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ON THE STUDY OF FUZZY HILBERT SPACES BY FUZZY

ISOMETRIC ISOMORPHISMS

B. DARABY1, A. ROSTAMI1, A. RAHIMI1, §

Abstract. In this paper, by defining a fuzzy inner product on the dual of real fuzzy
Hilbert space, we show that the dual of fuzzy Hilbert space is also fuzzy Hilbert space.
Then the concepts of fuzzy linear operator and fuzzy isomentric are defined. It is shown
that each real fuzzy Hilbert space is isometricaly isomorphic to the dual of the fuzzy
Hilbert space.
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1. Introduction

The idea of the fuzzy norm on a linear space was introduced at the first by Katsaras
[10]. Later, many other mathematicians like Felbin [8], Cheng and Mordeson [5], Bag
and Samanta [2, 3], and so on introduced the notion of fuzzy normed spaces in different
approachs. A large number of papers have been published in fuzzy normed linear spaces.
But studies on fuzzy inner product spaces are relatively new and a few researchs have been
done in fuzzy inner product space R. Biswas [4] and A. M. El-Abyad, H. M. Hamouly in [1]
gave a definition of fuzzy inner product space as associated fuzzy norm function. Recently
B. Daraby and et al. in [6] showed that the classical Hilbert space is a Felbin-fuzzy Hilbert
space and thus the results obtained in classical Hilbert spaces can be established in Felbin-
fuzzy Hilbert spaces in general. Moreover by an example, they showed that each Felbin-
fuzzy Hilbert space is not necessarily classical Hilbert space. Also, they presented some
properties of Felbin-type fuzzy inner product space and fuzzy bounded linear operators
on the same space with some operator norms in [7]. This paper contains three sections.
In Section 1 we present some definitions and basic theorems that will be used in the next
sections. In Section 2, by defining a fuzzy inner product µ∗ on H∗ (the set of all strongly
fuzzy bounded linear functionals over H ), we show that µ∗ is a fuzzy inner product on
H∗ and H∗ is a fuzzy Hilbert space. In Section 3, the concept of fuzzy isomentric and
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fuzzy linear operator is defined, and it is showed that each real Hilbert space (H,µ) is a
fuzzy isometicaly isomorphic to (H∗, µ∗).

2. Preliminaries

In this section, some definitions and preliminary results are given which are used in this
paper.

Definition 2.1 ([3]). Let U be a linear space over F (field of Real/Complex numbers). A
fuzzy subsets N of U ×R (R is the set of all real numbers) is called a fuzzy norm on U iff
∀x, u ∈ U and c ∈ F

N1. ∀t ∈ R with t ≤ 0, N(x, t) = 0;
N2. ∀t ∈ R, t > 0, N(x, t) = 1 iff x = 0;
N3. ∀t ∈ R, c > 0, N(cx, t) = N(x, t

|c|) if c 6= 0;

N4. ∀t, s ∈ R, x, u ∈ U N(x+ u, s+ t) ≥ min{N(x, s), N(u, t)};
N5. N(x, .) is a non-decreasing function on R and N(x, t)→ 1 as t→∞.

The pair (U,N) will be referred to as a fuzzy normed linear space (FNLS in short).

Theorem 2.1 ([3]). Let (U,N) be a fuzzy normed linear space. Assume further that,

N6. ∀t > 0, N(x, t) > 0⇒ x = 0−.

Define ‖x‖α = inf{t > 0 : N(x, t) ≥ α}, α ∈ (0, 1), then {‖ ‖α : α ∈ (0, 1)} is an ascending
family of norms on U and are called α-norms on U corresponding to the fuzzy norm N
on U .

Definition 2.2 ([3]). Let (U,N) be a fuzzy normed linear space. Let {xn} be a sequence
in U . Then {xn} is said to be convergent if ∃x ∈ U such that

lim
n→∞

N(xn − x, t) = 1, ∀t > 0.

Then x is called the limit of the sequence {xn}.

Definition 2.3 ([3]). A sequence {xn} in U is said to be a Cauchy sequence if

lim
n→∞

N(xn − xn+p, t) = 1, ∀t > 0, p = 1, 2, . . .

Definition 2.4 ([3]). Let (U,N) be a fuzzy normed linear space and α ∈ (0, 1). A sequence
{xn} in U is said to be α-convergent in U if ∃x ∈ U such that

lim
n→∞

N(xn − x, t) > α, ∀t > 0

and x is called limit of {xn}.

