SOME INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR DIFFERENTIABLE (s, m)-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

B. BAYRAKTAR, §

Abstract

In this paper, we present new inequalities connected with fractional integrals for twice differentiable functions derivatives which are (s, m) - convex functions. To obtain this, integral inequalities were used classical inequalities as Hölder inequalitiy and power mean inequality. This results are related to the well-known integral inequality of the Hermite-Hadamard type. Also some applications to special means are provided.

Keywords: convex function, (s, m)-convex, Hermite-Hadamard inequalitiy, RiemannLiouville fractional integral, power mean inequalitiy, Hölder inequality.

AMS Subject Classification: 26A33, 26A51, 26D15.

1. Introduction

The property of convexity is fundamental in mathematics along monotony, continuity, differentiability, etc. This property widely used in the theory of extremal problems.

Definition 1.1. The function $f:[a, b] \rightarrow \mathbb{R}$, is said to be convex, if we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

for all $x, y \in[a, b]$ and $\lambda \in[0,1]$.
It is well known that in the nonlinear analysis the Hermite-Hadamard type double inequality plays a very important role. This inequality is stated as follows in literature (see [3])
Theorem 1.1. Let $f: I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and let $a, b \in I$, with $a<b$. The following double inequality

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

is known in the literature as Hadamard's inequality.
J. Park asserted a new definition given in the following and gave some properties about this class of functions in [11].

Uludag University, Faculty of Education, Gorukle Campus, 16059, Bursa, Turkey.
e-mail: bbayraktar@uludag.edu.tr; ORCID: https://orcid.org/0000-0001-7594-8291.
§ Manuscript received: December 4, 2018; accepted: October 17, 2019.
TWMS Journal of Applied and Engineering Mathematics, Vol.10, No.3, © Işık University, Department of Mathematics, 2020; all rights reserved.

Definition 1.2. ([11]) For some fixed $s \in(0,1]$ and $m \in[0,1]$ a mapping $f: I \subset[0, \infty) \rightarrow$ \mathbb{R} is said to be (s, m) - convex in the second sense on I if

$$
\begin{equation*}
f(t x+m(1-t) y) \leq t^{s} f(x)+m(1-t)^{s} f(y) \tag{1}
\end{equation*}
$$

holds for all $x, y \in I$ and $t \in[0,1]$.
Remark 1.1. In Definition 1.2 if we take $m=1$, then obtain $s-$ convex second sense functions introduced by W. W. Breckner in [1] or if we choice $s=1$ then obtain m-convex functions introduced by G.Toader in [17].

The definition of a Riemann-Liouville fractional integral in the literature is given in the following way

Definition 1.3. Let $f \in L_{1}[a, b]$. The Riemann Liouville integrals $J_{a^{+}}^{\alpha} f$ and $J_{b^{-}}^{\alpha} f$ of order $\alpha>0$ with $a \geq 0$ are defined by

$$
J_{a^{+}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t, \quad x>a
$$

and

$$
J_{b-}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(t-x)^{\alpha-1} f(t) d t, \quad x<b
$$

Here is $\Gamma(\alpha)=\int_{0}^{\infty} e^{-u} u^{\alpha-1} d u$ and if $\alpha=0$ then $J_{a^{+}}^{0} f(x)=J_{b^{-}}^{0} f(x)=f(x)$.
For some recent results about Hermite-Hadamard type integral inequalities via Riemann - Liouville fractional integrals are reflected in [2], [4], [6]- [10], [13], [15], [16], [18] and references cited therein.

The purpose of this study is to establish new Hadmard type inequalities via fractional integrals for the classes of convex functions whose the second derivatives are $(s, m)-$ convex.

2. Some Results For Midpoint Inequalities

We formulate and prove lemma on which the obtained results are based.
Lemma 2.1. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on I° (I° is interior of I). If $f^{\prime \prime} \in L[a, b]$, where $a, b \in I$ and $a<m b$, then $\forall \alpha>1$ the following equality holds:

$$
\begin{aligned}
& \frac{2^{\alpha-2} \Gamma(\alpha)}{(m b-a)^{\alpha-1}}\left[J_{\left(\frac{a+m b}{2}\right)^{+}}^{\alpha-1} f(m b)+J_{\left(\frac{a+m b}{2}\right)^{-}}^{\alpha-1} f(a)\right]-f\left(\frac{a+m b}{2}\right) \\
& =\frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}\left(I_{1}+I_{2}\right)
\end{aligned}
$$

where

$$
I_{1}=\int_{0}^{1 / 2} t^{\alpha} f^{\prime \prime}(a t+m(1-t) b) d t \text { and } I_{2}=\int_{1 / 2}^{1}(1-t)^{\alpha} f^{\prime \prime}(a t+m(1-t) b) d t
$$

Proof. Integrating both integrals by parts twice, we have

$$
\begin{align*}
I_{1} & =-\frac{1}{(m b-a) 2^{\alpha}} f^{\prime}\left(\frac{a+m b}{2}\right)-\frac{\alpha}{(b m-a)^{2} 2^{\alpha-1}} f\left(\frac{a+b m}{2}\right) \tag{3}\\
& +\frac{\alpha(\alpha-1)}{(m b-a)^{2}} \int_{0}^{1 / 2} t^{\alpha-2} f(a t+m(1-t) b) d t \\
I_{2} & =\frac{1}{(m b-a) 2^{\alpha}} f^{\prime}\left(\frac{a+m b}{2}\right)-\frac{\alpha}{(b m-a)^{2} 2^{\alpha-1}} f\left(\frac{a+b m}{2}\right) \tag{4}\\
& +\frac{\alpha(\alpha-1)}{(m b-a)^{2}} \int_{1 / 2}^{1}(1-t)^{\alpha-2} f(a t+m(1-t) b) d t
\end{align*}
$$

