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LARGE CLASSES WITH THE FIXED POINT PROPERTY IN A

DEGENERATE LORENTZ-MARCINKIEWICZ SPACE

V. NEZIR1, H. DUTTA2, M. YAZICI3, §

Abstract. Recently, Nezir has renormed `1 and observed that the resulting space turns
out be a degenerate Lorentz-Marcinkiewicz space. Then, fixed point properties have been
investigated for the space, its dual and its predual. Also, inspiring from the study of
Goebel and Kuczumow, as they showed for the Banach space of absolutely summable se-
quences `1, Nezir showed that a class of non-weak* compact, closed, convex and bounded
sets in one of these spaces has the fixed point property for affine nonexpansive mappings.
In fact, very recently, generalizing the equivalent norm on `1, Nezir and Mustafa obtained
new type of degenerate Lorentz-Marcinkiewicz spaces with their fixed point properties
and got the analogy of Goebel and Kuczumow’s for the resulting space. In this paper, we
show that there exists large classes of non-weak* compact, closed, convex and bounded
sets with the fixed point property for affine nonexpansive mappings in the generalized
degenerate Lorentz-Marcinkiewicz space.

Keywords: nonexpansive mapping, nonreflexive Banach space, fixed point property,
closed bounded convex set, Lorentz-Marcinkiewicz spaces.

AMS Subject Classification: 46B45, 47H09, 46B42, 46B10.

1. Introduction

There is strong relationship between the concept of reflexive Banach spaces and Banach
spaces having the fixed point property. It has been questioned whether the two concepts
are equivalent unconditionally or depending on some conditions.

It has been observed that most non-reflexive classical Banach spaces such as `1 and c0
fail the fixed point property and it is still and has been an open question for over 50 years
whether or not all nonreflexive Banach spaces can be renormed to have the fixed point
property. It was proved by Lin’s result [8] that non-reflexive Banach space `1, Banach
space of absolutely summable sequences can be renormed to have the fixed point property
for nonexpansive mappings.
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Researchers are interested to questionize whether or not there exist other non-reflexive
Banach spaces than `1 which can be renormed to have the fixed point property for nonex-
pansive mappins. But then it is necessary to recall that Lin inspired by the work of Goebel
and Kuczumow [6] that can be said to let him succeed in his research by using some of
strategies of theirs. By Goebel and Kuczumow’s study, existence of a large class of non-
weak* closed, bounded and convex subsets with fixed point property in `1 was showed and
later in 2003, it was showed by Kaczor and Prus [7] that under an extra assumption, the
sets developed by Goebel and Kuczumow has the fixed point property for asymptotically
nonexpansive mappings.

In [12], Nezir recently constructed an equivalent renorming of `1 which turns out to pro-
duce a degenerate `1-analog Lorentz-Marcinkiewicz space `δ,1, where the weight sequence
δ = (δn)n∈N = (2, 1, 1, 1, · · · ) is a decreasing positive sequence in `∞\c0, rather than

in c0\`1 (the usual Lorentz situation). Then, he obtained its isometrically isomorphic
predual `0δ,∞ and dual `δ,∞, corresponding degenerate c0-analog and `∞-analog Lorentz-
Marcinkiewicz spaces, respectively. Then, he investigated all types of fixed point properties
such as weak, weak*, and regular fixed point property.

Then, very recently, generalizing Nezir’s work by constructing another equivalent norm
on `1 and obtaining his generalized degenerate `1-analog Lorentz-Marcinkiewicz space `δ,1,
where the weight sequence δ = (δn)n∈N = (α+β, β, β, β, · · · ), for β ≥ α > 0, in [14], Nezir
and Mustafa has showed that `δ,1 fails to have the fixed point property for nonexpansive
mappings but also they show that there exists an infinite dimensional subspace of `δ,1 with
the fixed point property for affine nonexpansive mappings.

We need to note that Nezir [13] recently also worked on Lorentz sequence spaces and
obtained the result that there exists an infinite dimensional subspace of `1 analogue Lorentz
sequence space with the fixed point property for affine nonexpansive mappings. We believe
that similar result can be obtained for the regular Lorentz-Marcinkiewicz space as well.
Furthermore, we remark that most of this work forms part of the master thesis of M.
Yazici [4].

In this study, we show that it is possible to obtain different large classes with the
fixed point property for affine nonexpansive mappings in these spaces. Readers may find
it useful to see [2, 3] for various other summable spaces and their properties to extend
similar results to such classes of spaces.

