∅ , E2 ∩ T2(y) = ∅
and we have y ∈ N .

Since
⋂

x∈E1×E2
g(x) is a closed subset of the compact set N(note that the values of

g are closed), then
⋂

x∈E1×E2
g(x) is a compact subset of N and so g satisfies all the

assumptions of Lemma 2.2. Hence it follows from Lemma 2.2, that ∩x∈Kg(x) 6= ∅. Let
y∗ ∈ ∩x∈Kg(x), then y∗ /∈ T−11 (x1) ∪ T−12 (x2), for every x = (x1, x2) ∈ K = K1 × K2.
Therefore

x1 /∈ T1(y∗) , x2 /∈ T2(y∗),
for every x = (x1, x2) ∈ K = K1 ×K2. Hence T1(y

∗) = ∅ and T2(y
∗) = ∅. This completes

the proof. �

Remark 3.1. Let X be a topological vector space and e ∈ intP with P ⊆ X. Then for
any B ⊆ X, we have

B ∩ −intP = ∅,⇐⇒ ξe(B) ⊆ [0,+∞),

where ξe(B) is the image of B under ξe.

Now, we are ready to present an existence result of a solution for GVEP, by using
scalarization method and the maximal element lemma.

Theorem 3.1. Let X1, X2, Y1 and Y2 be topological vector spaces(for short, t.v.s.). For
each i = 1, 2, let Ki be a nonempty closed convex subset of Xi, Pi be a proper, closed and
convex cone in Yi and Fi : K1 ×K2 ×Ki −→ 2Yi be a set-valued function with nonempty
values. Assume that the following conditions hold:

(i) for all (x1, x2) ∈ K1 ×K2, Fi(x1, x2, xi) ∩ −intPi = ∅, for i = 1, 2
(ii) for i = 1, 2 and for all (x1, x2) ∈ K1 ×K2 , the set

Ai = {yi ∈ Ki : Fi(x1, x2, yi) ∩ −intPi 6= ∅},
is convex.
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(iii) for i = 1, 2 and for all yi ∈ Ki , the set

Gyi = {(x1, x2) ∈ K1 ×K2 : Fi(x1, x2, yi) ∩ −intPi 6= ∅}
is open.

(iv) there exist a nonempty compact convex subset Bi of Ki and a nonempty compact
subset Ni of Ki, for i = 1, 2, such that for each

(x1, x2) ∈ K1 ×K2 rN1 ×N2,

there exists i = 1, 2, yi ∈ Bi satisfying

ξei(Fi(x1, x2, yi)) * [0,+∞),

for i = 1, 2. Then the solution set of GV EP is nonempty.

Proof. Let Γi : K1 ×K2 −→ 2Ki be defined by

Γi(x1, x2) = {yi ∈ Ki : ξei(Fi(x1, x2, yi)) * [0,+∞)},
for i = 1, 2, ei ∈ Pi and (x1, x2) ∈ K1×K2. It is easy to see that the function Γi satisfies all
the conditions of Lemma 3.1. First, applying Remark 3.1 and condition (ii), it is clear that
Γi(x1, x2) is a convex set for any (x1, x2) ∈ K1 ×K2, x1 /∈ Γ1(x1, x2) and x2 /∈ Γ2(x1, x2).
Indeed, if xi ∈ Γi(x1, x2), then

ξei(Fi(x1, x2, xi)) * [0,+∞).