If we make $a t+(1-t) b=z$ the transformation in both integrals in (3) and (4), and then summing these equalities, then we can write

$$
\begin{align*}
I_{1}+I_{2} & =-\frac{2 \alpha}{(b m-a)^{2} 2^{\alpha-1}} f\left(\frac{a+b m}{2}\right)+\frac{\alpha(\alpha-1) \Gamma(\alpha-1)}{(m b-a)^{\alpha+1}} \tag{5}\\
& \times\left[J_{\left(\frac{a+m b}{2}\right)^{+}}^{\alpha-1} f(m b)+J_{\left(\frac{a+m b}{2}\right)^{-}}^{\alpha-1} f(a)\right]
\end{align*}
$$

Finally, we multiply both parts of equality (5) by the expression $\frac{(b m-a)^{2}}{\alpha 2^{2-\alpha}}$ and taking into account the Gamma function property $(\alpha-1) \Gamma(\alpha-1)=\Gamma(\alpha)$ we complete the proof.
Theorem 2.1. Let $f: I=\left[0, b^{*}\right] \rightarrow R$ be a twice differentiable function on I° such that $f^{\prime \prime} \in L[a, b]$ where $a, b \in I^{\circ}$ with $a<b$ and $b^{*}>0$. If $\left|f^{\prime \prime}\right|$ is in the $(s, m)-$ convex function and $a<m b$, then for all $\alpha>1$ the following inequality holds:

$$
\begin{align*}
& \left|\frac{2^{\alpha-2} \Gamma(\alpha)}{(m b-a)^{\alpha-1}}\left[J_{\left(\frac{a+m b}{2}\right)^{+}}^{\alpha-1} f(m b)+J_{\left(\frac{a+m b}{2}\right)^{-}}^{\alpha-1} f(a)\right]-f\left(\frac{a+m b}{2}\right)\right| \tag{6}\\
& \leq \frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}\left[\gamma+B_{\frac{1}{2}}(\alpha+1, s+1)\right]\left(\left|f^{\prime \prime}(a)\right|+m\left|f^{\prime \prime}(b)\right|\right)
\end{align*}
$$

where

$$
\begin{aligned}
& \gamma=\left[(\alpha+s+1) 2^{\alpha+s+1}\right]^{-1} \text { and } B \text { is incomplete Euler Beta function: } \\
& B_{x}(p, q)=\int_{0}^{x} t^{p-1}(1-t)^{q-1} d t \quad p, q>0, x \in[0,1]
\end{aligned}
$$

Proof. If we use the triangle inequality to the right-hand side of (2) from Lemma 2.1, we obtain:

$$
\begin{align*}
& \left|\frac{2^{\alpha-2} \Gamma(\alpha)}{(m b-a)^{\alpha-1}}\left[J_{\left(\frac{a+m b}{2}\right)^{+}}^{\alpha-1} f(m b)+J_{\left(\frac{a+m b}{2}\right)^{-}}^{\alpha-1} f(a)\right]-f\left(\frac{a+m b}{2}\right)\right| \tag{7}\\
& =\frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}\left|I_{1}+I_{2}\right| \leq \frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}\left(\left|I_{1}\right|+\left|I_{2}\right|\right)
\end{align*}
$$

And since the $\left|f^{\prime \prime}\right|$ function is (s, m) - convex with account of inequality (1), we can write

$$
\left|I_{1}\right| \leq\left|f^{\prime \prime}(a)\right| \int_{0}^{1 / 2} t^{\alpha+s} d t+m\left|f^{\prime \prime}(b)\right| \int_{0}^{1 / 2} t^{\alpha}(1-t)^{s} d t
$$

or

$$
\begin{equation*}
\left|I_{1}\right| \leq \gamma\left|f^{\prime \prime}(a)\right|+m\left|f^{\prime \prime}(b)\right| B_{\frac{1}{2}}(\alpha+1, s+1) \tag{8}
\end{equation*}
$$

And likewise

$$
\begin{equation*}
\left|I_{2}\right| \leq B_{\frac{1}{2}}(\alpha+1, s+1)\left|f^{\prime \prime}(a)\right|+\gamma m\left|f^{\prime \prime}(b)\right| \tag{9}
\end{equation*}
$$

Adding (8) and (9) we get

$$
\begin{equation*}
\left|I_{1}\right|+\left|I_{2}\right| \leq\left[\gamma+B_{\frac{1}{2}}(\alpha+1, s+1)\right]\left(\left|f^{\prime \prime}(a)\right|+m\left|f^{\prime \prime}(b)\right|\right) \tag{10}
\end{equation*}
$$

And multiplying both sides of the inequality (10) by the expression $\frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}$ taking (7) into account, we obtain (6). The proof is completed.

Corollary 2.1. If we choise $m=1, s=1$ and $\alpha=2$ in Teorem 2.1, then from (6) we get the inequality

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d f-f\left(\frac{a+b}{2}\right)\right| \leq \frac{(b-a)^{2}}{48}\left[\left|f^{\prime \prime}(a)\right|+\left|f^{\prime \prime}(b)\right|\right] \tag{11}
\end{equation*}
$$

This inequality for convex functions obtained M. Sarikaya and Aktan (see [14], Prposition 1) and Y. Erdem et al. (see [5], Corollary 2, for $c=0$).