Proposition 2.1 ([3]). Let (U,N) be a fuzzy normed linear space satisfying (N6). If {xn}
be an α-convergent sequence in (U,N). Then ‖xn − x‖α → 0 as n → ∞ but converse is
not necessarily true ( ‖ ‖α denotes the α-norm of N ).

Definition 2.5 ([13]). Let V be a linear space over the field C of complex numbers. Let
µ : V × V × C→ [0, 1] be a mapping such that the following holds:

(FIP-1) For s, t ∈ C, µ (x+ y, z, |t|+ |s|) ≥ min {µ(x, z, |t|), µ(y, z, |s|)},
(FIP-2) For s, t ∈ C, µ (x, y, |s| |t|) ≥ min

{
µ(x, x, |s|2), µ(y, y, |s|2)

}
,

(FIP-3) For t ∈ C, µ(x, y, t) = µ(y, x, t),

(FIP-4) µ(αx, y, t) = µ
(
x, y, t

|α|

)
,

(FIP-5) µ(x, x, t) = 0,∀x ∈ C\R+,
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(FIP-6) µ(x, x, t) = 1,∀t > 0 iff x = 0−.

(FIP-7) µ(x, x, •) : R→ [0, 1] is a monotonic non-decreasing function of R and lim
t→∞

µ(x, x, t) =

1.
We call µ to be the fuzzy inner product (FIP in short) function on V and (V, µ) is
called a fuzzy inner product space (FIP space). In the sequel consider the following
two conditions:

(FIP-8) µ(x, x, t2) > 0, ∀t > 0⇒ x = 0−,

(FIP-9) For all x, y ∈ V and p, q ∈ R,

µ(x+ y, x+ y, 2q2) ∧ µ(x− y, x− y, 2p2) ≥ min{µ(x, x, p2), µ(y, y, q2)}.

Remark 2.1 ([13]). Let V be a linear space over C and µ be a FIP on V . Then we have

N(x, t) =

{
µ(x, x, t2), t ∈ R
0

if t > 0;
if t ≤ 0.

is a fuzzy norm induced by the FIP and if (FIP-8) and (FIP-9) hold, then

‖x‖α = ∧
{
t > 0 : µ(x, x, t2) ≥ α

}
, ∀α ∈ (0, 1)

is an ordinary norm α-norm on V called α-norm on V generated from µ.

Proposition 2.2 ([13]). (Parallelogram Law) Let µ be a fuzzy inner product on V satis-
fying (FIP-8) and (FIP-9). Let α ∈ (0, 1) and ‖ ‖α be α-norm on V generated from the
FIP on V . Then

‖x− y‖2α + ‖x+ y‖2α = 2
(
‖x‖2α + ‖y‖2α

)
. x, y ∈ V

Then using Polarization identity we can get ordinary inner product, called the α-inner
product, as follows

〈x, y〉α = Xα + iYα,∀α ∈ (0, 1)

where

Xα =
1

4

(
‖x− y‖2α − ‖x+ y‖2α

)
and

Yα =
1

4

(
‖x+ iy‖2α − ‖x− iy‖

2
α

)
.

Definition 2.6 ([13]). Let (V, µ) be a fuzzy inner product space satisfying (FIP-8). V is
said to be level complete (l-complete) if for any α ∈ (0, 1), every Cauchy sequence converges
in V w.r.t. the α-norm, ‖ ‖α generated by the fuzzy norm N which is induced by fuzzy
inner product µ.

Definition 2.7 ([13]). Let (V, µ) be a FIP space. V is said to be a fuzzy Hilbert space, if
it is level complete.

Theorem 2.2 ([13]). (Riesz Theorem) Let (H,µ) be a fuzzy Hilbert space satisfying (FIP-
8) and (FIP-9) and f ∈ H∗. Then for each α ∈ (0, 1), ∃yα ∈ H such that f(x) = 〈x, yα〉α
where yα depends on f and
‖f‖α

∗ ≥ ‖yα‖α when α ≥ 1
2 and ‖f‖∗1−α ≤ ‖yα‖1 − α when α < 1

2 .

Definition 2.8 ([3]). Let T : (U,N1) −→ (V,N2) be a linear operator where (U,N1) and
(V,N2) are fuzzy normed linear spaces.The operator T is said to be strongly fuzzy bounded
on U iff ∃ a positive real number M such that

N2(T (x), s) ≥ N1(x,
s

M
). ∀x ∈ U,∀s ∈ R
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Definition 2.9 ([3]). Let (U,N1) and (V,N2) be fuzzy normed linear spaces and T : U → V
be a linear operator. T is said to be uniformly bounded if ∃M > 0 such that

‖T (x)‖2α ≤ ‖x‖
1
α ∀α ∈ (0, 1)

where ‖ ‖1α and ‖ ‖2α are norms of N1 and N2, respectively.

