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ON THE SOLUTIONS OF SOME NONLINEAR FREDHOLM

INTEGRAL EQUATIONS IN TOPOLOGICAL HÖLDER SPACES

M. TEMİZER ERSOY1, H. FURKAN1, B. SARIÇİÇEK1, §

Abstract. In this article, we show that the existence theorem for fredholm type qua-
dratic integral equation in the space of functions satisfying Hölder the condition, based
on the classical Schauder fixed point theorem, has new methods that perform with rel-
ative compactness in the Hölder spaces. In section 3, some axioms are introduced to
solve the fredholm integral equation. In section 4, one example is presented to verify the
effectiveness and applicability of our results.
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1. Introduction

Integral equation has a wide range of applications in different branches of sciences and
engineering. It arises naturally in a variety of models from biological science, applied
mathematics, physics, and other disciplines, such as the theory of elasticity, biomechan-
ics, electromagnetics, electrodynamics, fluid dynamics, heat and mass transfer, oscillating
magnetic field, etc. [4, 9, 10, 11]. Quadratic integral equation is used to identify the
problems that arise in physics, mathematics, engineering, biology and economics.

Quadratic integral equations have many useful applications in describing numerous
events and problems of the real world. For example, they are often applicable in the
theory of radiative transfer, kinetic theory of gases, in the theory of neutron transport
and in the traffic theory.

Recently, J. Banaś and R. Nalepa et al. [2] have studied the following equation;

x(t) = p(t) + x(t)

∫ b

a
k(t, τ)x(τ)dτ.
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Further, J. Caballero, B. Lopez and K. Sadarangani et al. [5] have studied the following
equation;

x(t) = a(t) + (Tx)(t)

∫ σ(t)

0
u(t, s, x(s), x(λs))ds.

Also, J. Cabelloro Mena, R. Nalepa and K. Sadarangani et al.[6] have studied the
following equation;

x(t) = p(t) + x(t)

∫ 1

0
k(t, τ)

{
max

η∈[0,r(τ)]
|x(η)|

}
dτ.

Very recently, M. Temizer Ersoy and H. Furkan et al. [21] have studied the following
equation;

x(t) = p(t) + x(t)

∫ 1

0
k(t, τ)(Tx)(τ)dτ.

Similar equations are examined by several authors,[7, 13, 18, 19, 20, 15, 1, 3, 8, 12, 14, 16,
17].

The object of this paper is to investigate the existence of solutions of the Fredholm
integral equations of the form

x(t) = p(t) + (Tx)(t)

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ, (1)

where p, k are given functions, T is a given operator satisfied conditions specified later and
x is an unknown function.

At present, in this paper, we define relative compactness on the Hölder space, and then
we study on the problem of existence of solutions of equation (1) using the technique of
relative compactness in conjunction with classical Schauder fixed point theorem. Finally,
one example illustrating the mentioned existence result are also included.

2. Preliminaries and Notations

In this section, we introduce definitions, lemmas and theorems which will be needed in
our further considerations.

Let [a, b] be a closed interval in R, by C[a, b], we denote the space of continuous functions
illustrated on [a, b] accoutred with the supremum norm, i.e.,

‖x‖∞ = sup {|x(t)| : t ∈ [a, b]} ,
for x ∈ C[a, b]. For a fixed α with 0 < α ≤ 1, by Hα[a, b] we will denote the spaces of
the real functions x illustrated on [a, b] and satisfying the Hölder condition, that is, those
functions x for which there exists a constant Hα

x such that:

|x(t)− x(s)| ≤ Hα
x |t− s|α,

for all t, s ∈ [a, b]. It is easily proved that Hα[a, b] is a linear subspaces of C[a, b]. Further-
more, we put

Hα
x = sup

{
|x(t)− x(s)|
|t− s|α

: t, s ∈ [a, b] and t 6= s

}
. (2)

The space Hα[a, b] with 0 < α ≤ 1 may be accoutred with the norm:

‖x‖α = |x(a)|+Hα
x ,

for x ∈ Hα[a, b]. Here, Hα
x is illustrated by (2). In [2], the authors demonstrated that

(Hα[a, b], ‖ · ‖α) with 0 < α ≤ 1 is a Banach space.
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Lemma 2.1. For x ∈ Hα[a, b] with 0 < α ≤ 1, the undermentioned inequality is satisfied:

‖x‖∞ ≤ max (1, (b− a)α) ‖x‖α.