Theorem 2.2. Let $f: I=\left[0, b^{*}\right] \rightarrow R$ be a twice differentiable function on I° such that $f^{\prime \prime} \in L[a, b]$ where $a, b \in I^{\circ}$ with $a<b$ and $b^{*}>0$. If $\left|f^{\prime \prime}\right|^{q}$ is a $(s, m)-$ convex function and $a<m b$, then for all $\alpha>1, q \geq 1$ and $t \in(0,1)$ the following inequality holds

$$
\begin{align*}
& \left|\frac{2^{\alpha-2} \Gamma(\alpha)}{(m b-a)^{\alpha-1}}\left[J_{\left(\frac{a+m b}{2}\right)^{+}}^{\alpha-1} f(m b)+J_{\left(\frac{a+m b}{2}\right)^{-}}^{\alpha-1} f(a)\right]-f\left(\frac{a+m b}{2}\right)\right| \tag{12}\\
& \leq \frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}} \times \xi \times F
\end{align*}
$$

where

$$
\begin{aligned}
F & =\left[\gamma\left|f^{\prime \prime}(a)\right|^{q}+B_{\frac{1}{2}}(\alpha+1, s+1) m\left|f^{\prime \prime}(b)\right|^{q}\right]^{1 / q} \\
& +\left[B_{\frac{1}{2}}(\alpha+1, s+1)\left|f^{\prime \prime}(a)\right|^{q}+\gamma m\left|f^{\prime \prime}(b)\right|^{q}\right]^{1 / q} \\
\xi & =\left[(\alpha+1) 2^{\alpha+1}\right]^{\frac{1}{q}-1} \text { and } \quad \gamma=\left[(\alpha+s+1) 2^{\alpha+s+1}\right]^{-1}
\end{aligned}
$$

and B is incomplete Euler Beta function.
Proof. If we use the triangle inequality to the right-hand side of (2) from Lemma 2.1, we obtain:

$$
\begin{aligned}
& \left|\frac{2^{\alpha-2} \Gamma(\alpha)}{(m b-a)^{\alpha-1}}\left[J_{\left(\frac{a+m b}{2}\right)^{+}}^{\alpha-1} f(m b)+J_{\left(\frac{a+m b}{2}\right)^{-}}^{\alpha-1} f(a)\right]-f\left(\frac{a+m b}{2}\right)\right| \\
& =\frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}\left|I_{1}+I_{2}\right| \leq \frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}\left(\left|I_{1}\right|+\left|I_{2}\right|\right)
\end{aligned}
$$

Using the well-known power-mean integral inequality and since $\left|f^{\prime \prime}\right|^{q}$ is a (s, m) - convex function with account of inequality (1) we obtained

$$
\left|I_{1}\right| \leq\left(\int_{0}^{1 / 2} t^{\alpha} d t\right)^{1-\frac{1}{q}}\left[\left|f^{\prime \prime}(a)\right|^{q} \int_{0}^{1 / 2} t^{\alpha+s} d t+m\left|f^{\prime \prime}(b)\right|^{q} \int_{0}^{1 / 2} t^{\alpha}(1-t)^{s} d t\right]^{1 / q}
$$

Or

$$
\begin{equation*}
\left|I_{1}\right| \leq \xi \times\left[\gamma\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}(b)\right|^{q} B_{\frac{1}{2}}(\alpha+1, s+1)\right]^{1 / q} \tag{13}
\end{equation*}
$$

Since

$$
\left|I_{2}\right|=\left|\int_{1 / 2}^{1}(1-t)^{\alpha} f^{\prime \prime}(a t+m(1-t) b) d t\right|=\left|\int_{0}^{1 / 2} t^{\alpha} f^{\prime \prime}(a(1-t)+m t b) d t\right|
$$

Similarly for I_{2} we can write:

$$
\begin{equation*}
\left|I_{2}\right| \leq \xi \times\left[B_{\frac{1}{2}}(\alpha+1, s+1)\left|f^{\prime \prime}(a)\right|^{q}+\gamma m\left|f^{\prime \prime}(b)\right|^{q}\right]^{1 / q} \tag{14}
\end{equation*}
$$

Adding inequalties (13) and (14), we get:

$$
\left|I_{1}\right|+\left|I_{2}\right| \leq \xi \times F
$$

and multiplying both sides last inequality by the expression $\frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}$ we obtain (12). The proof is completed.

Corollary 2.2. If we choise $m=1, s=1$ and $\alpha=2$ in Theorem 2.2, then from (12) we get

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right| \leq \frac{(b-a)^{2}}{48} \times E \tag{15}
\end{equation*}
$$

where

$$
E=\left[\frac{3\left|f^{\prime \prime}(a)\right|^{q}+5\left|f^{\prime \prime}(b)\right|^{q}}{8}\right]^{1 / q}+\left[\frac{5\left|f^{\prime \prime}(a)\right|^{q}+3\left|f^{\prime \prime}(b)\right|^{q}}{8}\right]^{1 / q}
$$

This inequality (15) for convex functions obtained by M. Sarikaya and Aktan (see [14], Proposition 5.).

Theorem 2.3. Let $f: I=\left[0, b^{*}\right] \rightarrow R$ be a twice differentiable function on I° such that $f^{\prime \prime} \in L[a, b]$ where $a, b \in I^{\circ}$ with $a<b$ and $b^{*}>0$. If $\left|f^{\prime \prime}\right|^{q}$ is a (s, m)-convex function and $a<m b$, then for all α, q and $p>1$, such that $\frac{1}{q}+\frac{1}{p}=1$ the following inequality holds

$$
\begin{align*}
& \left|\frac{2^{\alpha-2} \Gamma(\alpha)}{(m b-a)^{\alpha-1}}\left[J_{\left(\frac{a+m b}{2}\right)^{+}}^{\alpha-1} f(m b)+J_{\left(\frac{a+m b}{2}\right)^{-}}^{\alpha-1} f(a)\right]-f\left(\frac{a+m b}{2}\right)\right| \tag{16}\\
& \leq \frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}} \times 2^{-3 / p} \times W
\end{align*}
$$

where

$$
\begin{aligned}
W & =\left[\mu\left|f^{\prime \prime}(a)\right|^{q}+B_{\frac{1}{2}}((\alpha-1) q+2, s+1) m\left|f^{\prime \prime}(b)\right|^{q}\right]^{1 / q} \\
& +\left[B_{\frac{1}{2}}(q \alpha-q+2, s+1)\left|f^{\prime \prime}(a)\right|^{q}+\mu m\left|f^{\prime \prime}(b)\right|^{q}\right]^{1 / q} \\
\mu & =\left[(q \alpha-q+s+2) 2^{q \alpha-q+s+2}\right]^{-1}
\end{aligned}
$$

