
TWMS J. App. and Eng. Math. V.10, Special Issue, 2020, pp. 63-72

GENERALIZED ENTIRE SEQUENCE SPACES DEFINED BY

FRACTIONAL DIFFERENCE OPERATOR AND SEQUENCE OF

MODULUS FUNCTIONS
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Abstract. In this paper, we introduce some generalized entire sequence spaces and ana-
lytic sequence spaces defined by fractional difference operator and a sequence of modulus
functions. We study some topological properties and give some inclusion relations among
the spaces.
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1. Introduction and Preliminaries

A complex sequence, whose kth term is xk, is denoted by (xk). Let ϕ be the set of all

finite sequences. A sequence x = (xk) is said to be analytic if sup
k
|xk|

1
k <∞. The vector

space of all analytic sequences will be denoted by Λ. A sequence x = (xk) is called entire

sequence if lim
k→∞

|xk|
1
k = 0. The vector space of all entire sequences will be denoted by Γ.

A modulus function is a function f : [0,∞)→ [0,∞) such that

(1) f(x) = 0 if and only if x = 0,
(2) f(x+ y) ≤ f(x) + f(y) for all x ≥ 0, y ≥ 0,
(3) f is increasing
(4) f is continuous from right at 0.

It follows that f must be continuous everywhere on [0,∞). The modulus function may
be bounded or unbounded. For example, if we take f(x) = x

x+1 , then f(x) is bounded.

If f(x) = xp, 0 < p < 1, then the modulus f(x) is unbounded. Subsequentially, modulus
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function has been discussed in ([1, 2, 3, 4, 20, 28, 29, 30, 31]) and references therein. Let
F = (fk) be a sequence of modulus functions.

The space consisting of all those sequences x in w such that fk

(
|xk|1/k
ρ

)
→ 0 as k →∞

for some arbitrary fixed ρ > 0 is denoted by ΓF and is known as a space of entire sequences
defined by a sequence of modulus function. The space ΓF is a metric space with the metric

d(x, y) = sup
k
fk

( |xk − yk|1/k
ρ

)
for all x = (xk) and y = (yk) in ΓF . The space consisting

of all those sequences x in w such that
(

sup
k

(
fk

( |xk|1/k
ρ

)))
< ∞ for some arbitrarily

fixed ρ > 0 is denoted by ΛF and is known as a space of analytic sequences defined by a
sequence of modulus function.

A sequence space E is said to be solid or normal if (αkxk) ∈ E whenever (xk) ∈ E and
for all sequences of scalars (αk) with |αk| ≤ 1 (see [19]).

Let X be a linear metric space. A function p : X →, R is called paranorm, if

(1) p(x) ≥ 0, for all x ∈ X,
(2) p(−x) = p(x), for all x ∈ X,
(3) p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X,
(4) if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a sequence of

vectors with p(xn − x)→ 0 as n→∞, then p(λnxn − λx)→ 0 as n→∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair
(X, p) is called a total paranormed space. It is well known that the metric of any linear
metric space is given by some total paranorm.

In [18], Kızmaz defined the sequence spaces

Z(∆) =
{
x = (xk) : (∆xk) ∈ Z

}
for Z = `∞, c and c0,

where ∆x = (∆xk) = (xk − xk+1). Et and Çolak [14] generalized the difference sequence
spaces to the sequence spaces

Z(∆n) =
{
x = (xk) : (∆nxk) ∈ Z

}
for Z = `∞, c and c0,

where n ∈ N, ∆0
x = (xk), ∆x = (xk − xk+1),

∆nx = (∆nxk) = (∆n−1xk −∆n−1xk+1).

The generalized difference sequence has the following binomial representation

∆nxk =

n∑
v=0

(−1)v
(
n
v

)
xk+v.

Later, several authors studied difference sequence spaces in different setting, we refer to
[6, 7, 15, 24, 26, 11, 16, 12, 10]. The notion of difference operator has been recently
used to define statistical convergence (see [17, 23]) while for recent work on statistical
convergence we refer to [8, 9, 13, 21, 22, 25, 27]. In the recent past, Baliarsingh [5] defined
the fractional difference operator as follows: Let x = (xk) ∈ w and α be a real number,

then the fractional difference operator ∆(α) is defined by

∆(α)xk =
k∑
i=0

(−α)i
i!

xk−i,
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where (−α)i denotes the Pochhammer symbol defined as:

(−α)i =

 1 if α = 0 or i = 0,

α(α+ 1)(α+ 2)...(α+ i− 1), otherwise.