Lemma 2.2. For 0 < α < β ≤ 1, we have

Hβ[a, b] ⊂ Hα[a, b] ⊂ C[a, b].

Furthermore, for x ∈ Hβ[a, b] the undermentioned inequality holds

‖x‖α ≤ max
(

1, (b− a)β−α
)
‖x‖β.

Lemma 2.3. Let us accept that 0 < α < β ≤ 1 and E is bounded subset in Hβ[a, b], then
E is a relatively compact subset in Hα[a, b],[7].

Lemma 2.4. Accept that 0 < α < β ≤ 1 and by Bβ
r we denote the ball centered at θ and

radius r in the space Hβ[a, b], i.e., Bβ
r = {x ∈ Hβ[a, b] : ‖x‖β ≤ r}. Bβ

r is a closed subset

of Hα[a, b],[7].

Corollary 2.1. Accept that 0 < α < β ≤ 1 and Bβ
r is a relatively compact subset in

Hα[a, b] and is a closed subset of Hα[a, b], then Bβ
r is a compact subset in the space Hα[a, b],

[21].

Now, we offer the following theorem and this is the basic tool used in our work.

Theorem 2.1 (Schauder’s fixed point theorem). Let E be a nonempty, compact subset of
a Banach space (X, ‖ · ‖), convex and let T : E → E be a continuity mapping. Then T has
at least one fixed point in E,[20].

Let us now provide information that we will need in the future sections.

Definition 2.1. A function f : R+ → R+ is relevant to be subadditive if

f(x+ y) ≤ f(x) + f(y),

for any x, y ∈ R+,[7].

Lemma 2.5. Let us suppose f : R+ → R+ is subadditive and y ≤ x then

f(x)− f(y) ≤ f(x− y),

[7].

Remark 2.1. From Lemma 2.5, we infer that if f : R+ → R+ is subadditive then

|f(x)− f(y)| ≤ f(|x− y|),

for any x, y ∈ R+,[7].

Lemma 2.6. Let f : R+ → R+ be a concave function with f(0) = 0. Then f is subadditive,
[7].

Remark 2.2. Let f : R+ → R+ be the function defined by f(x) = p
√
x, where p > 1.

Since this functions is concave and f(0) = 0, Lemma 2.6 says us that f is subadditive. By
Remark 2.1, we have

|f(x)− f(y)| = | p
√
x− p
√
y| ≤ p

√
|x− y|,

for any x, y ∈ R+,[7].
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3. Main Result

Now, we are ready to give the main result of the article. In this chapter,we will define
some axioms in order to solve the integral equation defined in Hölder spaces and we will
prove the solvability of the equation (1) in Hölder spaces.

Theorem 3.1. Under the following assumptions (i)− (iv), (1) equation has at least one
x = x(t) solution belonging to space Hα[0, 1], where α is arbitrarily fixed number satisfying
0 < α < β ≤ 1.

(i) The function p = p(t) pertains to Hβ[a, b].
(ii) k : [0, 1] × [0, 1] → R is a continuous function such that exists a constant kβ > 0

such that:

|k(t, τ)− k(s, τ)| ≤ kβ|t− s|β,

for any t, s, τ ∈ [0, 1].
(iii) The operator T : Hβ[0, 1]→ Hβ[0, 1] is defined by

‖Tx‖β ≤ ‖x‖β,

for x ∈ Hβ[0, 1] and it is a continuous on the space Hβ[0, 1] according to the norm
‖.‖α.