2. Preliminaries

Definition 2.1. Let (X, ‖ · ‖) be a Banach space and C be a non-empty closed, bounded,
convex subset.

(1) If T : C −→ C is a mapping such that for all λ ∈ [0, 1] and for all x, y ∈ C,
T
(
(1−λ)x+λ y

)
= (1−λ)T (x) +λT (y) . then T is said to be an affine mapping.

(2) If T : C −→ C is a mapping such that ‖T (x)−T (y)‖ ≤ ‖x−y‖ , for all x, y ∈ C
then T is said to be a nonexpansive mapping.

Also, if for every nonexpansive mapping T : C −→ C, there exists x ∈ C
with T (x) = x, then X is said to have the fixed point property for nonexpansive
mappings.

We should note that in the V. Nezir’s Ph.D. thesis [11], written under supervision
of C. Lennard, the usual Lorentz-Marcienkiewicz spaces and their fixed point properties
were studied; hence, we can give their definitions below to understand how different the
degenerate ones are.
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Let w ∈ (c0\`1)+, w1 = 1 and (wn)n∈N be decreasing; that is, consider a scalar sequence
given by w = (wn)n∈N, wn > 0, ∀n ∈ N such that 1 = w1 ≥ w2 ≥ w3 ≥ · · · ≥ wn ≥ wn+1 ≥
. . . ,∀n ∈ N with wn −→ 0 as n −→ ∞ and

∑∞
n=1 wn = ∞. This sequence is called a

weight sequence. For example, wn = 1
n ,∀n ∈ N.

Definition 2.2. lw,∞ :=

x = (xn)n∈N ∈ c0

∣∣∣∣∣∣‖x‖w,∞ := sup
n∈N

n∑
j=1

xj
?

n∑
j=1

wj

<∞

 .

Here, x? represents the decreasing rearrangement of the sequence x, which is the se-
quence of |x| = (|xj |)j∈N, arranged in non-increasing order, followed by infinitely many
zeros when |x| has only finitely many non-zero terms. This space is non-separable and an
analogue of l∞ space.

Definition 2.3. l0w,∞ :=

x = (xn)n∈N ∈ c0

∣∣∣∣∣∣lim sup
n−→∞

n∑
j=1

xj
?

n∑
j=1

wj

= 0

 .

This is a separable subspace of lw,∞ and an analogue of c0 space.

Definition 2.4. lw,1 :=

{
x = (xn)n∈N ∈ c0

∣∣∣∣∣‖x‖w,1 :=
∞∑
j=1

wj xj
? <∞

}
.

This is a separable subspace of lw,∞ and an analogue of l1 space with the following
facts: (l0w,∞)? ∼= lw,1 and (lw,1)

? ∼= lw,∞ where the star denotes the dual of a space while
∼= denotes isometrically isomorphic.

More information about Lorentz spaces can be seen in [10, 9].
Now, we will introduce Nezir’s construction. For all x = (xn)n∈N ∈ `1, we define

~x~ := ‖x‖1 + ‖x‖∞ =
∞∑
n=1
|xn|+ sup

n∈N
|xn| . Clearly ~ · ~ is an equivalent norm on `1 with

‖x‖1 ≤ ~x~ ≤ 2‖x‖1, ∀x ∈ `1. Note that ∀x ∈ `1, ~x~ = 2x∗1 + x∗2 + x∗3 + x∗4 + · · · where
z∗ is the decreasing rearrangement of |z| = (|zn|)n∈N, ∀z ∈ c0. Let δ1 := 2, δ2 := 1, δ3 :=

1, · · · , δn := 1, ∀n ≥ 4. We see that (`1,~ · ~) is a (degenerate) Lorentz space `δ,1, where
the weight sequence δ = (δn)n∈N is a decreasing positive sequence in `∞\c0, rather than

in c0\`1 (the usual Lorentz situation).
The following lemma [12] will be main ingredient in our theorems.

Lemma 2.1. Let (X, ‖.‖) be a Banach space.

(1) If X has the Banach–Saks property and x ∈ X is the weak limit of a bounded
sequence (xn)n, then there exists a subsequence (xnk)k whose Cesaro norm limit is
x such that if s is defined by

s (y) = lim supm

∥∥∥∥ 1
m

m∑
k=1

xnk − y
∥∥∥∥ , ∀y ∈ X, then we have s (x) = 0 and s (y) =

‖y − x‖ , ∀y ∈ X.
(2) If X has the weak Banach–Saks property and x ∈ X is the weak limit of the

sequence (xn)n, then there exists a subsequence (xnk)k whose Cesaro norm limit is
x such that if s is defined by

s (y) = lim supm

∥∥∥∥ 1
m

m∑
k=1

xnk − y
∥∥∥∥ , ∀y ∈ X, then we have s (x) = 0 and s (y) =

‖y − x‖ , ∀y ∈ X.