and B is incomplete Euler Beta function.
Proof. If we use the triangle inequality to the right-hand side of (2) from Lemma 2.1, we obtain

$$
\begin{aligned}
& \left|\frac{2^{\alpha-2} \Gamma(\alpha)}{(m b-a)^{\alpha-1}}\left[J_{\left(\frac{a+m b}{2}\right)^{+}}^{\alpha-1} f(m b)+J_{\left(\frac{a+m b}{2}\right)^{-}}^{\alpha-1} f(a)\right]-f\left(\frac{a+m b}{2}\right)\right| \\
& =\frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}\left|I_{1}+I_{2}\right| \leq \frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}\left(\left|I_{1}\right|+\left|I_{2}\right|\right)
\end{aligned}
$$

Using the well-known Hölder integral inequality and since $\left|f^{\prime \prime}\right|^{q}$ is a (s, m) - convex function with account of inequality (1) we get

$$
\begin{aligned}
\left|I_{1}\right| & =\left|\int_{0}^{1 / 2} t^{1 / p} t^{1 / q} t^{\alpha-1} f^{\prime \prime}(a t+m(1-t) b) d t\right| \leq\left(\int_{0}^{1 / 2}\left(t^{1 / p}\right)^{p} d t\right)^{1 / p} \\
& \times\left[\left|f^{\prime \prime}(a)\right|^{q} \int_{0}^{1 / 2} t^{q(\alpha-1)+s+1} d t+m\left|f^{\prime \prime}(b)\right|^{q} \int_{0}^{1 / 2} t^{q \alpha-q+1}(1-t)^{s} d t\right]^{1 / q}
\end{aligned}
$$

and so

$$
\begin{equation*}
\left|I_{1}\right| \leq 2^{-3 / p}\left[\mu\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}(b)\right|^{q} B_{\frac{1}{2}}(q \alpha-q+2, s+1)\right]^{1 / q} \tag{17}
\end{equation*}
$$

Since

$$
\left|I_{2}\right|=\left|\int_{1 / 2}^{1}(1-t)^{\alpha} f^{\prime \prime}(a t+m(1-t) b) d t\right|=\left|\int_{0}^{1 / 2} t^{\alpha} f^{\prime \prime}((1-t) a+m b t) d t\right|
$$

Similarly for I_{2}, we can write

$$
\begin{equation*}
\left|I_{2}\right| \leq 2^{-\frac{3}{p}}\left[B_{\frac{1}{2}}(q \alpha-q+2, s+1)\left|f^{\prime \prime}(a)\right|^{q}+\mu m\left|f^{\prime \prime}(b)\right|^{q}\right]^{\frac{1}{q}} \tag{18}
\end{equation*}
$$

Adding inequalties (17) and (18) we get

$$
\left|I_{1}\right|+\left|I_{2}\right| \leq 2^{-\frac{3}{p}} \times W
$$

and multiplying both sides last inequality by the expression $\frac{(m b-a)^{2}}{\alpha 2^{2-\alpha}}$ we obtain (16). The proof is completed.

Corollary 2.3. Since $\frac{1}{p}=1-\frac{1}{q}$ if we choise $m=1, s=1, \alpha=2$, in Theorem 2.3 then from (16) we get

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d f-f\left(\frac{a+b}{2}\right)\right| \leq \frac{(b-a)^{2}}{32} \times \psi(q) \times D \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& \psi(q)=[(q+3)(q+2)]^{-1 / q} \\
& D=\left[(q+2)\left|f^{\prime \prime}(a)\right|^{q}+(q+4)\left|f^{\prime \prime}(b)\right|^{q}\right]^{1 / q}+\left[(q+4)\left|f^{\prime \prime}(a)\right|^{q}+(q+2)\left|f^{\prime \prime}(b)\right|^{q}\right]^{1 / q}
\end{aligned}
$$

Here, since the $\lim _{q \rightarrow 1^{+}} \psi(q)=\frac{1}{12}$ and $\lim _{q \rightarrow \infty} \psi(q)=1$ then $\frac{1}{12} \leq\left(\frac{1}{q+3}\right)^{1 / q} \leq 1$ for all $q>1$. For $q \rightarrow 1^{+}$from (19) we get (11).

3. Some Results For Trapezoid Inequalities

We formulate and prove the following lemma
Lemma 3.1. Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable mapping on I°. If $f^{\prime \prime} \in L[a, b]$, where $a, b \in I$ and $a \neq b$, then for all $\alpha>1$ the following equality holds:

$$
\begin{equation*}
\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha-1}} \times U=\frac{(b-a)^{2}}{2}\left(I_{1}+I_{2}\right) \tag{20}
\end{equation*}
$$

where

$$
\begin{aligned}
& U=\frac{(\alpha+1)}{b-a}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right]-\left[J_{a^{+}}^{\alpha-1} f(b)+J_{b^{-}}^{\alpha-1} f(a)\right] \\
& I_{1}=\int_{0}^{1} t(1-t)^{\alpha} f^{\prime \prime}(a t+(1-t) b) d t \text { and } I_{2}=\int_{0}^{1} t(1-t)^{\alpha} f^{\prime \prime}((1-t) a+t b) d t
\end{aligned}
$$

Proof. To calculate the integrals we first make a transformation of variables $1-t=z$, and then twice integrating by parts we obtain:

$$
\begin{aligned}
I_{1} & =\int_{0}^{1} z^{\alpha}(1-z) f^{\prime \prime}((1-z) a+z b) d z=\frac{f(b)}{(b-a)^{2}}+\frac{\alpha(\alpha-1)}{(b-a)^{2}} \\
& \times \int_{0}^{1} z^{\alpha-2} f((1-z) a+z b) d z-\frac{\alpha(\alpha+1)}{(b-a)^{2}} \int_{0}^{1} z^{\alpha-1} f((1-z) a+z b) d z
\end{aligned}
$$