(iv) The following inequality is satisfied

‖p‖β(2K + kβ) ≤ 1

4
,

where the constant K is defined by

sup

{∫ 1

0
|k(t, τ)|dτ : t ∈ [0, 1]

}
≤ K.

Then the equation (1) has at least one solution belonging to space Hα[0, 1].

Proof. At the beginning, let us consider the operator F defined by

(Fx)(t) = p(t) + (Tx)(t)

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ,

for x ∈ Hβ[0, 1] and t ∈ [0, 1]. We will prove that the operator F maps Hβ[0, 1] into
Hβ[0, 1] space. Considering the axioms (i) and (ii), for x ∈ Hβ[a, b] and t, s ∈ [0, 1], (t 6= s)
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we have:

|(Fx)(t)− (Fx)(s)|
|t− s|β

=

∣∣∣∣p(t) + (Tx)(t)

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ − p(s)− (Tx)(s)

∫ 1

0
k(s, τ)

|x(τ)|
1 + |x(τ)|

dτ

∣∣∣∣ 1

|t− s|β

= |p(t)− p(s) + (Tx)(t)

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ − (Tx)(s)

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ

+(Tx)(s)

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ − (Tx)(s)

∫ 1

0
k(s, τ)

|x(τ)|
1 + |x(τ)|

dτ | 1

|t− s|β

≤ |p(t)− p(s)|
|t− s|β

+
|(Tx)(t)− (Tx)(s)|

|t− s|β

∫ 1

0
|k(t, τ)| |x(τ)|

1 + |x(τ)|
dτ

+|(Tx)(s)|
∫ 1

0

|k(t, τ)− k(s, τ)|
|t− s|β

|x(τ)|
1 + |x(τ)|

dτ

≤ Hβ
p + ‖Tx‖β

∫ 1

0
|k(t, τ)||x(τ)|dτ + ‖Tx‖∞

∫ 1

0
kβ
|t− s|β

|t− s|β
|x(τ)|dτ

≤ Hβ
p + ‖x‖∞‖Tx‖βK + ‖x‖∞‖Tx‖∞kβ.

Because of ‖x‖∞ ≤ ‖x‖β and ‖Tx‖β ≤ ‖x‖β, the last inequality is

|(Fx)(t)− (Fx)(s)|
|t− s|β

≤ Hβ
p +K‖x‖β‖x‖β + ‖x‖β‖x‖βkβ

≤ Hβ
p + (K + kβ)‖x‖2β.

From ‖Fx‖β = |(Fx)(0)|+Hβ
Fx

, we get:

‖Fx‖β =

∣∣∣∣p(0) + (Tx)(0)

∫ 1

0
k(0, τ)

|x(τ)|
1 + |x(τ)|

dτ

∣∣∣∣+ sup

{
|(Fx)(t)− (Fx)(s)|

|t− s|β
: t, s ∈ [a, b] and t 6= s

}
≤ |p(0)|+ |(Tx)(0)|

∫ 1

0
|k(0, τ)||x(τ)|dτ +Hβ

p + (K + kβ)‖x‖2β

≤ ‖p‖β + ‖Tx‖∞‖x‖∞K + (K + kβ)‖x‖2β
≤ ‖p‖β + ‖Tx‖β‖x‖∞K + (K + kβ)‖x‖2β
≤ ‖p‖β + ‖x‖β‖x‖βK + (K + kβ)‖x‖2β
≤ ‖p‖β + (2K + kβ)‖x‖2β.

This shows that the operator F transforms the space Hβ[0, 1] into itself. Also, in view of

assumption (iv), we infer that the operator F converts Bβ
r0 = {x ∈ Hβ[0, 1] : ‖x‖β ≤ r0}

into itself, where r0 is an arbitrary number from the interval [r1, r2], while

r1 =
1−

√
1− 4(2K + kβ)‖p‖β
2(2K + kβ)

,

and

r2 =
1 +

√
1− 4(2K + kβ)‖p‖β
2(2K + kβ)

,

with
‖Fx‖β ≤ ‖p‖β + (2K + kβ)r2

0 ≤ r0.
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Here it is seen that for r1 ≤ r0 ≤ r2, F : Bβ
r0 → Bβ

r0 . Then, we conclude that the set Bβ
r0

is relatively compact in Hα[0, 1]. Bβ
r0 is also closed in the space Hα[0, 1]. Thus, gathering

the above obtained facts, we infer that the set Bβ
r0 is a compact and convex subset of the

space Hα[0, 1].