Theorem 2.3 ([3]). Let (U,N1) and (V,N2) be fuzzy normed linear spaces satisfying (N6)
and (N7). Let T : (U,N1)→ (V,N2) be a linear operator. Then T is strongly fuzzy bounded
iff it is uniformly bounded with respect to norms of N1 and N2.

Remark 2.2 ([3]). The set of all strongly fuzzy bounded linear operators from a fuzzy
normed linear space (U,N1) to (V,N2) is denoted by F (U, V ).

Remark 2.3 ([3]). Let V be a linear space where V = R or C. We define a function
N2 : V × R→ [0, 1] by

N2(x, t) =

{
0
1

if t ≤ |x|
if t > |x|. (A)

Then it can be easily verified that N2 is a fuzzy norm on V and thus (V,N2) is a fuzzy
normed linear space.

Definition 2.10 ([3]). A strongly fuzzy bounded linear operator defined from (U,N1) to
(V,N2) where (V,N2) is defined by (A) is called strongly fuzzy bounded linear functional.
We denote by U∗ the set of all strongly fuzzy bounded linear functionals over (U,N1).

3. main results

In this section, we define the concepts of fuzzy linear operator and fuzzy isomentric
isomorphism. Next by defining a fuzzy inner product µ∗ on H∗ (the set of all strongly
fuzzy bounded linear functionals over (H,µ)) we show that H and H∗ is isometrically
isomorphic.

Definition 3.1. Let U1 and U2 be two fuzzy normed linear spaces (over F = R or C), the
mapping Φ : U1× (0, 1)→ U2 is called a fuzzy linear opertator if ∀x1, x2 ∈ U1 , ∀α ∈ (0, 1)
and λ ∈ R or C we have

Φ(α, x1 + x2)(y) = Φ(α, x1)(y) + Φ(α, x2)(y)

Φ(α, λx)(y) = λΦ(α, x)(y)

and the mapping Φ : U1 × (0, 1) → U2 is called anti-fuzzy linear opertator if ∀x1, x2 ∈ U1

, ∀α ∈ (0, 1) and λ ∈ R or C we have

Φ(α, x1 + x2)(y) = Φ(α, x1)(y) + Φ(α, x2)(y)

Φ(α, λx)(y) = λ̄Φ(α, x)(y).

Definition 3.2. Let U1 and U2 be two fuzzy normed linear spaces (over F = R or C) and
Φ : U1 × (0, 1)→ U2 be a fuzzy linear opertator. U1 and U2 are isometrically isomorphic,
if ∀x ∈ U1 , ∀α ∈ (0, 1) we have

‖x‖α = ‖Φ(x)‖α.

Now, to prove the main theorem, we show that the space of strongly fuzzy bounded
linear functionals is a fuzzy inner product space.
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Theorem 3.1. Let (H,µ) be a fuzzy Hilbert space satisfying (FIP-8) and (FIP-9) and H∗

be the set of all strongly fuzzy bounded linear functionals over H as defined in Definition
2.15, and 〈 , 〉α be its α−inner product ∀α ∈ (0, 1).
Define the function µ∗ : H∗ ×H∗ × C→ [0, 1] as

µ∗(f, g, t) = 0

if f = g and ∀t ∈ C− R+ and elsewhere as

µ∗(f, g, t) = sup{α ∈ (0, 1) : |〈xα, yα〉α| ≤ |t|}
where according Riesz Theorem α ∈ (0, 1), there is xα and yα

fxα(x) = 〈x, xα〉α
gyα(y) = 〈y, yα〉α.

Then µ∗ is a fuzzy inner product on H∗ if 〈 , 〉α is an increasing function on R.

Proof. (FIP1). For s, t ∈ C and f, g, h ∈ H∗, we have to show that

µ∗(f + g, h, |t|+ |s|) ≥ min{µ∗(f, h, |t|), µ∗(g, h, |s|)}
Let p = µ∗(f, h, |t|) and q = µ∗(g, h, |t|). Without loss of generality assume that p ≤ q.
Let 0 < r < p ≤ q. Then ∃α, β > r such that

|〈xα, zα〉α| < |s|
|〈yβ, zβ〉β| < |t|.

