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SOME INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE

FOR DIFFERENTIABLE (s,m)-CONVEX FUNCTIONS VIA

FRACTIONAL INTEGRALS

B. BAYRAKTAR, §

Abstract. In this paper, we present new inequalities connected with fractional integrals
for twice differentiable functions derivatives which are (s,m)− convex functions. To
obtain this, integral inequalities were used classical inequalities as Hölder inequalitiy
and power mean inequality.This results are related to the well-known integral inequality
of the Hermite-Hadamard type. Also some applications to special means are provided.
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1. Introduction

The property of convexity is fundamental in mathematics along monotony, continuity,
differentiability,etc. This property widely used in the theory of extremal problems.

Definition 1.1. The function f : [a, b]→ R, is said to be convex, if we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ [a, b] and λ ∈ [0, 1].

It is well known that in the nonlinear analysis the Hermite–Hadamard type double
inequality plays a very important role. This inequality is stated as follows in literature
(see [3])

Theorem 1.1. Let f : I ⊆ R→ R be a convex function and let a, b ∈ I, with a < b. The
following double inequality

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2

is known in the literature as Hadamard’s inequality.

J. Park asserted a new definition given in the following and gave some properties about
this class of functions in [11].

Uludag University, Faculty of Education, Gorukle Campus, 16059, Bursa, Turkey.
e-mail: bbayraktar@uludag.edu.tr; ORCID: https://orcid.org/0000-0001-7594-8291.

§ Manuscript received: December 4, 2018; accepted: October 17, 2019.
TWMS Journal of Applied and Engineering Mathematics, Vol.10, No.3, © Işık University, Department
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Definition 1.2. ([11]) For some fixed s ∈ (0, 1] and m ∈ [0, 1] a mapping f : I ⊂ [0,∞)→
R is said to be (s,m)− convex in the second sense on I if

f(tx+m(1− t)y) ≤ tsf(x) +m(1− t)sf(y) (1)

holds for all x, y ∈ I and t ∈ [0, 1].

Remark 1.1. In Definition 1.2 if we take m = 1, then obtain s− convex second sense
functions introduced by W. W. Breckner in [1] or if we choice s = 1 then obtain m−convex
functions introduced by G.Toader in [17].

The definition of a Riemann–Liouville fractional integral in the literature is given in the
following way

Definition 1.3. Let f ∈ L1[a, b]. The Riemann Liouville integrals Jαa+f and Jαb−f of
order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt , x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x
(t− x)α−1f(t)dt , x < b

Here is Γ(α) =
∞∫
0

e−uuα−1du and if α = 0 then J0
a+f(x) = J0

b−f(x) = f(x).

For some recent results about Hermite–Hadamard type integral inequalities via Riemann
– Liouville fractional integrals are reflected in [2], [4], [6]– [10], [13], [15], [16], [18] and
references cited therein.

The purpose of this study is to establish new Hadmard type inequalities via fractional
integrals for the classes of convex functions whose the second derivatives are (s,m)−
convex.

2. Some Results For Midpoint Inequalities

We formulate and prove lemma on which the obtained results are based.

Lemma 2.1. Let f : I ⊂ R→ R be a twice differentiable function on I◦ (I◦ is interior of

I). If f
′′ ∈ L[a, b], where a, b ∈ I and a < mb, then ∀α > 1 the following equality holds:

2α−2Γ(α)

(mb− a)α−1

[
Jα−1
(a+mb2 )

+f(mb) + Jα−1
(a+mb2 )

−f(a)

]
− f

(
a+mb

2

)
(2)

=
(mb− a)2

α22−α
(I1 + I2)

where

I1 =

∫ 1/2

0
tαf ′′(at+m(1− t)b)dt and I2 =

∫ 1

1/2
(1− t)αf ′′(at+m(1− t)b)dt
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Proof. Integrating both integrals by parts twice, we have

I1 = − 1

(mb− a)2α
f ′
(
a+mb

2

)
− α

(bm− a)22α−1
f

(
a+ bm

2

)
(3)

+
α(α− 1)