The following inequality will be used throughout the paper. Let p = (pk) be a sequence
of positive real numbers with 0 ≤ pk ≤ sup pk = G, K = max(1, 2G−1) then

|ak+bk|pk ≤ K{|ak|pk + |bk|pk} (1)

for all k and ak, bk ∈ C. Also |a|pk ≤ max(1, |a|G) for all a ∈ C.
Let F = (fk) be a sequence of modulus function and X be locally convex Hausdorff

topological linear space whose topology is determined by a set of continuous seminorms
q. The symbols Λ(X) and Γ(X) denote the spaces of all analytic and entire sequences,
respectively, defined over X. If p = (pk) be a bounded sequence of strictly positive real
numbers, then we define the following sequence spaces:

Λ F (∆(α), p, q) =
{
x ∈ Λ(X) : sup

n

1

n

n∑
k=1

[
fk

(
q
( |(∆(α)xk)

1/k|
ρ

))]pk
<∞,

for some ρ > 0
}

and

ΓF (∆(α), p, q) =
{
x ∈ Γ(X) :

1

n

n∑
k=1

[
fk

(
q
( |(∆(α)xk)

1/k|
ρ

))]pk
→ 0 as n→∞,

for some ρ > 0
}
.

If we take p = (p k) = 1, we get

ΛF (∆(α), q) =
{
x ∈ Λ(X) : sup

n

1

n

n∑
k=1

[
f k
(
q
( |(∆(α)x k)1/k|

ρ

))]
<∞,

for some ρ > 0
}

and

ΓF (∆(α), q) =
{
x ∈ Γ(X) :

1

n

n∑
k=1

[
fk

(
q
( |(∆(α)xk)

1/k|
ρ

))]
→ 0 as n→∞,

for some ρ > 0
}
.

2. Main Results

Here, we examine some topological properties and prove inclusion relation between the
spaces defined in the previous section.

Theorem 2.1 Let F = (fk) be a sequence of modulus function and p = (pk) be bounded

sequence of strictly positive real numbers. Then ΓF (∆(α), p, q) and ΛF (∆(α), p, q) are lin-
ear spaces over the set of complex numbers C.
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Proof. Let x = (xk), y = (yk) ∈ ΓF (∆(α), p, q) and α, β ∈ C. In order to prove the
result, we need to find some ρ3 > 0 such that

1

n

n∑
k=1

[
fk

(
q
((|∆(α)(βxk + γyk)|)

1
k

ρ3

))]pk
→ 0 as n→∞. (2)

Since x = (xk), y = (yk) ∈ ΓF (∆(α), p, q), there exist some positive ρ1 and ρ2 such that

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ1

))]pk
→ 0 as n→∞ (3)

and

1

n

n∑
k=1

[
fk

(
q
((|∆(α)yk|)

1
k

ρ2

))]pk
→ 0 as n→∞. (4)

Since F = (fk) is a non-decreasing function, q is a seminorm and ∆(α) is linear, then

1
n

n∑
k=1

[
fk

(
q
((|∆(α)(βxk + γyk)|)

1
k

ρ3

))]pk
≤ 1

n

n∑
k=1

[
fk

(
q
( |β| 1k (|∆(α)xk|)

1
k

ρ3
+
|γ|

1
k (|∆(α)yk|)

1
k

ρ3

))]pk
so that
n∑
k=1

[
fk

(
q
((|∆(α)(βxk + γyk)|)

1
k

ρ3

))]pk
≤ 1

n

n∑
k=1

[
fk

(
q
( |β|(∆(α)xk|)

1
k

ρ3
+
|γ|(∆(α)yk|)

1
k

ρ3

))]pk
.

Take ρ3 > 0 such that 1
ρ3

= min
{

1
|β| ρ1 ,

1
|γ| ρ2

}
. Then

1
n

n∑
k=1

[
fk

(
q
((|∆(α)(βxk + γyk)|)

1
k

ρ3

))]pk
≤ 1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ1
+

(|∆(α)yk|)
1
k

ρ2

))]pk
≤ 1

n

n∑
k=1

[[
fk

(
q
((|∆(α)xk|)

1
k

ρ1

))]pk
+
[
fk

(
q
((|∆(α)yk|)

1
k

ρ2

))]pk]
≤ K

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ1

))]pk
+K

1

n

n∑
k=1

[
fk

(
q
((|∆(α)yk|)

1
k |

ρ1

))]pk
−→ 0 as n→∞.

Hence
n∑
k=1

[
fk

(
q
((|β∆(α)xk + γ∆(α)yk|)

1
k

ρ3

))]pk
→ 0 as n→∞.

This proves that ΓF (∆(α), p, q) is a linear space. Similarly, we can prove that ΛF (∆(α), p, q)
is a linear space
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Theorem 2.2 Let F = (fk) be a sequence of modulus functions and p = (pk) be a bounded

sequence of strictly positive real numbers. Then ΓF (∆(α), p, q) is a paranormed space with
paranorm defined by

g(x) = inf
{
ρ
pm
H : sup

k≥1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
≤ 1, ρ > 0, m ∈ N

}
,

where H = max(1, sup
k
pk).