Let γ = α ∧ β > r. Since 〈 , 〉α is increasing, then

|〈xγ , zγ〉γ | ≤ |〈xα, zα〉α| < |s|
and

|〈yγ , zγ〉γ | ≤ |〈yβ, zβ〉β| < |t|.
Now

|〈xγ + yγ , zγ〉γ | ≤ |〈xγ , zγ〉γ |+ |〈yγ , zγ〉γ | < |s|+ |t|
therefore µ∗(f + g, h, |t|+ |s|) ≥ γ > r. Since 0 < r < γ is arbitrary, thus

µ∗(f + g, h, |t|+ |s|) ≥ min µ∗(f, h, t|t|), µ∗(g, h, |s|)}.
(FIP2). For s, t ∈ C and f, g, h ∈ H∗ we have to show that

µ(f, g, |s||t|) ≥ min{µ(f, f, |s|2), µ(g, g, |s|2)}.
Let p = µ∗(f, f, |t|2) and q = µ∗(g, g, |t|2). Without loss of generality assume that p ≤ q.
Let 0 < r < p ≤ q. Then ∃α, β > r such that

|〈xα, xα〉α| < |s|2

|〈yβ, yβ〉β| < |t|2

Let γ = α ∧ β > r Since 〈,t〉α is increasing. Then

|〈xγ , xγ〉γ | ≤ |〈xα, xα〉α| < |s|2

and
|〈yγ , yγ〉γ | ≤ |〈yβ, yβ〉β| < |t|2.

Now

|〈xγ , yγ〉γ | ≤
√
|〈xγ , xγ〉γ |

√
|〈yγ , yγ〉γ | < |s||t|.

Since 0 < r < γ is arbitrary, thus

µ(f, g, |s||t|) ≥ min{µ(f, f, |s|2), µ(g, g, |s|2)}
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(FIP3). For t ∈ C µ∗(f, g, t) = µ∗(f, g, t̄) = 0 if f = g and ∀t ∈ C− R+.
Now let t ∈ C and x 6= y. then

µ∗(f, g, t) = sup{α ∈ (0, 1) : |〈yα, xα〉|α ≤ |t̄|}
= sup{α ∈ (0, 1) : |〈yα, xα〉|α ≤ |t̄|}
= µ∗(g, f, t̄)

(FIP4). For t ∈ C

µ∗(cf, g, t) = sup{α ∈ (0, 1) : |〈cxα, yα〉|α ≤ |t|}

= sup{α ∈ (0, 1) : |〈xα, yα〉|α ≤
|t|
|c|
}

= µ∗(f, g,
t

|c|
).

(FIP5). For t ∈ C: ∀t ∈ C− R+, µ∗(f, g, t) = 0 [By definition].
(FIP6).

µ∗(f, f, t) = 1 ∀t > 0⇔ sup{α ∈ (0, 1) : |〈xα, xα〉|α ≤ |t|} = 1 ∀t > 0

⇔ 〈xα, xα〉α = 0 ∀α ∈ (0, 1)

⇔ xα = 0 ∀α ∈ (0, 1)

⇔ fxα(x) = 〈x, xα〉α = 0 ∀α ∈ (0, 1), ∀x ∈ H
⇔ f = 0.

(FIP7).

µ∗(f, f, t) = sup{α ∈ (0, 1) : |〈xα, xα〉|α ≤ |t|}
= sup{α ∈ (0, 1) : ‖xα‖2α ≤ |t|}

= sup{α ∈ (0, 1) : ‖xα‖α ≤
√
|t|}.

If t1 > t2 then we have √
|t|1 >

√
|t|2

It follows that α ∈ (0, 1) : ‖xα‖α ≤
√
|t1|} ⊃ {α ∈ (0, 1) : ‖xα‖α ≤

√
|t2|. So

sup{α ∈ (0, 1) : ‖xα‖α ≤
√
|t1|} ≥ sup{α ∈ (0, 1) : ‖xα‖α ≤

√
|t2|}.

Hence

µ∗(f, f, t2) > µ∗(f, f, t2).