At present, we will prove that the operator F is continuous onBβ
r0 , whereBβ

r0 considering

the induced norm by ‖.‖α, where 0 < α < β ≤ 1. In addition, arbitrarily x ∈ Bβ
r0 and

ε > 0. Assume that y ∈ Bβ
r0 and ‖x− y‖α < δ, where δ is a nonnegative number such

that

0 < δ <
ε

2(2K + kβ)r0
.

In that case, for arbitrarily t, s ∈ [0, 1] we take

|(Fx)(t)− (Fy)(t)− [(Fx)(s)− (Fy)(s)]|
|t− s|α

= |[p(t) + (Tx)(t)

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ − p(t)− (Ty)(t)

∫ 1

0
k(t, τ)

|y(τ)|
1 + |y(τ)|

dτ ]

−[p(s) + (Tx)(s)

∫ 1

0
k(s, τ)

|x(τ)|
1 + |x(τ)|

dτ − p(s)− (Ty)(s)

∫ 1

0
k(s, τ)

|y(τ)|
1 + |y(τ)|

dτ ]| 1

|t− s|α

= |[(Tx)(t)

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ − (Ty)(t)

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ

+(Ty)(t)

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ − (Ty)(t)

∫ 1

0
k(t, τ)

|y(τ)|
1 + |y(τ)|

dτ ]

−[(Tx)(s)

∫ 1

0
k(s, τ)

|x(τ)|
1 + |x(τ)|

dτ − (Ty)(s)

∫ 1

0
k(s, τ)

|x(τ)|
1 + |x(τ)|

dτ

+(Ty)(s)

∫ 1

0
k(s, τ)

|x(τ)|
1 + |x(τ)|

dτ

−(Ty)(s)

∫ 1

0
k(s, τ)

|y(τ)|
1 + |y(τ)|

dτ ]| 1

|t− s|α

= |[(Tx)(t)− (Ty)(t)]

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ + (Ty)(t)

∫ 1

0
k(t, τ)

[
|x(τ)|

1 + |x(τ)|
− |y(τ)|

1 + |y(τ)|

]
dτ

−[(Tx)(s)− (Ty)(s)]

∫ 1

0
k(s, τ)

|x(τ)|
1 + |x(τ)|

dτ +

(Ty)(s)

∫ 1

0
k(s, τ)

[
|x(τ)|

1 + |x(τ)|
− |y(τ)|

1 + |y(τ)|

]
dτ | 1

|t− s|α

= |[(Tx)(t)− (Ty)(t)]

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ − [(Tx)(s)− (Ty)(s)]

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ

+[(Tx)(s)− (Ty)(s)]

∫ 1

0
k(t, τ)

|x(τ)|
1 + |x(τ)|

dτ − [(Tx)(s)− (Ty)(s)]

∫ 1

0
k(s, τ)

|x(τ)|
1 + |x(τ)|

dτ

+(Ty)(t)

∫ 1

0
k(t, τ)

[
|x(τ)|

1 + |x(τ)|
− |y(τ)|

1 + |y(τ)|

]
dτ − (Ty)(s)

∫ 1

0
k(t, τ)[

|x(τ)|
1 + |x(τ)|

− |y(τ)|
1 + |y(τ)|

]dτ

+(Ty)(s)

∫ 1

0
k(t, τ)

[
|x(τ)|

1 + |x(τ)|
− |y(τ)|

1 + |y(τ)|

]
dτ
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−(Ty)(s)