Hence, due to the weak Banach-Saks property of our space, which can be deduced by the
works [16, 17, 1], the above applies.
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3. Main Result

Generalizing Nezir’s construction, Nezir and Mustafa recently constructed another equiv-
alent norm by their conference paper submitted and entitled “On the fixed point property
for a degenerate Lorentz-Marcinkiewicz Space” as the following: let β ≥ α > 0. For all

x = (xn)n∈N ∈ `1, they define ~x~ := β‖x‖1 + α‖x‖∞ = β
∞∑
n=1
|xn| + α sup

n∈N
|xn| . Clearly

~ · ~ is an equivalent norm on `1 with β‖x‖1 ≤ ~x~ ≤ (α + β)‖x‖1, ∀x ∈ `1. Note that

∀x ∈ `1, ~x~ = β
(
α+β
β x∗1 + x∗2 + x∗3 + x∗4 + · · ·

)
where z∗ is the decreasing rearrangement

of |z| = (|zn|)n∈N, ∀z ∈ c0.
Let δ1 := (α+β), δ2 := β, δ3 := β, · · · , δn := β, ∀n ≥ 4. Then, they see that (`1,~ ·~) is

a (degenerate) Lorentz space `δ,1, where the weight sequence δ = (δn)n∈N is a decreasing

positive sequence in `∞\c0, rather than in c0\`1 (the usual Lorentz situation).
Using their construction, we show that there exists large classes of nonweakly∗ compact,

closed, bounded and convex subsets of `δ,1 = (`1,~ · ~) with the fixed point property for
nonexpansive mappings [fpp(n.e.)] using the ideas of Goebel and Kuczumow [6] where they
show that there exists a large class of nonweakly∗ compact, closed, bounded and convex
subsets of (`1, ‖ · ‖1 with fpp(n.e.). Note that the following example and the first theorem
below that were given by Nezir and Mustafa. Our job is to come with new examples with
theorems and more examples can be given in future projects.

Example 3.1. Fix b ∈ (0, 1). Define the sequence (fn)n∈N in c0 by setting f1 := b e1,
f2 := b e2 and fn := en, ∀n ≥ 3. Next, define the closed, bounded, convex subset E = Eb

of `1 by E :=

{∑∞
n=1 tn fn : each tn ≥ 0 and

∞∑
n=1

tn = 1

}
.

Theorem 3.1. The set E defined as in the example above has the fixed point property
for ~.~-nonexpansive mappings where the norm ~·~ on `1 is given as follows: ~x~ =
β‖x‖1 + α‖x‖∞, for β ≥ α > 0 and ∀x ∈ `1.

Example 3.2. Let b1, b2 ∈ (0, 1), 2b1 ≥ b2 and b2 ≥ b1. Define the sequence (fn)n∈N in
c0 by setting f1 := b1 e1, f2 := b2 e2 and fn := en, for all integers n ≥ 3. Next, define the
closed, bounded, convex subset E of `1 as above.

Theorem 3.2. The set E defined as in the example above has the fixed point property for
affine ~.~-nonexpansive mappings.

Proof. We will consider b2 > b1 firstly. Proof of the case of the equality is obtained by
the previous theorem but even imitating the proof below, one would get the result for the
equality case. We will be using the proof steps of the last theorem in [12] derived from
Goebel and Kuczumow’s study [6] given in detail as in Everest’s PhD thesis [5], written
under the supervision of Lennard. Let T : E → E be a nonexpansive mapping. Then there
exists a sequence

(
x(n)

)
n∈N ∈ E such that

�
�Tx(n) − x(n)

�
� −→

n
0 and so

∥∥Tx(n) − x(n)∥∥
1
−→
n

0. Without loss of generality, passing to a subsequence if necessary, there exists z ∈ `1
such that x(n) converges to z in weak∗ topology. Then, by Lemma 2.1, we can define a

function s : `1 −→ [0,∞) by s (y) = lim sup
m

�
�
�
�

1
m

m∑
k=1

x(k) − y
�
�
�
�

, ∀y ∈ `1 and so s (y) =

~y − z~ , ∀y ∈ `1. Next, define W := E
w∗

=

{ ∞∑
n=1

tn fn : each tn ≥ 0 and
∞∑
n=1

tn ≤ 1

}
.