(mb− a)2

∫ 1/2

0
tα−2f(at+m(1− t)b)dt,

I2 =
1

(mb− a)2α
f ′
(
a+mb

2

)
− α

(bm− a)22α−1
f

(
a+ bm

2

)
(4)

+
α(α− 1)

(mb− a)2

∫ 1

1/2
(1− t)α−2f(at+m(1− t)b)dt

If we make at + (1 − t)b = z the transformation in both integrals in (3) and (4), and
then summing these equalities, then we can write

I1 + I2 = − 2α

(bm− a)22α−1
f

(
a+ bm

2

)
+
α(α− 1)Γ(α− 1)

(mb− a)α+1
(5)

×
[
Jα−1
(a+mb2 )

+f(mb) + Jα−1
(a+mb2 )

−f(a)

]
Finally, we multiply both parts of equality (5) by the expression (bm−a)2

α22−α and taking into
account the Gamma function property (α− 1)Γ(α− 1) = Γ(α) we complete the proof. �

Theorem 2.1. Let f : I = [0, b∗] → R be a twice differentiable function on I◦ such that
f ′′ ∈ L[a, b] where a, b ∈ I◦ with a < b and b∗ > 0. If |f ′′| is in the (s,m)− convex
function and a < mb, then for all α > 1 the following inequality holds:∣∣∣∣ 2α−2Γ(α)

(mb− a)α−1

[
Jα−1
(a+mb2 )

+f(mb) + Jα−1
(a+mb2 )

−f(a)

]
− f

(
a+mb

2

)∣∣∣∣ (6)

≤ (mb− a)2

α22−α

[
γ +B 1

2
(α+ 1, s+ 1)

] (∣∣f ′′(a)
∣∣+m

∣∣f ′′(b)∣∣)
where

γ =
[
(α+ s+ 1)2α+s+1

]−1
and B is incomplete Euler Beta function :

Bx (p, q) =

∫ x

0
tp−1(1− t)q−1dt p, q > 0, x ∈ [0, 1]

Proof. If we use the triangle inequality to the right-hand side of (2) from Lemma 2.1, we
obtain: ∣∣∣∣ 2α−2Γ(α)

(mb− a)α−1

[
Jα−1
(a+mb2 )

+f(mb) + Jα−1
(a+mb2 )

−f(a)

]
− f

(
a+mb

2

)∣∣∣∣ (7)

=
(mb− a)2

α22−α
|I1 + I2| ≤

(mb− a)2

α22−α
(|I1|+ |I2|)

And since the |f ′′| function is (s,m)− convex with account of inequality (1), we can
write

|I1| ≤
∣∣f ′′(a)

∣∣ ∫ 1/2

0
tα+sdt+m

∣∣f ′′(b)∣∣ ∫ 1/2

0
tα(1− t)sdt

or
|I1| ≤ γ

∣∣f ′′(a)
∣∣+m

∣∣f ′′(b)∣∣B 1
2

(α+ 1, s+ 1) (8)

And likewise

|I2| ≤ B 1
2

(α+ 1, s+ 1)
∣∣f ′′(a)

∣∣+ γm
∣∣f ′′(b)∣∣ (9)
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Adding (8) and (9) we get

|I1|+ |I2| ≤
[
γ +B 1

2
(α+ 1, s+ 1)

] (∣∣f ′′(a)
∣∣+m

∣∣f ′′(b)∣∣) (10)

And multiplying both sides of the inequality (10) by the expression (mb−a)2
α22−α taking (7)

into account, we obtain (6). The proof is completed. �

Corollary 2.1. If we choise m = 1, s = 1 and α = 2 in Teorem 2.1, then from (6) we
get the inequality∣∣∣∣ 1

b− a

∫ b

a
f(x)df − f

(
a+ b

2

)∣∣∣∣ ≤ (b− a)2

48

[∣∣f ′′(a)
∣∣+
∣∣f ′′(b)∣∣] (11)

This inequality for convex functions obtained M. Sarikaya and Aktan (see [14], Prposition
1) and Y. Erdem et al. (see [5], Corollary 2, for c = 0).