∫ 1

0
k(s, τ)

[
|x(τ)|

1 + |x(τ)|
− |y(τ)|

1 + |y(τ)|

]
dτ | 1

|t− s|α

≤

[
|(Tx)(t)− (Ty)(t)− [(Tx)(s)− (Ty)(s)]|

∫ 1
0 |k(t, τ)| |x(τ)|

1+|x(τ)|dτ
]

|t− s|α

+
[|[(Tx)(s)− (Ty)(s)]

∫ 1
0 |k(t, τ)− k(s, τ)| |x(τ)|

1+|x(τ)|dτ ]

|t− s|α

+
|(Ty)(t)− (Ty)(s)|

∫ 1
0 |k(t, τ)|

[
|x(τ)|

1+|x(τ)| −
|y(τ)|

1+|y(τ)|

]
dτ

|t− s|α

+
|(Ty)(s)|

∫ 1
0 |k(t, τ)− k(s, τ)|

[
|x(τ)|

1+|x(τ)| −
|y(τ)|

1+|y(τ)|

]
dτ

|t− s|α

≤ ‖Tx− Ty‖α
∫ 1

0
|k(t, τ)||x(τ)|dτ + ‖Tx− Ty‖∞

∫ 1

0
kβ
|t− s|β

|t− s|α
|x(τ)|dτ

+‖Ty‖α
∫ 1

0
|k(t, τ)||x(τ)− y(τ)|dτ + ‖Ty‖∞

∫ 1

0
kβ
|t− s|β

|t− s|α
|x(τ)− y(τ)|dτ

≤ ‖Tx− Ty‖α‖x‖∞K + ‖Tx− Ty‖α‖x‖∞kβ + ‖Ty‖α‖x− y‖∞K + ‖Ty‖∞‖x− y‖∞kβ
≤ (K + kβ)‖Tx− Ty‖α‖x‖∞ + (K + kβ)‖Ty‖α‖x− y‖∞.

(3)

Here is |(Fx− Fy)(0)| = |(Fx)(0)− (Fy)(0)|. Further,

|(Fx)(0)− (Fy)(0)|

=

∣∣∣∣p(0) + (Tx)(0)

∫ 1

0
k(0, τ)

|x(τ)|
1 + |x(τ)|

dτ − p(0)− (Ty)(0)

∫ 1

0
k(0, τ)

|y(τ)|
1 + |y(τ)|

dτ

∣∣∣∣
≤ |(Tx)(0)

∫ 1

0
k(0, τ)

|x(τ)|
1 + |x(τ)|

dτ − (Tx)(0)

∫ 1

0
k(0, τ)

|y(τ)|
1 + |y(τ)|

dτ |

+|(Tx)(0)

∫ 1

0
k(0, τ)

|y(τ)|
1 + |y(τ)|

dτ − (Ty)(0)

∫ 1

0
k(0, τ)

|y(τ)|
1 + |y(τ)|

dτ |

≤ |(Tx)(0)|
∫ 1

0
|k(0, τ)|

[
|x(τ)|

1 + |x(τ)|
− |y(τ)|

1 + |y(τ)|

]
dτ

+|(Tx)(0)− (Ty)(0)|
∫ 1

0
|k(0, τ)| |y(τ)|

1 + |y(τ)|
dτ

≤ ‖Tx‖∞
∫ 1

0
|k(0, τ)||x(τ)− y(τ)|dτ + ‖Tx− Ty‖∞

∫ 1

0
|k(0, τ)||y(τ)|dτ

≤ ‖Tx‖∞‖x− y‖∞K + ‖Tx− Ty‖∞‖y‖∞K.
(4)

According to (3) and (4) and from

‖Fx− Fy‖α = |(Fx− Fy)(0)|+Hα
Fx−Fy,
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we obtain following estimates;