Therefore µ∗(f, f, .) : R+ −→ [0, 1] is increasing and lim
t→∞

µ∗(f, f, t) = 1. Thus µ∗ is a

fuzzy inner product on H. �

Theorem 3.2. Let (H,µ) be a fuzzy Hilbert space satisfying (FIP-8) and (FIP-9) and H∗

be dual of H. Then (H∗, µ∗) is a fuzzy Hilbert space.
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Proof. We show that the property (FIP-8) in H∗ holds. For all f ∈ H∗ and x ∈ H, we have

µ∗(f, f, t2) > 0, ∀t > 0

⇒ sup{α ∈ (0, 1) : |〈xα, xα〉α| ≤ |t|} > 0, ∀t > 0

⇒ ∃α ∈ (0, 1), |〈xα, xα〉α| ≤ |t|, ∀t > 0

⇒ ‖xα‖2α ≤ |t|, ∀t > 0⇒ xα = 0

⇒ fxα(x) = 〈x, xα〉α = 〈x, 0〉α = 0

⇒ f = 0.

Then the property (FIP-8) in H∗ holds. Now we define a function N : H∗ ×C→ [0, 1] as

N(f, t) =

{
µ∗(f, f, t2), t ∈ R
0

if t > 0
if t ≤ 0

Then N is fuzzy norm induced by the FIP and since (FIP-8) is hold, so we can define

‖f‖∗α = ∧
{
t > 0 : µ∗(f, f, t2) ≥ α

}
, ∀α ∈ (0, 1),

That it is a α−norm on H∗, called α-norm on H∗ generated from µ∗.
We show that

‖f‖∗α = ‖xα‖α, where fxα(x) = 〈x, xα〉α, ∀α ∈ (0, 1).

For all α ∈ (0, 1) and f ∈ H∗ we have

‖f‖∗α = ∧
{
t > 0 : µ∗(f, f, t2) ≥ α

}
= ∧{t > 0 : sup{β ∈ (0, 1) : |〈xβ, xβ〉β ≤ |t|}} ≥ α}
= ‖xα‖α (1)

(〈,〉α is an increasing function on R by hypothesis) For showing the H∗ is a fuzzy Hilbert
space, we must show that H∗ is level complete (l-complete). We show that for any α ∈
(0, 1), every Cauchy sequence {fn} converges in H∗ w.r.t. the α-norm, ‖.‖∗α.

fnxnα(x) = 〈x, xnα〉α
fnxmα (y) = 〈x, xmα 〉α.

Then from (3.1) we obtain that

‖fn − fm‖∗α = ‖xnα − xmα ‖α.
Since H is the Hilbert space and it is level complete (l-complete), then {xnα} is converges
in H∗ w.r.t. the α-norm and there is x ∈ H such that

‖xnα − x‖α → 0.

We define the function f as follows

fx(y) = 〈y, x〉α,
it is clear that fx ∈ H∗ and

‖fn − f‖∗α = ‖xnα − x‖α → 0.

�

Theorem 3.3. Let (H,µ) be a fuzzy Hilbert space and (H∗, µ∗) be a fuzzy dual of H, then
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(a) H and H∗ are fuzzy isometrically isomorphic, if (H,µ) be the fuzzy real Hilbert
space.

(b) H and H∗ are anti-fuzzy isometrically isomorphic, if (H,µ) be the fuzzy complex
Hilbert space.

Proof. For α ∈ (0, 1), we define the mapping Φ : H × (0, 1)→ H∗ by

Φ(α, x) = fαx

where
fαx (y) = 〈y, x〉α ∀α ∈ (0, 1).

According to Riesz Theorem Φ is bijective, and from Theorem 3.4, we have

‖xα‖α = ‖Φ(x)‖∗α = ‖fαx ‖∗α.
It follows that Φ is a fuzzy isometric mapping.
Φ is additive:

Φ(α, x1 + x2)(y) = fαx1+x2(y) = 〈y, x1 + x2〉α
= 〈y, x1〉α + 〈y, x2〉α = fαx1(y) + fαx2(y)

= Φ(α, x1)(y) + Φ(α, x2)(y).

if (H,µ) be the fuzzy real Hilbert space, then for each real number, we have

Φ(α, λx)(y) = fαλx(y) = 〈y, λx〉α = λ〈y, x〉α = λΦ(α, x)(y).

It follows that Φ is fuzzy isometric and H and H∗ are fuzzy isometrically isomorphic.
if (H,µ) be the fuzzy complex Hilbert space, then Φ(λx) = λ̄Φ(x) for all complex numbers
λ, where λ̄ denotes the complex conjugation of λ.

Φ(α, λx)(y) = fαλx(y) = 〈y, λx〉α = λ̄〈y, x〉α = λ̄Φ(α, x)(y).

It follows that Φ is anti-fuzzy isometric and H and H∗ are fuzzy anti-isometrically iso-
morphic. �
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