Case 1: z ∈ E.
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Then, we have s(Tz) = ~Tz − z~, and since T is affine and ~.~-nonexpansive.

s (Tz) ≤ lim sup
m

�
�
�
�
�
Tz − T

(
1

m

m∑
k=1

x(k)

)�
�
�
�
�

+ lim sup
m

�
�
�
�
�

1

m

m∑
k=1

x(k) − 1

m

m∑
k=1

Tx(k)

�
�
�
�
�

≤ lim sup
m

�
�
�
�
�
z − 1

m

m∑
k=1

x(k)

�
�
�
�
�

= s(z).

Therefore, ~z − Tz~ ≤ 0 and so Tz = z.
Case 2: z ∈W \ E.

Then z is of the form
∞∑
n=1

γnfn such that
∞∑
n=1

γn < 1 and γn ≥ 0, ∀n ∈ N. Define δ :=

1−
∑∞

n=1 γn and next define hλ := (γ1 + λδ)f1 + (γ2 + (1− λ)δ)f2 +
∑∞

n=3 γnfn. We want
hλ to be in E, so we restrict values of λ to be in

[
−γ1

δ ,
γ2
δ + 1

]
, and then

~hλ − z~ = αδmax {|λ|b1, |1− λ|b2}+ βb1δ|λ|+ βb2δ|1− λ|

= max



(α+ β)b2δ(1− λ)− βb1δλ if λ ∈
[
−γ1δ , 0

)
,

(α+ β)b2δ(1− λ) + βb1δλ if λ ∈
[
0, b2

b1+b2

)
,

(α+ β)b1λδ + β(1− λ)b2δ if λ ∈
[

b2
b1+b2

, 1
)
,

(α+ β)b1λδ + βb2(λ− 1)δ if λ ∈
[
1, 1

b2−b1

)
and if 1

b2−b1 ≤
γ2
δ + 1,

(α+ β)b2(λ− 1)δ + βb1λδ if λ ∈
[

1
b2−b1 ,

γ2
δ + 1

]
and if 1

b2−b1 ≤
γ2
δ + 1,

(α+ β)b1λδ + βb2(λ− 1)δ if λ ∈
[
1, γ2

δ + 1
]
and if 1

b2−b1 >
γ2
δ + 1 .

Define Γ := min
λ∈[− γ1δ ,

γ2
δ
+1]

~hλ − z~. Therefore, ~hλ − z~ is minimized when λ ∈ [0, 1]

with unique minimizer such that its minimum value would be Γ = (α+2β)b1b2δ
b1+b2

. Now fix

y ∈ E of the form
∞∑
n=1

tnfn such that
∞∑
n=1

tn = 1 with tn ≥ 0, ∀n ∈ N.

Subcase 2.1: b1|t1 − γ1| ≥ b2|t2 − γ2| and b1|t1 − γ1| ≥ |tk − γk|, ∀k ≥ 3.
Then,

~y − z~ = ((α+ β)b1 − βb2)|t1 − γ1|+ βb2

∞∑
k=1

|tk − γk|+ β(1− b2)
∞∑
k=3

|tk − γk|

≥ ((α+ β)b1 − βb2)|t1 − γ1|+ βb2δ + (1− b2)|δ − (t1 − γ1)− (t2 − γ2)|.

Subcase 2.1.1: Assume b2δ
b1+b2

≥ |t1 − γ1|.
Then clearly the last inequality from above says that

~y − z~ ≥ ((α+ β)b1 − βb2)|t1 − γ1|+ βδ + β(1− b2)(−1− b1
b2

)|t1 − γ1|

≥
[(

((α+ β)b1 − βb2)− β(1− b2)
(

1 +
b1
b2

))
b2

b1 + b2
+ β

]
δ

≥ (α+ 2β)b1b2δ

b1 + b2
.

Subcase 2.1.2: Assume b2δ
b1+b2

< |t1 − γ1|.
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Then,

~y − z~ ≥ ((α+ β)b1 − βb2)|t1 − γ1|+ βb2δ + β(1− b2)
∞∑
k=3

|tk − γk| ≥
(α+ 2β)b1b2δ

b1 + b2
.