Theorem 2.2. Let f : I = [0, b∗] → R be a twice differentiable function on I◦ such that
f ′′ ∈ L[a, b] where a, b ∈ I◦ with a < b and b∗ > 0. If | f ′′|q is a (s,m)− convex function
and a < mb, then for all α > 1, q ≥ 1 and t ∈ (0, 1) the following inequality holds∣∣∣∣ 2α−2Γ(α)

(mb− a)α−1

[
Jα−1
(a+mb2 )

+f(mb) + Jα−1
(a+mb2 )

−f(a)

]
− f

(
a+mb

2

)∣∣∣∣ (12)

≤ (mb− a)2

α22−α
× ξ × F

where

F =
[
γ
∣∣f ′′(a)

∣∣q +B 1
2

(α+ 1, s+ 1)m
∣∣f ′′(b)∣∣q]1/q

+
[
B 1

2
(α+ 1, s+ 1)

∣∣f ′′(a)
∣∣q + γm

∣∣f ′′(b)∣∣q]1/q
ξ =

[
(α+ 1)2α+1

] 1
q
−1

and γ =
[
(α+ s+ 1)2α+s+1

]−1
and B is incomplete Euler Beta function.

Proof. If we use the triangle inequality to the right–hand side of (2) from Lemma 2.1, we
obtain: ∣∣∣∣ 2α−2Γ(α)

(mb− a)α−1

[
Jα−1
(a+mb2 )

+f(mb) + Jα−1
(a+mb2 )

−f(a)

]
− f

(
a+mb

2

)∣∣∣∣
=

(mb− a)2

α22−α
|I1 + I2| ≤

(mb− a)2

α22−α
(|I1|+ |I2|)

Using the well–known power–mean integral inequality and since | f ′′|q is a (s,m)− convex
function with account of inequality (1) we obtained

|I1| ≤

(∫ 1/2

0
tαdt

)1− 1
q
[∣∣f ′′(a)

∣∣q ∫ 1/2

0
tα+sdt+m

∣∣f ′′(b)∣∣q ∫ 1/2

0
tα (1− t)s dt

]1/q
Or

|I1| ≤ ξ ×
[
γ
∣∣f ′′(a)

∣∣q +m
∣∣f ′′(b)∣∣q B 1

2
(α+ 1, s+ 1)

]1/q
(13)

Since

|I2| =

∣∣∣∣∣
∫ 1

1/2
(1− t)α f ′′(at+m(1− t)b)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1/2

0
tαf ′′(a (1− t) +mtb)dt

∣∣∣∣∣
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Similarly for I2 we can write:

|I2| ≤ ξ ×
[
B 1

2
(α+ 1, s+ 1)

∣∣f ′′(a)
∣∣q + γm

∣∣f ′′(b)∣∣q]1/q (14)

Adding inequalties (13) and (14), we get:

|I1|+ |I2| ≤ ξ × F

and multiplying both sides last inequality by the expression (mb−a)2
α22−α we obtain (12). The

proof is completed. �

Corollary 2.2. If we choise m = 1, s = 1 and α = 2 in Theorem 2.2, then from (12) we
get ∣∣∣∣ 1

b− a

∫ b

a
f(x)dx− f

(
a+ b

2

)∣∣∣∣ ≤ (b− a)2

48
× E (15)

where

E =

[
3 |f ′′(a)|q + 5 |f ′′(b)|q

8

]1/q
+

[
5 |f ′′(a)|q + 3 |f ′′(b)|q

8

]1/q
This inequality (15) for convex functions obtained by M. Sarikaya and Aktan (see [14],
Proposition 5.).

Theorem 2.3. Let f : I = [0, b∗] → R be a twice differentiable function on I◦ such that
f ′′ ∈ L[a, b] where a, b ∈ I◦ with a < b and b∗ > 0. If | f ′′|q is a (s,m)- convex function
and a < mb, then for all α, q and p > 1, such that 1

q + 1
p = 1 the following inequality holds∣∣∣∣ 2α−2Γ(α)

(mb− a)α−1

[
Jα−1
(a+mb2 )

+f(mb) + Jα−1
(a+mb2 )

−f(a)

]
− f

(
a+mb

2

)∣∣∣∣ (16)

≤ (mb− a)2

α22−α
× 2−3/p ×W

where

W =
[
µ
∣∣f ′′(a)

∣∣q +B 1
2

((α− 1) q + 2, s+ 1)m
∣∣f ′′(b)∣∣q]1/q

+
[
B 1

2
(qα− q + 2, s+ 1)

∣∣f ′′(a)
∣∣q + µm

∣∣f ′′(b)∣∣q]1/q
µ =

[
(qα− q + s+ 2)2qα−q+s+2

]−1
and B is incomplete Euler Beta function.