Proof. Clearly g(x) ≥ 0, g(x) = g(−x) and g(θ) = 0, where θ is the zero sequence of X.

Let (xk), (yk) ∈ ΓF (∆(α), p, q). Let ρ1, ρ2 > 0 be such that

sup
k≥1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ1

))]pk
≤ 1

and

sup
k≥1

[
fk

(
q
((|∆(α)yk|)

1
k

ρ2

))]pk
≤ 1.

Let ρ = ρ1 + ρ2. Then by using Minkowski’s inequality, we have

sup
k≥1

[
fk

(
q
((|∆(α)(xk + yk)|)

1
k

ρ

))]pk
≤

( ρ1
ρ1 + ρ2

)
sup
k≥1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ1

))]pk
+

( ρ2
ρ1 + ρ2

)
sup
k≥1

[
fk

(
q
((|∆(α)yk|)

1
k

ρ2

))]pk
≤ 1.

Hence
g(x+ y)

≤ inf
{

(ρ1 + ρ2)
pm
H : sup

k≥1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ1 + ρ2

))]pk
≤ 1, ρ1, ρ2 > 0, m ∈ N

}
≤ inf

{
(ρ1)

pm
H : sup

k≥1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ1

))]pk
≤ 1, ρ1 > 0, m ∈ N

}
+ inf

{
(ρ2)

pm
H : sup

k≥1

[
fk

(
q
((|∆(α)yk|)

1
k

ρ2

))]pk
≤ 1, ρ2 > 0, m ∈ N

}
.

Thus we have g(x+ y) ≤ g(x) + g(y). Hence g satisfies the triangle inequality.

g(λx) = inf
{

(ρ)
pm
H : sup

k≥1

[
fk

(
q
((|λ∆(α)xk|)

1
k

ρ

))]pk
≤ 1, ρ > 0, m ∈ N

}
= inf

{
(r|λ|)

pm
H : sup

k≥1

[
fk

(
q
((|∆(α)xk|)

1
k

r

))]pk
≤ 1, r > 0, m ∈ N

}
,

where r = ρ
|λ| . Hence ΓF (∆(α), p, q) is a paranormed space.

Theorem 2.3 Let F ′ = (f ′k) and F ′′ = (f ′′k ) be two sequences of modulus functions.
Then

ΓF ′(∆(α), p, q) ∩ ΓF ′′(∆(α), p, q) ⊆ ΓF ′+F ′′(∆(α), p, q).



68 TWMS J. APP. ENG. MATH. V.10, SPECIAL ISSUE, 2020

Proof. Let x = (xk) ∈ ΓF ′(∆(α), p, q) ∩ ΓF ′′(∆(α), p, q). Then there exist ρ1 and ρ2 such
that

1

n

n∑
k=1

[
f ′k

(
q
((|∆(α)xk|)

1
k

ρ1

))]pk
→ 0 as n→∞. (5)

and

1

n

n∑
k=1

[
f ′′k

(
q
((|∆(α)xk|)

1
k

ρ2

))]pk
→ 0 as n→∞. (6)

Let ρ > 0 such that 1
ρ = min

(
1
ρ1
, 1
ρ2

)
. Then, we have

1

n

n∑
k=1

[
(f ′k + f ′′k )

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
≤ K

[ 1

n

n∑
k=1

[
f ′k

(
q
((|∆(α)xk|)

1
k

ρ1

))]pk]
+ K

[ 1

n

n∑
k=1

[
f ′′k

(
q
((|∆(α)xk|)

1
k

ρ2

))]pk]
→ 0 as n→∞

by (5) and (6). Hence

1

n

n∑
k=1

[
(f ′k + f ′′k )

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
→ 0 as n→∞.

Therefore x = (xk) ∈ ΓF ′+F ′′(∆(α), p, q).

Theorem 2.4 Let α ≥ 1. Then, we have the following inclusions:
(i) ΓF (∆(α−1), p, q) ⊆ ΓF (∆(α), p, q),

(ii) ΛF (∆(α−1), p, q) ⊆ ΛF (∆(α), p, q).

Proof. Let x = (xk) ∈ ΓF (∆(α−1), p, q). Then we have 1
n

n∑
k=1

[
fk

(
q
((|∆(α−1)xk|)

1
k

ρ

))]pk
→

0 as n → ∞, for some ρ > 0. Since F = (fk) is non-decreasing and q is a seminorm, we
have

1
n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
≤ 1

n

n∑
k=1

[
fk

(
q
((|∆(α−1)xk −∆(α−1)xk+1|)

1
k

ρ

))]pk
≤ K

{ 1

n

n∑
k=1

[
fk

(
q
((|∆(α−1)xk|)

1
k

ρ

))]pk
+

1

n

n∑
k=1

[
fk

(
q
((|∆(α−1)xk+1|)

1
k

ρ

))]pk}
−→ 0 as n→∞.