Subcase 2.2: b2|t2 − γ2| ≥ b1|t1 − γ1| and b2|t2 − γ2| ≥ |tk − γk|, ∀k ≥ 3.
Then,

~y − z~ = αb2|t2 − γ2|+ β(b1 − b2)|t1 − γ1|+ βb2|t1 − γ1|+ βb2|t2 − γ2|+ β

∞∑
k=3

|tk − γk|

≥ [(α+ β)b1 − βb2]
b2
b1
|t2 − γ2|+ βb2

∞∑
k=1

|tk − γk|+ β(1− b2)

∞∑
k=3

|tk − γk|

≥ [(α+ β)b1 − βb2]|t2 − γ2|+ βb2δ + β(1− b2)|δ − (t1 − γ1)− (t2 − γ2)|.

Subcase 2.2.1: Assume b2δ
b1+b2

≥ |t2 − γ2|.
Then clearly the last inequality from above says that

~y − z~ ≥ [(α+ β)b1 − βb2]|t2 − γ2|+ βδ + β(1− b2)(−1− b2
b1

)|t2 − γ2|

≥
(

(α+ β)b1 − βb2 − β(1− b2)
(

1 +
b2
b1

))
|t2 − γ2|+ βδ.

If
(

(α+ β)b1 − βb2 − β(1− b2)
(

1 + b2
b1

))
≥ 0, then, since b2 <

2
3 and α ≤ β, we have

that ~y − z~ ≥ (α+2β)b1b2δ
b1+b2

. If
(

(α+ β)b1 − βb2 − β(1− b2)
(

1 + b2
b1

))
< 0, then due to

b2δ
b1+b2

≥ |t2 − γ2| we get

~y − z~ ≥
[(

(α+ β)b1 − βb2 − β(1− b2)
(

1 +
b2
b1

))
b2δ

b1 + b2
+ β

]
δ

≥ (α+ 2β)b1b2δ

b1 + b2
.

Subcase 2.2.2: Assume b2δ
b1+b2

< |t2 − γ2|.
Then,

~y − z~ ≥ [(α+ β)b1 − βb2]|t2 − γ2|+ βb2δ + β(1− b2)
∞∑
k=3

|tk − γk|

≥ (α+ 2β)b1b2δ

b1 + b2
.

Subcase 2.3: |t3− γ3| ≥ b1|t1− γ1|, |t3− γ3| ≥ b2|t2− γ2|, and |t3− γ3| ≥ |tk− γk|, ∀k ≥ 4.
Then,

~y − z~ ≥ α|t3 − γ3|+ β(b1 − b2)
1

b1
|t3 − γ3|+ βb2|t1 − γ1|+ βb2|t2 − γ2|+ β

∞∑
k=3

|tk − γk|

≥ (α+ β)b1 − βb2
b1

|t3 − γ3|+ βb2|t1 − γ1|+ βb2|t2 − γ2|+ β

∞∑
k=3

|tk − γk|

≥ (α+ β)b1 − βb2
b1

|t3 − γ3|+ βb2δ + β(1− b2)

∞∑
k=3

|tk − γk|.
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Thus,

~y − z~ ≥ (α+ β)b1 − βb2
b1

|t3 − γ3|+ βb2δ + β(1− b2)δ − β(1− b2)
1

b1
|t3 − γ3| − β(1− b2)

1

b2
|t3 − γ3|

≥ (α+ β)b1 − βb2
b1

|t3 − γ3|+ βb2δ + β(1− b2)δ − β(1− b2)

(
1

b1
+

1

b2

)
|t3 − γ3|.

Subcase 2.3.1: Assume b1b2δ
b1+b2

≥ |t3 − γ3|.
Then clearly the last inequality from above says that

~y − z~ ≥ (α+ β)b1 − βb2
b1

|t3 − γ3|+ βb2δ + β(1− b2)δ − β(1− b2)
(

1

b1
+

1

b2

)
|t3 − γ3|

≥
[

(α+ β)b1 − βb2
b1

− β(1− b2)
(

1

b1
+

1

b2

)]
|t3 − γ3|+ βδ

≥
[

(α+ β)b1 − βb2
b1

− β(1− b2)
(

1

b1
+

1

b2

)
+ 1

]
δ

≥ (α+ 2β)b1b2δ

b1 + b2
.

Subcase 2.3.2: Assume b1b2δ
b1+b2

< |t3 − γ3|.
Then

~y − z~ ≥ (α+ β)b1 − βb2
b1

|t3 − γ3|+ βb2δ + β(1− b2)
∞∑
k=3

|tk − γk|

≥ (α+ 2β)b1b2δ

b1 + b2
.

Subcase 2.4: |t4− γ4| ≥ b1|t1− γ1|, |t4− γ4| ≥ b2|t2− γ2|, and |t4− γ4| ≥ |tk − γk|, ∀k ≥ 5
and for k = 3.