Proof. If we use the triangle inequality to the right-hand side of (2) from Lemma 2.1, we
obtain ∣∣∣∣ 2α−2Γ(α)

(mb− a)α−1

[
Jα−1
(a+mb2 )

+f(mb) + Jα−1
(a+mb2 )

−f(a)

]
− f

(
a+mb

2

)∣∣∣∣
=

(mb− a)2

α22−α
|I1 + I2| ≤

(mb− a)2

α22−α
(|I1|+ |I2|)
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Using the well-known Hölder integral inequality and since |f ′′|q is a (s,m)− convex function
with account of inequality (1) we get

|I1| =

∣∣∣∣∣
∫ 1/2

0
t1/pt1/qtα−1f ′′(at+m(1− t)b)dt

∣∣∣∣∣ ≤
(∫ 1/2

0

(
t1/p
)p
dt

)1/p

×

[∣∣f ′′(a)
∣∣q ∫ 1/2

0
tq(α−1)+s+1dt+m

∣∣f ′′(b)∣∣q ∫ 1/2

0
tqα−q+1 (1− t)s dt

]1/q
and so

|I1| ≤ 2−3/p
[
µ
∣∣f ′′(a)

∣∣q +m
∣∣f ′′(b)∣∣q B 1

2
(qα− q + 2, s+ 1)

]1/q
(17)

Since

|I2| =

∣∣∣∣∣
∫ 1

1/2
(1− t)α f ′′(at+m(1− t)b)dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1/2

0
tαf ′′((1− t) a+mbt)dt

∣∣∣∣∣
Similarly for I2, we can write

|I2| ≤ 2
− 3
p

[
B 1

2
(qα− q + 2, s+ 1)

∣∣f ′′(a)
∣∣q + µm

∣∣f ′′(b)∣∣q] 1
q

(18)

Adding inequalties (17) and (18) we get

|I1|+ |I2| ≤ 2
− 3
p ×W

and multiplying both sides last inequality by the expression (mb−a)2
α22−α we obtain (16). The

proof is completed. �

Corollary 2.3. Since 1
p = 1 − 1

q if we choise m = 1, s = 1, α = 2, in Theorem 2.3 then

from (16) we get ∣∣∣∣ 1

b− a

∫ b

a
f(x)df − f

(
a+ b

2

)∣∣∣∣ ≤ (b− a)2

32
× ψ (q)×D (19)

where

ψ (q) = [(q + 3)(q + 2)]−1/q ,

D =
[
(q + 2)

∣∣f ′′(a)
∣∣q + (q + 4)

∣∣f ′′(b)∣∣q]1/q +
[
(q + 4)

∣∣f ′′(a)
∣∣q + (q + 2)

∣∣f ′′(b)∣∣q]1/q
Here, since the lim

q→1+
ψ (q) = 1

12 and lim
q→∞

ψ (q) = 1 then 1
12 ≤

(
1
q+3

)1/q
≤ 1 for all q > 1.

For q → 1+ from (19) we get (11).

3. Some Results For Trapezoid Inequalities

We formulate and prove the following lemma

Lemma 3.1. Let f : I ⊂ R→ R be a twice differentiable mapping on I◦. If f ′′ ∈ L[a, b],
where a, b ∈ I and a 6= b, then for all α > 1 the following equality holds:

f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α−1
× U =

(b− a)2

2
(I1 + I2) (20)



B. BAYRAKTAR: (S,M)−CONVEX FUNCTIONS AND FRACTIONAL INTEGRALS... 631

where

U =
(α+ 1)

b− a
[Jαa+f(b) + Jαb−f(a)]−

[
Jα−1
a+

f(b) + Jα−1
b− f(a)