If we make $(1-z) a+z b=x$ transformation in both integrals obtained and taking into account the property of the Gamma function, we obtain:

$$
I_{1}=\frac{f(b)}{(b-a)^{2}}+\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha+1}} J_{b^{-}}^{\alpha-1} f(a)-\frac{\Gamma(\alpha+2)}{(b-a)^{\alpha+2}} J_{b^{-}}^{\alpha} f(a)
$$

Similarly for the other integral

$$
I_{2}=\frac{f(a)}{(b-a)^{2}}+\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha+1}} J_{a^{+}}^{\alpha-1} f(b)-\frac{\Gamma(\alpha+2)}{(b-a)^{\alpha+2}} J_{a^{+}}^{\alpha} f(b)
$$

Summing these equalites and then grouping the summands we get

$$
\begin{equation*}
I_{1}+I_{2}=\frac{1}{(b-a)^{2}}[f(a)+f(b)]+-\frac{\Gamma(\alpha+1)}{(b-a)^{\alpha+1}} \times U \tag{21}
\end{equation*}
$$

And multiplying both sides of the equality (21) by the expression $\frac{(b-a)^{2}}{2}$ we obtain (20). The proof is completed.

Theorem 3.1. Let $f: I=\left[0, b^{*}\right] \rightarrow R$ be a twice differentiable function on I° such that $f^{\prime \prime} \in L[a, b]$ where $a, b \in I^{\circ}$ with $a<b$ and $b^{*}>0$. If $\left|f^{\prime \prime}\right|$ is in the $(s, m)-$ convex function and $\frac{b}{m} \in I^{\circ}$, then for all $\alpha>1$ the following inequality holds:

$$
\begin{align*}
& \left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha-1}} \times U\right| \tag{22}\\
& \leq \frac{(b-a)^{2}}{2}[B(s+2, \alpha+1)+\zeta]\left(\left|f^{\prime \prime}(a)\right|+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|\right)
\end{align*}
$$

where

$$
\begin{aligned}
U & =\frac{(\alpha+1)}{b-a}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right]-\left[J_{a^{+}}^{\alpha-1} f(b)+J_{b^{-}}^{\alpha-1} f(a)\right] \\
\zeta & =[(s+\alpha+1)(s+\alpha+2)]^{-1}
\end{aligned}
$$

and B is Euler Beta function: $B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t, \quad \forall x, y>0$
Proof. From Lemma 3.1 and from the triangle inequality we obtain:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha-1}} \times U\right| \leq \frac{(b-a)^{2}}{2}\left(\left|I_{1}\right|+\left|I_{2}\right|\right) \tag{23}
\end{equation*}
$$

Since $\left|f^{\prime \prime}\right|$ is (s, m) - convex with account of inequality (1), we can write

$$
\begin{align*}
\left|I_{1}\right| & \leq\left|f^{\prime \prime}(a)\right| \int_{0}^{1} t^{s+1}(1-t)^{\alpha} d t+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right| \int_{0}^{1} t(1-t)^{\alpha+s} d t \\
& \leq\left|f^{\prime \prime}(a)\right| B(s+2, \alpha+1)+\zeta m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right| \tag{24}
\end{align*}
$$

Since

$$
\left|I_{2}\right|=\left|\int_{0}^{1} t(1-t)^{\alpha} f^{\prime \prime}((1-t) a+t b) d t\right|=\left|\int_{0}^{1}(1-t) t^{\alpha} f^{\prime \prime}(t a+(1-t) b) d t\right|
$$

Similarly for the second integral $\left|I_{2}\right|$ we can write:

$$
\begin{equation*}
\left|I_{2}\right| \leq \zeta\left|f^{\prime \prime}(a)\right|+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right| B(\alpha+1, s+2) \tag{25}
\end{equation*}
$$

Summing these inequalities (24) and (25) and the since Beta function is simmetric $(B(x, y)=B(y, x))$ then can write:

$$
\begin{equation*}
\left|I_{1}\right|+\left|I_{2}\right| \leq[B(\alpha+1, s+2)+\zeta]\left[\left|f^{\prime \prime}(a)\right|+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|\right] \tag{26}
\end{equation*}
$$

And we multiply both sides of inequality (26) by the expression $\frac{(b-a)^{2}}{2}$ and taking into account inequality (23) we obtain (22). The proof is completed.

Corollary 3.1. In Theorem 3.1 if we choise $m=1, \alpha=2$ and $s=1$ from (22) ve get Trapezoid inequality:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{(b-a)^{2}}{24}\left[\left|f^{\prime \prime}(a)\right|+\left|f^{\prime \prime}(b)\right|\right] \tag{27}
\end{equation*}
$$

This inequaliti for convex functions obtained by M. Sarıkaya and Aktan (see [14], Proposition 2.).

Theorem 3.2. Let $f: I=\left[0, b^{*}\right] \rightarrow R$ be a twice differentiable function on I° such that $f^{\prime \prime} \in L[a, b]$ where $a, b \in I^{\circ}$ with $a<b$ and $b^{*}>0$. If $\left|f^{\prime \prime}\right|^{q}$ is a (s, m) - convex function and $\frac{b}{m} \in I^{\circ}$, then for all $\alpha>1, q \geq 1$ and $t \in(0,1)$ the following inequality holds:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha-1}} \times U\right| \leq \frac{(b-a)^{2}}{2} \times \nu \times V \tag{28}
\end{equation*}
$$

where

$$
\begin{aligned}
U & =\frac{(\alpha+1)}{b-a}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right]-\left[J_{a^{+}}^{\alpha-1} f(b)+J_{b^{-}}^{\alpha-1} f(a)\right], \\
V & =\left[B(s+2, \alpha+1)\left|f^{\prime \prime}(a)\right|^{q}+\mu m\left|f^{\prime \prime}(b)\right|^{q}\right]^{1 / q} \\
& +\left[\mu\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}(b)\right|^{q} B(s+2, \alpha+1)\right]^{1 / q}, \\
\nu & =[(\alpha+1)(\alpha+2)]^{\frac{1}{q}-1}, \mu=[(\alpha+s+1)(\alpha+s+2)]^{-1}
\end{aligned}
$$

and B is Euler Beta function.
Proof. From Lemma 3.1 and from the triangle inequality we obtain