Then,

~y − z~ ≥ α|t4 − γ4|+ β(b1 − b2)
1

b1
|t4 − γ4|+ βb2|t1 − γ1|+ βb2|t2 − γ2|+ β

∞∑
k=3

|tk − γk|

≥ (α+ β)b1 − βb2
b1

|t4 − γ4|+ βb2|t1 − γ1|+ βb2|t2 − γ2|+ β

∞∑
k=3

|tk − γk|

≥ (α+ β)b1 − βb2
b1

|t4 − γ4|+ βb2δ + β(1− b2)

∞∑
k=3

|tk − γk|

≥ (α+ β)b1 − βb2
b1

|t4 − γ4|+ βb2δ + β(1− b2)|δ − (t1 − γ1)− (t2 − γ2)|

≥ (α+ β)b1 − βb2
b1

|t4 − γ4|+ βb2δ + β(1− b2)δ − β(1− b2)

(
1

b1
+

1

b2

)
|t4 − γ4|.

Subcase 2.4.1: Assume b1b2δ
b1+b2

≥ |t4 − γ4|.
Then clearly the last inequality from above says that

~y − z~ ≥ (α+ β)b1 − βb2
b1

|t4 − γ4|+ βb2δ + β(1− b2)δ − β(1− b2)
(

1

b1
+

1

b2

)
|t4 − γ4|

≥
[

(α+ β)b1 − βb2
b1

− β(1− b2)
(

1

b1
+

1

b2

)]
|t4 − γ4|+ βδ

≥
[

(α+ β)b1 − βb2
b1

− β(1− b2)
(

1

b1
+

1

b2

)
+ β

]
δ

≥ (α+ 2β)b1b2δ

b1 + b2
.
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Subcase 2.4.2: Assume b1b2δ
b1+b2

< |t4 − γ4|.
Then

~y − z~ ≥ (α+ β)b1 − βb2
b1

|t4 − γ4|+ βb2δ + β(1− b2)
∞∑
k=3

|tk − γk|

≥ (α+ 2β)b1b2δ

b1 + b2
.

Therefore, when λ is choosen to be in [0, 1] , for any y ∈ E and for z ∈W \E, ~y − z~ ≥ Γ
such that there exists unique λ0 ∈ [0, 1] with ~hλ0 − z~=Γ.

Now define a subset in our set by Λ := {y : ~y − z~ ≤ Γ} . Note that Λ ⊆ E is a
nonempty compact convex subset such that for any h ∈ Λ, since T is affine and ~.~-
nonexpansive,

s (Th) ≤ lim sup
m

�
�
�
�
�
Th− T

(
1

m

m∑
k=1

x(k)

)�
�
�
�
�

+ lim sup
m

�
�
�
�
�

1

m

m∑
k=1

x(k) − 1

m

m∑
k=1

Tx(k)

�
�
�
�
�

≤ lim sup
m

�
�
�
�
�
h− 1

m

m∑
k=1

x(k)

�
�
�
�
�

= s(h).

Also, s(Th) = ~z − Th~ and s(h) = ~z − h~. Hence,

~z − Th~ ≤ ~z − h~ =⇒ ~z − Th~ = ~z − h~
=⇒ Th ∈ Λ.

Therefore, T (Λ) ⊆ Λ, and since T is continuous, Schauder’s fixed point theorem [18] tells
us that T has a fixed point such that h = hλ0 is the unique minimizer of ~y − z~ : y ∈ E
and Th = h.

Therefore, E has fpp(ne) as desired. �

Now, we work on different examples.

Example 3.3. Fix b ∈
(
0, 23
)
. Define the sequence (fn)n∈N in c0 by setting f1 := b e1,

f2 := b e2, f3 := b e3 and fn := en, for all integers n ≥ 4. Next, define the closed, bounded,

convex subset E = Eb of `1 by E :=

{ ∞∑
n=1

tn fn : each tn ≥ 0 and
∞∑
n=1

tn = 1

}
.

Theorem 3.3. The set E, defined in the example above, has the fixed point property for
affine ~.~-nonexpansive mappings.

Proof. We use similar strategy to the one in the proof of Theorem 3.2 and we only have
different Case 2 as follows:
Case 2: z ∈W \ E.