]
,

I1 =

∫ 1

0
t(1− t)αf ′′(at+ (1− t)b)dt and I2 =

∫ 1

0
t(1− t)αf ′′((1− t)a+ tb)dt

Proof. To calculate the integrals we first make a transformation of variables 1− t = z, and
then twice integrating by parts we obtain:

I1 =

∫ 1

0
zα(1− z)f ′′((1− z)a+ zb)dz =

f(b)

(b− a)2
+
α(α− 1)

(b− a)2

×
∫ 1

0
zα−2f((1− z)a+ zb)dz − α(α+ 1)

(b− a)2

∫ 1

0
zα−1f((1− z)a+ zb)dz

If we make (1− z)a+ zb = x transformation in both integrals obtained and taking into
account the property of the Gamma function, we obtain:

I1 =
f(b)

(b− a)2
+

Γ(α+ 1)

(b− a)α+1
Jα−1
b− f(a)− Γ(α+ 2)

(b− a)α+2
Jαb−f(a)

Similarly for the other integral

I2 =
f(a)

(b− a)2
+

Γ(α+ 1)

(b− a)α+1
Jα−1
a+

f(b)− Γ(α+ 2)

(b− a)α+2
Jαa+f(b)

Summing these equalites and then grouping the summands we get

I1 + I2 =
1

(b− a)2
[f(a) + f(b)] +− Γ(α+ 1)

(b− a)α+1
× U (21)

And multiplying both sides of the equality (21) by the expression (b−a)2
2 we obtain (20).

The proof is completed. �

Theorem 3.1. Let f : I = [0, b∗] → R be a twice differentiable function on I◦ such that
f ′′ ∈ L[a, b] where a, b ∈ I◦ with a < b and b∗ > 0. If |f ′′| is in the (s,m)− convex
function and b

m ∈ I
◦, then for all α > 1 the following inequality holds:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α−1
× U

∣∣∣∣ (22)

≤ (b− a)2

2
[B(s+ 2, α+ 1) + ζ]

(∣∣f ′′(a)
∣∣+m

∣∣∣∣f ′′( b

m

)∣∣∣∣)
where

U =
(α+ 1)

b− a
[Jαa+f(b) + Jαb−f(a)]−

[
Jα−1
a+

f(b) + Jα−1
b− f(a)

]
,

ζ = [(s+ α+ 1)(s+ α+ 2)]−1

and B is Euler Beta function: B(x, y) =
1∫
0

tx−1(1− t)y−1dt, ∀x, y > 0

Proof. From Lemma 3.1 and from the triangle inequality we obtain:∣∣∣∣f (a) + f(b)

2
− Γ(α+ 1)

2(b− a)α−1
× U

∣∣∣∣ ≤ (b− a)2

2
(|I1|+ |I2|) (23)
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Since |f ′′| is (s,m)− convex with account of inequality (1), we can write

|I1| ≤
∣∣f ′′(a)

∣∣ ∫ 1

0
ts+1(1− t)αdt +m

∣∣∣∣f ′′( b

m

)∣∣∣∣ ∫ 1

0
t(1− t)α+sdt

≤
∣∣f ′′(a)

∣∣B(s+ 2, α+ 1) + ζm

∣∣∣∣f ′′( b

m

)∣∣∣∣ (24)

Since

|I2| =
∣∣∣∣∫ 1

0
t(1− t)αf ′′((1− t)a+ tb)dt

∣∣∣∣ =

∣∣∣∣∫ 1

0
(1− t)tαf ′′(ta+ (1− t)b)dt

∣∣∣∣
Similarly for the second integral |I2| we can write:

|I2| ≤ ζ
∣∣f ′′(a)

∣∣+m

∣∣∣∣f ′′( b

m

)∣∣∣∣B(α+ 1, s+ 2) (25)

Summing these inequalities (24) and (25) and the since Beta function is simmetric
(B(x, y) = B(y, x)) then can write:

|I1|+ |I2| ≤ [B(α+ 1, s+ 2) + ζ]

[∣∣f ′′(a)
∣∣+m

∣∣∣∣f ′′( b

m

)∣∣∣∣] (26)

And we multiply both sides of inequality (26) by the expression (b−a)2
2 and taking into

account inequality (23) we obtain (22). The proof is completed. �

Corollary 3.1. In Theorem 3.1 if we choise m = 1, α = 2 and s = 1 from (22) ve get
Trapezoid inequality:∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ (b− a)2

24

[∣∣f ′′(a)
∣∣+
∣∣f ′′(b)∣∣] (27)

This inequaliti for convex functions obtained by M. Sarıkaya and Aktan (see [14], Propo-
sition 2.).