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha-1}} \times U\right| \leq \frac{(b-a)^{2}}{2}\left(\left|I_{1}\right|+\left|I_{2}\right|\right) \tag{29}
\end{equation*}
$$

Using the well-known power-mean integral inequality and since $\left|f^{\prime \prime}\right|^{q}$ is a $(s, m)-$ convex function, we have

$$
\begin{aligned}
\left|I_{1}\right| & \leq \int_{0}^{1} t(1-t)^{\alpha}\left|f^{\prime \prime}(a t+(1-t) b)\right| d t \leq\left(\int_{0}^{1} t(1-t)^{\alpha} d t\right)^{1-\frac{1}{q}} \\
& \times\left[\int_{0}^{1}(1-t)^{\alpha} t\left[t^{s}\left|f^{\prime \prime}(a)\right|^{q}+m(1-t)^{s}\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}\right] d t\right]^{1 / q}
\end{aligned}
$$

Or

$$
\left|I_{1}\right| \leq \nu \times\left[\left|f^{\prime \prime}(a)\right|^{q} B(s+2, \alpha+1)+\mu m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}\right]^{1 / q}
$$

Since

$$
\left|I_{2}\right|=\left|\int_{0}^{1} t(1-t)^{\alpha} f^{\prime \prime}((1-t) a+t b) d t\right|=\left|\int_{0}^{1} t^{\alpha}(1-t) f^{\prime \prime}(t a+(1-t) b) d t\right|
$$

Similarly to the first, for the second integral, we can write:

$$
\left|I_{2}\right| \leq \nu \times\left[\mu\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q} B(s+2, \alpha+1)\right]^{1 / q}
$$

And adding the last inequalites we get

$$
\begin{equation*}
\left|I_{1}\right|+\left|I_{2}\right| \leq \nu \times V \tag{30}
\end{equation*}
$$

Multiplying both sides of the last inequality by the expression $\frac{(b-a)^{2}}{2}$ and taking into account inequality (29) we obtain (28). The proof is completed.

Corollary 3.2. In Theorem 3.2 if we choise $m=1, \alpha=2$ and $s=1$ from (28) ve get

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{(b-a)^{2}}{24} \times E \tag{31}
\end{equation*}
$$

where

$$
E=\left[\frac{2\left|f^{\prime \prime}(a)\right|^{q}+3\left|f^{\prime \prime}(b)\right|^{q}}{5}\right]^{1 / q}+\left[\frac{3\left|f^{\prime \prime}(a)\right|^{q}+2\left|f^{\prime \prime}(b)\right|^{q}}{5}\right]^{1 / q}
$$

This inequality is of the same order as the Trapezoid inequality for convex functions obtained by M. Sarıkaya and Aktan (see [14], Prposition 6.)

Theorem 3.3. Let $f: I=\left[0, b^{*}\right] \rightarrow R$ be a twice differentiable function on I° such that $f^{\prime \prime} \in L[a, b]$ where $a, b \in I^{\circ}$ with $a<b$ and $b^{*}>0$. If $\left|f^{\prime \prime}\right|^{q}$ is a (s, m)-convex function and $\frac{b}{m} \in I^{\circ}$, then for all $\alpha, q>1$ and $t \in(0,1)$ the following inequality holds:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha-1}} \times U\right| \leq \frac{(b-a)^{2}}{2} \times 2^{-1 / p} \times D \tag{32}
\end{equation*}
$$

where

$$
\begin{aligned}
U & =\frac{(\alpha+1)}{b-a}\left[J_{a^{+}}^{\alpha} f(b)+J_{b^{-}}^{\alpha} f(a)\right]-\left[J_{a^{+}}^{\alpha-1} f(b)+J_{b^{-}}^{\alpha-1} f(a)\right] \\
D & =\left[\left|f^{\prime \prime}(a)\right|^{q} B(s+2, \alpha q+1)+\xi m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}\right]^{1 / q} \\
& +\left[\left|\xi f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q} B(s+2, \alpha q+1)\right]^{1 / q} \\
\xi & =[(\alpha q+s+1)(\alpha q+s+2)]^{-1}
\end{aligned}
$$

and B is Euler Beta function.
Proof. From Lemma 3.1 and from the triangle inequality we obtain:

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha-1}} \times U\right| \leq \frac{(b-a)^{2}}{2}\left(\left|I_{1}\right|+\left|I_{2}\right|\right) \tag{33}
\end{equation*}
$$

Using the well-known Hölder integral inequality and since $\left|f^{\prime \prime}\right|^{q}$ is a (s, m) - convex function, we have

$$
\begin{aligned}
\left|I_{1}\right| & =\left|\int_{0}^{1} t(1-t)^{\alpha} f^{\prime \prime}(a t+(1-t) b) d t\right| \leq \int_{0}^{1} t^{1 / p} t^{1 / q}(1-t)^{\alpha}\left|f^{\prime \prime}(a t+(1-t) b)\right| d t \\
& \leq\left(\int_{0}^{1}\left(t^{1 / p}\right)^{p} d t\right)^{1 / p}\left\{\int_{0}^{1} t(1-t)^{\alpha q}\left[t^{s}\left|f^{\prime \prime}(a)\right|^{q}+m(1-t)^{s}\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}\right] d t\right\}^{1 / q}
\end{aligned}
$$

and so

$$
\begin{equation*}
\left|I_{1}\right| \leq 2^{-1 / p} \times\left[\left|f^{\prime \prime}(a)\right|^{q} B(s+2, \alpha q+1)+\xi m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q}\right]^{1 / q} \tag{34}
\end{equation*}
$$