Then, z is of the form
∞∑
n=1

γnfn such that
∞∑
n=1

γn < 1 and γn ≥ 0, ∀n ∈ N. Define δ :=

1−
∑∞

n=1 γn and next define hλ := (γ1+ λ
2 δ)f1+(γ2+ λ

2 δ)f2+(γ3+(1−λ)δ)f3+
∑∞

n=4 γnfn.
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We want hλ to be in E, so we restrict values of λ to be in
[
−γ1

δ ,
γ3
δ + 1

]
. Then

~hλ − z~ =

�
�
�
�

(
λ

2
bδ,

λ

2
bδ, (1− λ)δb, 0, 0, · · ·

)�
�
�
�

= max


(α+ β)(1− λ)bδ − βλbδ if λ ∈

[
−γ1

δ , 0
)
,

(α+ β)(1− λ)bδ + βλbδ if λ ∈
[
0, 2

3

)
,

βbδ + αbδλ
2 if λ ∈

[
2
3 , 1

)
,

(α+4β)bδλ
2 − βbδ if λ ∈

[
1, γ3

δ + 1
]
.

Define Γ := minλ∈[− γ1δ ,
γ2
δ
+1] ~hλ−z~. Therefore, ~hλ − z~ is minimized when λ ∈ [0, 1]

with unique minimizer such that its minimum value would be Γ = (α+3β)bδ
3 .

Now fix y ∈ E of the form
∞∑
n=1

tnfn such that
∞∑
n=1

tn = 1 with tn ≥ 0, ∀n ∈ N.

Then,

~y − z~ =

�
�
�
�
�

∞∑
k=1

tkfk −
∞∑
k=1

γkfk

�
�
�
�
�

= ~(t1 − γ1)be1 + (t2 − γ2)be2 + (t3 − γ3)be3 + (t4 − γ4)e4 + · · ·~

= max



(α+ β)b|t1 − γ1|+ βb|t2 − γ2|+ βb|t3 − γ3|+ β|t4 − γ4|+ β|t5 − γ5|+ · · · ,
(α+ β)b|t2 − γ2|+ βb|t1 − γ1|+ βb|t3 − γ3|+ β|t4 − γ4|+ β|t5 − γ5|+ · · · ,
(α+ β)b|t3 − γ3|+ βb|t1 − γ1|+ βb|t2 − γ2|+ β|t4 − γ4|+ β|t5 − γ5|+ · · · ,
(α+ β)|t4 − γ4|+ βb|t1 − γ1|+ βb|t2 − γ2|+ βb|t3 − γ3|+ β|t5 − γ5|+ · · · ,
(α+ β)|t5 − γ5|+ βb|t1 − γ1|+ βb|t2 − γ2|+ βb|t3 − γ3|+ β|t4 − γ4|
+β|t6 − γ6|+ · · · ,
· · · · · · · · · · · ·


.

Subcase 2.1: |t1 − γ1| ≥ |t2 − γ2|, |t1 − γ1| ≥ |t3 − γ3| and b|t1 − γ1| ≥ |tk − γk|, ∀k ≥ 4.
Then,

~y − z~ ≥ βbδ + αb|t1 − γ1|+ β(1− b)
∞∑
k=4

|tk − γk|

≥ βbδ + αb|t1 − γ1|+ β(1− b)|δ − (t1 − γ1)− (t2 − γ2)|
≥ βδ + [(2b− 2)β + bα]|t1 − γ1| .

Subcase 2.1.1: Assume δ
3 ≥ |t1 − γ1|.

Then clearly the last inequality from above says that ~y − z~ ≥ (α+3β)bδ
3 .

Subcase 2.1.2: Assume δ
3 < |t1 − γ1|.

Then ~y − z~ ≥ βbδ + αb|t1 − γ1|+ β(1− b)
∞∑
k=3

|tk − γk| ≥ (α+3β)bδ
3 .

Subcase 2.2: |t2 − γ2| ≥ |t1 − γ1|, |t2 − γ2| ≥ |t3 − γ3| and b|t2 − γ2| ≥ |tk − γk|, ∀k ≥ 4.
Then,

~y − z~ ≥ βbδ + αb|t2 − γ2|+ β(1− b)
∞∑
k=4

|tk − γk|

≥ βbδ + αb|t2 − γ2|+ β(1− b)|δ − (t1 − γ1)− (t2 − γ2)|
≥ βδ + [(2b− 2)β + bα]|t2 − γ2|.

Subcase 2.2.1: Assume δ
3 ≥ |t2 − γ2|.

Then clearly the last inequality from above says that ~y − z~ ≥ (α+3β)bδ
3 .