Theorem 3.2. Let f : I = [0, b∗] → R be a twice differentiable function on I◦ such that
f ′′ ∈ L[a, b] where a, b ∈ I◦ with a < b and b∗ > 0. If | f ′′|q is a (s,m)- convex function
and b

m ∈ I
◦, then for all α > 1, q ≥ 1 and t ∈ (0, 1) the following inequality holds:∣∣∣∣f (a) + f(b)

2
− Γ(α+ 1)

2(b− a)α−1
× U

∣∣∣∣ ≤ (b− a)2

2
× ν × V (28)

where

U =
(α+ 1)

b− a
[Jαa+f(b) + Jαb−f(a)]−

[
Jα−1
a+

f(b) + Jα−1
b− f(a)

]
,

V =
[
B (s+ 2, α+ 1)

∣∣f ′′(a)
∣∣q + µm

∣∣f ′′(b)∣∣q]1/q
+
[
µ
∣∣f ′′(a)

∣∣q +m
∣∣f ′′(b)∣∣q B (s+ 2, α+ 1)

]1/q
,

ν = [(α+ 1) (α+ 2)]
1
q
−1
, µ = [(α+ s+ 1)(α+ s+ 2)]−1

and B is Euler Beta function.

Proof. From Lemma 3.1 and from the triangle inequality we obtain∣∣∣∣f (a) + f(b)

2
− Γ(α+ 1)

2(b− a)α−1
× U

∣∣∣∣ ≤ (b− a)2

2
(|I1|+ |I2|) (29)
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Using the well–known power–mean integral inequality and since | f ′′|q is a (s,m)−
convex function, we have

|I1| ≤
∫ 1

0
t(1− t)α

∣∣f ′′(at+ (1− t)b)
∣∣ dt ≤ (∫ 1

0
t(1− t)αdt

)1− 1
q

×
[∫ 1

0
(1− t)αt

[
ts
∣∣f ′′(a)

∣∣q +m (1− t)s
∣∣∣∣f ′′( b

m

)∣∣∣∣q] dt]1/q
Or

|I1| ≤ ν ×
[∣∣f ′′(a)

∣∣q B (s+ 2, α+ 1) + µm

∣∣∣∣f ′′( b

m

)∣∣∣∣q]1/q
Since

|I2| =
∣∣∣∣∫ 1

0
t(1− t)αf ′′((1− t)a+ tb)dt

∣∣∣∣ =

∣∣∣∣∫ 1

0
tα (1− t) f ′′(ta+ (1− t) b)dt

∣∣∣∣
Similarly to the first, for the second integral, we can write:

|I2| ≤ ν ×
[
µ
∣∣f ′′(a)

∣∣q +m

∣∣∣∣f ′′( b

m

)∣∣∣∣q B (s+ 2, α+ 1)

]1/q
And adding the last inequalites we get

|I1|+ |I2| ≤ ν × V (30)

Multiplying both sides of the last inequality by the expression (b−a)2
2 and taking into

account inequality (29) we obtain (28). The proof is completed. �

Corollary 3.2. In Theorem 3.2 if we choise m = 1, α = 2 and s = 1 from (28) ve get∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ (b− a)2

24
× E (31)

where

E =

[
2 |f ′′(a)|q + 3 |f ′′(b)|q

5

]1/q
+

[
3 |f ′′(a)|q + 2 |f ′′(b)|q

5

]1/q
This inequality is of the same order as the Trapezoid inequality for convex functions ob-
tained by M. Sarıkaya and Aktan (see [14], Prposition 6.)