In the second integral, making the change of variables $z=1-t$, we can write

$$
\begin{aligned}
\left|I_{2}\right| & =\left|\int_{0}^{1} z^{\alpha}(1-z)^{1 / p}(1-z)^{1 / q} f^{\prime \prime}(z a+(1-z) b) d z\right| \\
& \leq\left(\int_{0}^{1}(1-z) d z\right)^{1 / p}\left[\int_{0}^{1} z^{\alpha q}(1-z)\left|f^{\prime \prime}(z a+(1-z) b)\right|^{q} d z\right]^{1 / q}
\end{aligned}
$$

and so

$$
\begin{equation*}
\left|I_{2}\right| \leq 2^{-1 / p} \times\left[\xi\left|f^{\prime \prime}(a)\right|^{q}+m\left|f^{\prime \prime}\left(\frac{b}{m}\right)\right|^{q} B(\alpha q+1, s+2)\right]^{1 / q} \tag{35}
\end{equation*}
$$

Adding the last inequalites (34) and (35) and taking into account that the Beta symmetric function we get:

$$
\begin{equation*}
\left|I_{1}\right|+\left|I_{2}\right| \leq 2^{-1 / p} \times D \tag{36}
\end{equation*}
$$

And we multiply both sides of inequality (36) by the expression $\frac{(b-a)^{2}}{2}$ and taking into account inequality (33) we obtain (32). The proof is completed.
Corollary 3.3. Since $\frac{1}{p}=1-\frac{1}{q}$ if we choise $m=1, s=1$ and $\alpha=2$, in Theorem 3.3 then from (32) we get

$$
\begin{equation*}
\left|\frac{f(a)+f(b)}{2}-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| \leq \frac{(b-a)^{2}}{4} \times \varphi(q) \times F \tag{37}
\end{equation*}
$$

where

$$
\begin{aligned}
& \varphi(q)=[(q+1)(2 q+3)]^{-1 / q}, \\
& F=\left[\frac{2\left|f^{\prime \prime}(a)\right|^{q}+(2 q+1)\left|f^{\prime \prime}(b)\right|^{q}}{2 q+1}\right]^{1 / q}+\left[\frac{(2 q+1)\left|f^{\prime \prime}(a)\right|^{q}+2\left|f^{\prime \prime}(b)\right|^{q}}{2 q+1}\right]^{1 / q}
\end{aligned}
$$

Here, since the $\lim _{q \rightarrow 1^{+}} \varphi(q)=\frac{1}{10}$ and $\lim _{q \rightarrow+\infty} \varphi(q)=1$ then $\frac{1}{10}<\varphi(q)<1$ for all $q>1$. For $q \rightarrow 1^{+}$from (37) we get (27).

4. Applications To Special Means

We now consider the means (see Pearce, C.M.E. and Pečarič, J. in [12]) for arbitrary real numbers α and β.
(1) Arithmetic mean : $A(\alpha, \beta)=\frac{\alpha+\beta}{2}$;
(2) Quadratic mean $: Q(\alpha, \beta)=\sqrt{\alpha^{2}+\beta^{2}}$;
(3) Geometric mean : $G(\alpha, \beta)=\sqrt{\alpha \beta}, \quad \alpha \beta \geq 0$;
(4) Harmonic mean $: H(\alpha, \beta)=\frac{2 \alpha \beta}{\alpha+\beta}, \quad \alpha+\beta \neq 0$;
(5) Logarithmic mean $: L(\alpha, \beta)=\frac{\beta-\alpha}{\ln \beta-\ln \alpha}, \quad \alpha, \beta>0$ and $\alpha \neq \beta$.

Now, using results we give some applications to special means of positive real numbers.
Proposition 4.1. Let $a=0$ and $b \in \mathbb{R}^{+}$, then, we have

$$
\left|A\left[Q(b, 1), \frac{1}{b} \ln (2 A(b, Q(b, 1)))\right]-Q\left(1, \frac{b}{2}\right)\right| \leq \frac{b^{2}}{96} H^{-1}\left(Q^{3}(b, 1), 1\right)
$$

Proof. The assertion follows from Corollary 2.1 applied to the function $f(x)=\sqrt{1+x^{2}}$.

Proposition 4.2. Let $a, b \in \mathbb{R}^{+}, a<b$, then, we have

$$
\left|G^{-1}\left(a^{2}, b^{2}\right)-A^{-2}(a, b)\right| \leq \frac{(b-a)^{2}}{2^{\frac{3 q+2}{q}}}\left\{A^{\frac{1}{q}}\left(3 a^{-4 q}, 5 b^{-4 q}\right)+A^{\frac{1}{q}}\left(5 a^{-4 q}, 3 b^{-4 q}\right)\right\}
$$

Proof. The assertion follows from Corollary 2.2 applied to the function $f(x)=\frac{1}{x^{2}}, \quad x>$ 0.

Proposition 4.3. Let $a, b \in \mathbb{R}^{+}, a<b$. Then, we have

$$
\begin{aligned}
\left|L^{-1}(a, b)-A^{-1}(a, b)\right| & \leq 16^{-1}(b-a)^{2}\left(q^{2}+5 q+6\right)^{-1 / q} \\
& \times\left[A^{\frac{1}{q}}\left(\frac{q+2}{a^{3 q}}, \frac{q+4}{b^{3 q}}\right)+A^{\frac{1}{q}}\left(\frac{q+4}{a^{3 q}}, \frac{q+2}{b^{3 q}}\right)\right]
\end{aligned}
$$

Proof. The assertion follows from Corollary 2.3 applied to the function $f(x)=\frac{1}{x}, \quad x>$ 0.