It follows from Remark 3.1 that

Fi(x1, x2, xi) ∩ −intPi 6= ∅,
which is contradicted by condition (i). Moreover

Γ−1i (yi) = {(x1, x2) ∈ K1 ×K2 : yi ∈ Γi(x1, x2)}
= {(x1, x2) ∈ K1 ×K2 : ξei(Fi(x1, x2, yi)) * [0,+∞)}
= {(x1, x2) ∈ K1 ×K2 : Fi(x1, x2, yi) ∩ −intPi 6= ∅}

is an open set by (iii), for every yi ∈ Ki (i = 1, 2).
Finally, applying condition (iv), there exists a nonempty compact convex subset Bi of Ki

and a nonempty compact subset Ni of Ki such that for each

(x1, x2) ∈ K1 ×K2 rN1 ×N2,

there exists i = 1, 2, yi ∈ Bi satisfying

ξei(Fi(x1, x2, yi)) * [0,+∞),

therefore yi ∈ Γi(x1, x2). Hence

Bi ∩ Γi(x1, x2) 6= ∅.
Thus all the conditions of Lemma 3.1 are satisfied and then there exists (x∗1, x

∗
2) ∈ K1×K2

such that
Γi(x

∗
1, x
∗
2) = ∅,

for i = 1, 2. This means that for all i = 1, 2, yi ∈ Ki,

ξei(Fi(x
∗
1, x
∗
2, yi)) ⊆ [0,+∞).

Then, applying Remark 3.1, (x∗1, x
∗
2) is a solution of GV EP . It is straightforward to see

that, the solution set of GVEP is convex, if for all (y1, y2) ∈ K1 ×K2, the set

{(x1, x2) ∈ K1 ×K2 : ξei(Fi(x1, x2, yi)) ⊆ R2
+}
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is convex, for i = 1, 2. �

Example 3.1. Let X1 = X2 = Y1 = Y2 = R, P1 = P2 = [0,+∞),K1 = K2 = [0, 1] and
e = (1, 1). I define the functions
F1 : K1 ×K2 ×K1 −→ 2R and F2 : K1 ×K2 ×K2 −→ 2R by

F1(x1, x2, z1) = [x1 − z1, ex1+x2 ],

and

F2(x1, x2, z2) = [x2 − z2, ex1+x2 ].

The functions F1 and F2 fulfill the conditions of Theorem 3.1. Condition (i) trivially
holds. For i = 1, 2,

Fi(x1, x2, xi) ∩ −intP1 = [0, ex1+x2 ] ∩ (−∞, 0) = ∅.
Therefore condition (i) is valid.
To verify condition (ii), let (x1, x2) ∈ [0, 1]× [0, 1], then for i = 1, 2,

Ai = {yi ∈ Ki : Fi(x1, x2, yi) ∩ −intPi 6= ∅}
= {yi ∈ [0, 1] : [xi − yi, ex1+x2 ] ∩ (−∞, 0) 6= ∅}
= {yi ∈ [0, 1] : xi < yi} = (xi, 1]

is convex set. Now, let y1 ∈ K1 = [0, 1], then

Gy1 = {(x1, x2) ∈ [0, 1]× [0, 1] : F1(x1, x2, y1) ∩ −intP1 6= ∅}
= {(x1, x2) ∈ [0, 1]× [0, 1] : [x1 − y1, ex1+x2 ] ∩ (−∞, 0) 6= ∅}
= {(x1, x2) ∈ [0, 1]× [0, 1] : x1 < y1} = (x1, 1]× [0, 1]

is open set. Also the set Gy2 is open. Hence condition (iii) is valid. Finally, to show
condition (iv), it is enough to take Bi = Ki = [0, 1], and Ni = {1}, for i = 1, 2. Indeed for
every (x1, x2) ∈ K1 ×K2 rN1 ×N2, take yi ∈ Bi such that yi > xi, then

Fi(x1, x2, yi) ∩ −intPi = [xi − yi, ex1+x2 ] ∩ (−∞, 0) 6= ∅.
Therefore,

ξei(Fi(x1, x2, xi)) * [0,+∞),

for i = 1, 2. Hence, applying Theorem 3.1, GVEP has a solution. It is obvious that
(x∗1, x

∗
2) = (1, 1) is a solution of GVEP. In other words, for each i = 1, 2,

Fi((1, 1), zi) ∩ (−∞, 0) = ∅,
for all zi ∈ Ki.
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