Theorem 3.3. Let f : I = [0, b∗] → R be a twice differentiable function on I◦ such that
f ′′ ∈ L[a, b] where a, b ∈ I◦ with a < b and b∗ > 0. If | f ′′|q is a (s,m)- convex function
and b

m ∈ I
◦, then for all α, q > 1 and t ∈ (0, 1) the following inequality holds:∣∣∣∣f (a) + f(b)

2
− Γ(α+ 1)

2(b− a)α−1
× U

∣∣∣∣ ≤ (b− a)2

2
× 2−1/p ×D (32)

where

U =
(α+ 1)

b− a
[Jαa+f(b) + Jαb−f(a)]−

[
Jα−1
a+

f(b) + Jα−1
b− f(a)

]
,

D =

[∣∣f ′′(a)
∣∣q B (s+ 2, αq + 1) + ξm

∣∣∣∣f ′′( b

m

)∣∣∣∣q]1/q
+

[∣∣ξf ′′(a)
∣∣q +m

∣∣∣∣f ′′( b

m

)∣∣∣∣q B (s+ 2, αq + 1)

]1/q
ξ = [(αq + s+ 1)(αq + s+ 2)]−1
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and B is Euler Beta function.

Proof. From Lemma 3.1 and from the triangle inequality we obtain:∣∣∣∣f (a) + f(b)

2
− Γ(α+ 1)

2(b− a)α−1
× U

∣∣∣∣ ≤ (b− a)2

2
(|I1|+ |I2|) (33)

Using the well-known Hölder integral inequality and since | f ′′|q is a (s,m)− convex
function, we have

|I1| =
∣∣∣∣∫ 1

0
t(1− t)αf ′′(at+ (1− t)b)dt

∣∣∣∣ ≤ ∫ 1

0
t1/pt1/q(1− t)α

∣∣f ′′(at+ (1− t)b)
∣∣ dt

≤
(∫ 1

0

(
t1/p
)p
dt

)1/p{∫ 1

0
t(1− t)αq

[
ts
∣∣f ′′(a)

∣∣q +m (1− t)s
∣∣∣∣f ′′( b

m

)∣∣∣∣q] dt}1/q

and so

|I1| ≤ 2−1/p ×
[
|f ′′(a)|qB (s+ 2, αq + 1) + ξm

∣∣∣∣f ′′( b

m

)∣∣∣∣q]1/q (34)

In the second integral, making the change of variables z = 1− t, we can write

|I2| =
∣∣∣∣∫ 1

0
zα(1− z)1/p(1− z)1/qf ′′(za+ (1− z) b)dz

∣∣∣∣
≤
(∫ 1

0
(1− z)dz

)1/p [∫ 1

0
zαq(1− z)

∣∣f ′′(za+ (1− z) b)
∣∣q dz]1/q

and so

|I2| ≤ 2−1/p ×
[
ξ
∣∣f ′′(a)

∣∣q +m

∣∣∣∣f ′′( b

m

)∣∣∣∣q B (αq + 1, s+ 2)

]1/q
(35)

Adding the last inequalites (34) and (35) and taking into account that the Beta symmetric
function we get:

|I1|+ |I2| ≤ 2−1/p ×D (36)

And we multiply both sides of inequality (36) by the expression (b−a)2
2 and taking into

account inequality (33) we obtain (32). The proof is completed. �

Corollary 3.3. Since 1
p = 1 − 1

q if we choise m = 1, s = 1 and α = 2, in Theorem 3.3

then from (32) we get∣∣∣∣f(a) + f(b)

2
− 1

b− a

∫ b

a
f(x)dx

∣∣∣∣ ≤ (b− a)2

4
× ϕ(q)× F (37)

where

ϕ(q) = [(q + 1)(2q + 3)]−1/q ,

F =

[
2|f ′′(a)|q + (2q + 1)|f ′′(b)|q

2q + 1

]1/q
+

[
(2q + 1)|f ′′(a)|q + 2|f ′′(b)|q

2q + 1

]1/q
Here, since the lim

q→1+
ϕ(q) = 1

10 and lim
q→+∞

ϕ(q) = 1 then 1
10 < ϕ(q) < 1 for all q > 1. For

q → 1+ from (37) we get (27).
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4. Applications To Special Means

We now consider the means (see Pearce, C.M.E. and Pečarič, J. in [12] ) for arbitrary
real numbers α and β.