‖Fx− Fy‖α = |(Fx− Fy)(0)|+Hα
Fx−Fy

≤ ‖Tx‖∞‖x− y‖∞K + ‖Tx− Ty‖∞‖y‖∞K
+(K + kβ)‖Tx− Ty‖α‖x‖∞ + (K + kβ)‖Ty‖α‖x− y‖∞

≤ ‖x‖β‖x− y‖αK + ‖Tx− Ty‖∞‖y‖βK
+(K + kβ)‖Tx− Ty‖α‖x‖∞ + (K + kβ)‖y‖β‖x− y‖α

≤ Kr0‖x− y‖α +Kr0‖Tx− Ty‖α + (K + kβ)r0‖Tx− Ty‖α + (K + kβ)r0‖x− y‖α
≤ (2K + kβ)r0‖x− y‖α + (2K + kβ)r0‖Tx− Ty‖α.

Let us take on arbitrary ε > 0. Since, the operator T is continuous on Hβ[0, 1] with

respect to the norm ‖.‖α, it is also continuous at the point y ∈ Bβ
r0 . Hence,

‖Tx− Ty‖α <
ε

2(2K + kβ)r0

for all x ∈ Bβ
r0 , where ‖x− y‖α < δ and

0 < δ <
ε

2(2K + kβ)r0
.

Then, we have

‖Fx− Fy‖α ≤ (2K + kβ)r0‖x− y‖α + (2K + kβ)r0‖Tx− Ty‖α
<

ε

2
+
ε

2
= ε.

This shows that the operator F is continuous on Bβ
r0 , with respect to the norm ‖.‖α,

where 0 < α < β ≤ 1. Thus, taking into account the fact that the set Bβ
r0 is compact in

the space Hα[0, 1] and applying the classical Schauder fixed point principle, we complete
the proof. �

At present, we exemplify the above result by one example.

4. Example

In this part, we conclude the article by presenting one example which illustrates the
generality and efficiency of our results.

Example 4.1. Let us consider the following quadratic integral equation:

x(t) = 3
√
qt+ q̂ + (x(t))

∫ 1

0

√
mt2 + τ

|x(τ)|
1 + |x(τ)|

dτ, t ∈ I = [0, 1]. (5)

Equation (5) is a special case of equation (1) with p(t) = 3
√
qt+ q̂, (Tx)(t) = x(t) and

k(t, τ) =
√
mt2 + τ . For all t, s ∈ [0, 1],

|p(t)− p(s)| = | 3
√
qt+ q̂ − 3

√
qs+ q̂|

≤ | 3
√
qt+ q̂ − qs− q̂|

≤ 3
√
q 3
√
|t− s|

≤ 3
√
q.|t− s|

1
3 .
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This says that p ∈ H 1
3
[0, 1] and H

1
3
p = 3

√
q. Further,

‖p‖ 1
3

= |p(0)|+H
1
3
p

= 3
√
q + 3

√
q̂.

Then, for t, s ∈ [0, 1],

|k(t, τ)− k(s, τ)| =
∣∣∣√mt2 + τ −

√
ms2 + τ

∣∣∣
≤

∣∣∣√m(t2 − s2)
∣∣∣

≤
√
m
√
|(t2 − s2)|

=
√
m|t− s|

1
2 |t+ s|

1
2

≤
√
m|t− s|

1
2

=
√
m|t− s|

1
3 |t− s|

1
6

≤
√
m|t− s|

1
3 ,

and it is seen that kβ = k 1
3

=
√
m. This shows that functions p(t) and k(t, τ) involved in

(5) satisfy assumptions (i) and (ii) of Theorem 3.1.
Now, we will show that the operator T : H 1

3
[0, 1] → H 1

3
[0, 1] continuous according to

be norm with ‖.‖α defined in H 1
3
[0, 1] space. To do this, fix arbitrarily y ∈ Hβ[0, 1] and

ε > 0. Assume that x ∈ Hβ[0, 1] is an arbitrary function and ‖x − y‖α < δ, where δ is a
positive number such that

0 < δ ≤ ε

2
.