Subcase 2.2.2: Assume δ
3 < |t2 − γ2|.
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Then ~y − z~ ≥ βbδ + αb|t2 − γ2|+ β(1− b)
∞∑
k=3

|tk − γk| ≥ (α+3β)bδ
3 .

Subcase 2.3: |t3 − γ3| ≥ |t1 − γ1|, |t3 − γ3| ≥ |t2 − γ2| and b|t3 − γ3| ≥ |tk − γk|, ∀k ≥ 4.
Then,

~y − z~ ≥ βbδ + αb|t3 − γ3|+ β(1− b)
∞∑
k=4

|tk − γk|

≥ βbδ + αb|t3 − γ3|+ (1− b)|δ − (t1 − γ1)− (t2 − γ2)− (t3 − γ3)|
≥ βδ + [(3b− 3)β + bα]|t3 − γ3|.

Subcase 2.3.1: Assume δ
3 ≥ |t3 − γ3|.

Then clearly the last inequality from above says that ~y − z~ ≥ (α+3β)bδ
3 .

Subcase 2.3.2: Assume δ
3 < |t3 − γ3|.

Then ~y − z~ ≥ βbδ + αb|t3 − γ3|+ β(1− b)
∞∑
k=4

|tk − γk| ≥ (α+3β)bδ
3 .

Subcase 2.4: |t4 − γ4| ≥ b|t1 − γ1|, |t4 − γ4| ≥ b|t2 − γ2|, |t4 − γ4| ≥ b|t3 − γ3| and
|t4 − γ4| ≥ |tk − γk|, ∀k ≥ 5.

Then,

~y − z~ ≥ βbδ + α|t4 − γ4|+ β(1− b)
∞∑
k=4

|tk − γk|

≥ βbδ + α|t4 − γ4|+ β(1− b)|δ − (t1 − γ1)− (t2 − γ2)− (t3 − γ3)|

≥ βbδ + α|t4 − γ4|+ β(1− b)δ − 3β(1− b)
b

|t4 − γ4|

≥ βδ +
(3b− 3)β + bα

b
|t4 − γ4|.

Subcase 2.4.1: Assume bδ
3 ≥ |t3 − γ3|.

Then clearly the last inequality from above says that ~y − z~ ≥ (α+3β)bδ
3 .

Subcase 2.4.2: Assume bδ
3 < |t4 − γ4|.

Then ~y − z~ ≥ βbδ + α|t4 − γ4|+ β(1− b)
∞∑
k=4

|tk − γk| ≥ (α+3β)bδ
3 .

Thus, we continue in this way and see that ~y − z~ ≥ (α+3β)bδ
3 from all cases.

Therefore, when λ is choosen to be in [0, 1] , for any y ∈ E and for z ∈ W \ E,
~y − z~ ≥ Γ. Then the rest follows as in the proof of Theorem 3.2.

�

Now we can give the generalized results with their proofs by just noting what the
difference from those of previous theorems would be.

Corollary 3.1. Fix an integer N > 3 and b ∈
(
0, 23
)
. Define the sequence (fn)n∈N in

c0 by setting f1 := b e1, f2 := b e2, f3 := b e3, · · · , fN := b eN and fn := en, for all
integers n ≥ N + 1. Next, define the closed, bounded, convex subset E = Eb of `1 by

E :=

{ ∞∑
n=1

tn fn : each tn ≥ 0 and
∞∑
n=1

tn = 1

}
. Then, E has the fixed point property

for affine ~.~-nonexpansive mappings.

Proof. We would use exactly similar strategy in the proof of the previous theorems and
in Case 2 we would have the following changes followed by the necessary steps as in
the proof of the previous theorems. Define δ := 1 −

∑∞
n=1 γn and next define hλ :=
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(γ1+ λ
N−1δ)f1+(γ2+ λ

N−1δ)f2+· · ·+(γN−1+ λ
N−1δ)fN−1+(γN+(1−λ)δ)fN+

∑∞
n=N+1 γnfn.

Then, we would obtain that ~hλ − z~ is minimized when λ ∈ [0, 1] with unique minimizer

such that its minimum value would be Γ = (α+Nβ)bδ
N . �

4. Conclusions

In our presented investigation, we have systematically studied large classes of non-weak*
compact, closed, bounded subsets in a generalized degenerate Lorentz-Marcinkiewicz . We
have generalized the classes obtained in the studies [12, 14, 15] and showed that there
exists large classes of non-weak* compact, closed, convex and bounded sets with the fixed
point property for affine nonexpansive mappings in the generalized degenerate Lorentz-
Marcinkiewicz space.
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