(1) Arithmetic mean : A(α, β) = α+β
2 ;

(2) Quadratic mean : Q(α, β) =
√
α2 + β2;

(3) Geometric mean : G(α, β) =
√
αβ, αβ ≥ 0;

(4) Harmonic mean : H(α, β) = 2αβ
α+β , α+ β 6= 0;

(5) Logarithmic mean : L(α, β) = β−α
lnβ−lnα , α, β > 0 and α 6= β .

Now, using results we give some applications to special means of positive real numbers.

Proposition 4.1. Let a = 0 and b ∈ R+, then, we have∣∣∣∣A [Q (b, 1) ,
1

b
ln (2A (b,Q (b, 1)))

]
−Q

(
1,
b

2

)∣∣∣∣ ≤ b2

96
H−1

(
Q3 (b, 1) , 1

)
Proof. The assertion follows from Corollary 2.1 applied to the function f(x) =

√
1 + x2.

�

Proposition 4.2. Let a, b ∈ R+, a < b, then, we have∣∣G−1 (a2, b2)−A−2 (a, b)
∣∣ ≤ (b− a)2

2
3q+2
q

{
A

1
q
(
3a−4q, 5b−4q

)
+A

1
q
(
5a−4q, 3b−4q

)}
.

Proof. The assertion follows from Corollary 2.2 applied to the function f(x) = 1
x2
, x >

0. �

Proposition 4.3. Let a, b ∈ R+, a < b. Then, we have∣∣L−1 (a, b)−A−1 (a, b)
∣∣ ≤ 16−1(b− a)2

(
q2 + 5q + 6

)−1/q
×
[
A

1
q

(
q + 2

a3q
,
q + 4

b3q

)
+A

1
q

(
q + 4

a3q
,
q + 2

b3q

)]
Proof. The assertion follows from Corollary 2.3 applied to the function f(x) = 1

x , x >
0. �

Proposition 4.4. Let a = 0 and b > 0 then we have∣∣∣∣A(1, Q(b, 1))−A
[
Q(b, 1),

1

b
ln(2A(b,Q(b, 1)))

]∣∣∣∣ ≤ b2

48
H−1

(
Q3(b, 1), 1

)
Proof. The assertion follows from Corollary 3.1 applied to the function f(x) =

√
1 + x2.

�

Proposition 4.5. Let a, b > 0 and a < b then we have∣∣H−1(a2, b2)− L−1(a2, b2)∣∣ ≤ (b− a)2

4

(
2

5

)1/q

×
[
A

1
q
(
3a−4q, 5b−4q

)
+A

1
q
(
5a−4q, 3b−4q

)]
Proof. The assertion follows from Corollary 3.2 applied to the function f(x) = 1

x2
, x >

0. �

Proposition 4.6. Let a, b > 0 and a < b then we have∣∣H−1(a, b)− L−2(a, b)∣∣ ≤ 2(1−q)/q(b− a)2[(q + 1)(2q + 1)(2q + 3)]−1/q

×
[
A

1
q (2a−3q, (2q + 1)b−3q) +A

1
q ((2q + 1)a−4q, 2b−4q)

]
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Proof. The assertion follows from Corollary 3.3 applied to the function f(x) = 1
x , x >

0. �

5. Conclusion

Two lemmas are formulated. On the basis of these lemmas, through fractional inte-
grals, we obtain new integral Hadamard-type inequalities for functions whose second-order
derivatives are (s,m) – convex functions. As a consequence of these inequalities, upper
bound estimates are obtained for Midpoint and Trapezoid inequalities. The obtained
estimations correspond to the estimations in the literature.
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[18] Yıldız,Ç., Özdemir, M.E. and Kavurmaci, H., (2015), Fractional integral inequalities for different
functions. New Tren. Math. Sci. 2, pp. 110-117.



B. BAYRAKTAR: (S,M)−CONVEX FUNCTIONS AND FRACTIONAL INTEGRALS... 637

Bahtiyar BAYRAKTAR for the photograph and short biography, see TWMS J. Appl. and
Eng. Math., V.6, No.2, 2016.