Therefore 1
n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
→ 0 as n→∞. Hence x ∈ ΓF (∆(α), p, q). This

completes the proof of (i). Similarly, we can prove (ii).

Theorem 2.5 Let 0 ≤ pk ≤ rk and let { rkpk } be bounded. Then ΓF (∆(α), r, q) ⊂
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ΓF (∆(α), p, q).

Proof. Let x = (xk) ∈ ΓF (∆(α), r, q). Then

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]rk
→ 0 as n→∞. (7)

Let tk = 1
n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]rk
and λk = pk

rk
. Since pk ≤ rk, we have 0 ≤ λk ≤ 1.

Take 0 < λ < λk. Define

uk =

 tk if tk ≥ 1

0 if tk < 1

and

vk =

 0 if tk ≥ 1

tk if tk < 1

tk = uk + vk, tλkk = uλkk + vλkk . It follows that uλkk ≤ uk ≤ tk, v
λk
k ≤ vλk . Since

tλkk = uλkk + vλkk , then tλkk ≤ tk + vλk . Hence

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))rk]λk
≤ 1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]rk
=⇒ 1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))rk]pk/rk
≤ 1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]rk
=⇒ 1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
≤ 1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]rk
.

But
1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]rk
→ 0 as n→∞ (by(7)).

Therefore
1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
→ 0 as n→∞.

Hence x = (xk) ∈ ΓF (∆(α), p, q). From (7), we get ΓF (∆(α), r, q) ⊂ ΓF (∆(α), p, q).

Theorem 2.6 (i) Let 0 < inf pk ≤ pk ≤ 1. Then ΓF (∆(α), p, q) ⊂ ΓF (∆(α), q),

(ii) Let 1 ≤ pk ≤ sup pk <∞. Then ΓF (∆(α), q) ⊂ ΓF (∆(α), p, q).

Proof. (i) Let x = (xk) ∈ ΓF (∆(α), p, q). Then

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
→ 0 as n→∞. (8)

Since 0 < inf pk ≤ pk ≤ 1,

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]
≤ 1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
→ 0 as n→∞. (9)
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From (8) and (9) it follows that, x = (xk) ∈ ΓF (∆(α), q). Thus ΓF (∆(α), p, q) ⊂ ΓF (∆(α), q).

(ii) Let pk ≥ 1 for each k and sup pk <∞ and let x = (xk) ∈ ΓF (∆(α), q). Then

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]
→ 0 as n→∞. (10)

Since 1 ≤ pk ≤ sup pk <∞, we have

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
≤ 1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]
1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
→ 0 as n→∞.

This implies that x = (xk) ∈ ΓF (∆(α), p, q). Therefore ΓF (∆(α), q) ⊂ ΓF (∆(α), p, q).

Theorem 2.7 If 1
n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
≤ |xk|1/k, then Γ ⊂ ΓF (∆(α), p, q).

Proof. Let x = (xk) ∈ Γ. Then we have,

|xk|1/k → 0 as k →∞. (11)

But 1
n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
≤ |xk|1/k, by our assumption, implies that

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
→ 0 as n→∞ by(11)

Then x = (xk) ∈ ΓF (∆(α), p, q) and Γ ⊂ ΓF (∆(α), p, q).

Theorem 2.8 The space ΓF (∆(α), p, q) is solid.

Proof. Let |xk| ≤ |yk| and let y = (yk) ∈ ΓF (∆(α), p, q). Then

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
≤ 1

n

n∑
k=1

[
fk

(
q
((|∆(α)yk|)

1
k

ρ

))]pk
,

since F = (fk) is non-decreasing. As y = (yk) ∈ ΓF (∆(α), p, q), then

1

n

n∑
k=1

[
fk

(
q
((|∆(α)yk|)

1
k

ρ

))]pk
→ 0 as n→∞.

Hence

1

n

n∑
k=1

[
fk

(
q
((|∆(α)xk|)

1
k

ρ

))]pk
→ 0 as n→∞.

Therefore x = (xk) ∈ ΓF (∆(α), p, q).

Theorem 2.9 The space ΓF (∆(α), p, q) is monotone.

Proof. We omit the proof as it is trivial.
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3. Conclusions

We introduced some generalized entire sequence spaces and analytic sequence spaces de-
fined by fractional difference operator and sequence of modulus functions. We also studied
some topological properties and proved several inclusion relations between these spaces.
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