Proposition 4.4. Let $a=0$ and $b>0$ then we have

$$
\left|A(1, Q(b, 1))-A\left[Q(b, 1), \frac{1}{b} \ln (2 A(b, Q(b, 1)))\right]\right| \leq \frac{b^{2}}{48} H^{-1}\left(Q^{3}(b, 1), 1\right)
$$

Proof. The assertion follows from Corollary 3.1 applied to the function $f(x)=\sqrt{1+x^{2}}$.

Proposition 4.5. Let $a, b>0$ and $a<b$ then we have
$\left|H^{-1}\left(a^{2}, b^{2}\right)-L^{-1}\left(a^{2}, b^{2}\right)\right| \leq \frac{(b-a)^{2}}{4}\left(\frac{2}{5}\right)^{1 / q} \times\left[A^{\frac{1}{q}}\left(3 a^{-4 q}, 5 b^{-4 q}\right)+A^{\frac{1}{q}}\left(5 a^{-4 q}, 3 b^{-4 q}\right)\right]$
Proof. The assertion follows from Corollary 3.2 applied to the function $f(x)=\frac{1}{x^{2}}, \quad x>$ 0.

Proposition 4.6. Let $a, b>0$ and $a<b$ then we have

$$
\begin{aligned}
\left|H^{-1}(a, b)-L^{-2}(a, b)\right| & \leq 2^{(1-q) / q}(b-a)^{2}[(q+1)(2 q+1)(2 q+3)]^{-1 / q} \\
& \times\left[A^{\frac{1}{q}}\left(2 a^{-3 q},(2 q+1) b^{-3 q}\right)+A^{\frac{1}{q}}\left((2 q+1) a^{-4 q}, 2 b^{-4 q}\right)\right]
\end{aligned}
$$

Proof. The assertion follows from Corollary 3.3 applied to the function $f(x)=\frac{1}{x}, \quad x>$ 0.

5. Conclusion

Two lemmas are formulated. On the basis of these lemmas, through fractional integrals, we obtain new integral Hadamard-type inequalities for functions whose second-order derivatives are (s, m) - convex functions. As a consequence of these inequalities, upper bound estimates are obtained for Midpoint and Trapezoid inequalities. The obtained estimations correspond to the estimations in the literature.

6. Acknowledgment

Thanks to all reviewers for carefully reading the article and making valuable comments. I would also like to express my deep gratitude to Prof. Dr. M.E.Özdemir for the help and helpful advice given to me during the preparation of the article.

References

[1] Breckner,W. W., (1978), Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Rāumen. (German) Publ. Inst. Math., (Beograd), (N.S.), 23, (37), pp. 13-20.
[2] Dragomir,S. S., (2017), Some Inequalities of Hermite-Hadamard Type for Convex Functions and Riemann-Liouville Fractional Integrals. RGMIA Research Report Collection (Online), 20, Art. ID 40.
[3] Dragomir, S. S., Pearce ,C. E. M., (2000), Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University (Online), pp. 351.
[4] Ciurdariu, L., (2017), Hermite-Hadamard Type Inequalities For Fractional Integrals. RGMIA Research Report Collection (Online), 20, Art. ID 45.
[5] Erdem, Y., Ogunmez, H. and Budak, H., (2017), On some Hermite-Hadamard type inequalities for strongly s-convex functions. NTMSCI, 5, (3), pp. 154-161.
[6] Işcan, I., (2013), New general integral inequalities for quasi-geometrically convex functions via fractional integrals, Journal of Inequalities and Applications, pp. 491.
[7] Matloka, M., (2017), Hermite - Hadamard Type Inequalities For Fractional Integrals, RGMIA Research Report Collection (Online), 20, Art. ID 69.
[8] Mehreen, N. and Anwar, M., (2018), Integral inequalities for some convex functions via generalized fractional integrals, Journal of Inequalities and Applications, pp. 208.
[9] Mihai, M. V. and Mitroi,F. C., (2014), Hermite-Hadamard type inequalities obtained via RiemannLiouville fractional calculus. Acta Mathematica Universitatis Comenianae, 83(2), pp. 209-215.
[10] Özdemir, M. E., Ardıç, M. A. and Kavurmaci, H., (2016), Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals. Turk. Jour. Sci. 1, (1), pp. 28-40.
[11] Park,J.,(2011), Generalization of Ostrowski-type inequalities for differentiable real (s, m)-convex mappings, Far East J. of Math. Sci. 49(2), pp. 157-171.
[12] Pearce, C. M. E., and Pečarič,J., (2000), Inequalities for differentiable mappings with application to special means and quadrature formula. Appl. Math. Lett., 13, (2), pp. 51-55.
[13] Sarikaya, M. Z., Set, E., Yildiz,H. and Başak, N., (2013), Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57, pp. 2403-2407.
[14] Sarıkaya,M.Z., and Aktan,N., (2011), On the generalization of some integral inequalities and their applications. Math. Comput. Modelling, 54, pp. 2175-2182.
[15] Set, E., Işcan, I., Sarikaya,M. Z., Özdemir, M.E., (2015), On new inequalities of Hermite - Hadamard - Fejér type for convex functions via fractional integrals. Applied Mathematics and Computation, 259, pp. 875-881.
[16] Set, E., Işcan, I., Kara, H. H., (2016),Hermite-Hadamard-Fejer type inequalities for s-convex functions in the second sense via fractional integrals, Filomat, 30(12), pp. 3131-3138.
[17] Toader, G., (1984), Some generalizations of the convexity, Proc. Colloq. Approx. Opt. Cluj-Napoca, pp. 329-338.
[18] Yıldız,Ç., Özdemir, M.E. and Kavurmaci, H., (2015), Fractional integral inequalities for different functions. New Tren. Math. Sci. 2, pp. 110-117.

Bahtiyar BAYRAKTAR for the photograph and short biography, see TWMS J. Appl. and Eng. Math., V.6, No.2, 2016.