Then, for arbitrary t, s ∈ [0, 1] we obtain

(Tx− Ty)(t)− (Tx− Ty)(s) = x(t)− y(t)− (x(s)− y(s)). (6)

By (6), we get

|(Tx− Ty)(t)− (Tx− Ty)(s)| ≤ |x(t)− y(t)− (x(s)− y(s))|. (7)

By (7), we have:

sup

{
|(Tx− Ty)(t)− (Tx− Ty)(s)|

|t− s|α
: t, s ∈ [0, 1], and t 6= s

}

≤ sup

{
|x(t)− y(t)− (x(s)− y(s))|

|t− s|α
: t, s ∈ [0, 1], and t 6= s

}
≤ ‖x− y‖α. (8)

From (8), we obtain the following inequality:
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‖Tx− Ty‖α = |(Tx− Ty)(0)|+ sup

{
|(Tx− Ty)(t)− (Tx− Ty)(s)|

|t− s|α
: t, s ∈ [0, 1] and t 6= s

}
≤ |x(0)− y(0)|+ ‖x− y‖α
≤ ‖x− y‖∞ + ‖x− y‖α
≤ ‖x− y‖α + ‖x− y‖α
≤ 2‖x− y‖α
< ε,

which yields that the operator T is continuous on Hβ[0, 1] with respect to the norm ‖.‖α.
Further, we get

sup

{∫ 1

0
|k(t, τ)|dτ : t ∈ [0, 1]

}
= sup

{∫ 1

0

∣∣∣√mt2 + τ
∣∣∣ dτ : t ∈ [0, 1]

}
= sup

{
2

3

(√
(mt2 + 1)3 −

√
(mt2)3

)
: t ∈ [0, 1]

}
≤ sup

{
2

3

√
(mt2 + 1)3 : t ∈ [0, 1]

}
≤

√
(m+ 1)3

= K.

Hence; we deduce that the inequality from assumption (iv) of Theorem 3.1 is satisfied
provided

‖p‖ 1
3

+ (2K + kβ)r2 ≤ r,

which is equivalent to

3
√
q + 3

√
q̂ +

(
2
√

(m+ 1)3 +
√
m
)
r0

2 ≤ r0.

Thus, by choosing q = q̂ = 1
1015

and m = 1
218

, it is easy to see that a number r0 = 3, 10−5

satisfies the inequality in condition (iv). Consequently, all the conditions of Theorem 3.1
are satisfied. This implies that the integral equation (5) has at least one solution which
belongs to the space Hα[0, 1] with 0 < α < 1

3 .

5. Conclusion

Our main aim in this paper is to study the existence of solutions of equation (1) using
the technique of relative compactness in conjunction with Schauder’s fixed point theorem.
Further, the example is presented to verify the effectiveness and applicability of our results.
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M. TEMİZER ERSOY, H. FURKAN, B. SARIÇİÇEK: ON THE SOLUTIONS OF SOME ... 667

[5] Caballero, J., Lopez, B., Sadarangani, K., (2007), Existence of Nondecreasing and Continuous Solu-
tions of an Integral Equation with Linear Modification of the Argument, Acta Mathematica Sinica,
23(9), pp. 1719-1728.

[6] Caballero Mena, J., Nalepa, R., Sadarangani, K., (2014), Solvability of a quadratic integral equation
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[15] López, B., Harjani, J., Sadaragani, K., (2017), Existence of positive solutions in the space of Lipschitz

functions to a class of fractional differential equations of arbitrary order, Racsam, pp. 1-14.
[16] Mureşan, V., (2008), A functional-integral equation with linear modification of the argument, via

weakly Picard operators , Fixed Point Theory, 9(1), pp. 189-197.
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http://doi.org/10.3390/sym10100522.



668 TWMS J. APP. ENG. MATH. V.10, N.3, 2020

Dr. Merve Temizer Ersoy graduated from the Department of Mathematics, Fac-
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Büşra Sarıçiçek graduated from Department of Mathematics, Faculty of Science,
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