LIFTS OF $(0,2)$ TENSOR FIELDS IN THE SEMI-TANGENT BUNDLE

F. YILDIRIM ${ }^{1}$, M. SIMSEK ${ }^{1}$, §

Abstract

In this paper the vertical, complete and horizontal lifts of tensor fields of type $(0,2)$ to semi-tangent bundle and their properties are studied.

Keywords: Complete lift, Degenerate metric, Horizontal lift, Pull-back bundle, Semitangent bundle.

AMS Subject Classification: 53A45, 53B05, 53B30, 55R10, 55R65, 57R25.

1. Introduction

Let M_{n} be a differentiable manifold of class C^{∞} and finite dimension n, and let $\left(M_{n}, \pi_{1}, B_{m}\right)$ be a differentiable bundle over B_{m}. We use the notation $\left(x^{i}\right)=\left(x^{a}, x^{\alpha}\right)$, where the indices i, j, \ldots run from 1 to n, the indices a, b, \ldots from 1 to $n-m$ and the indices α, β, \ldots from $n-m+1$ to n, x^{α} are coordinates in B_{m}, x^{a} are fibre coordinates of the bundle

$$
\pi_{1}: M_{n} \rightarrow B_{m}
$$

Let now $\left(T\left(B_{m}\right), \widetilde{\pi}, B_{m}\right)$ be a tangent bundle [12] over base space B_{m}, and let M_{n} be differentiable bundle determined by a natural projection (submersion) $\pi_{1}: M_{n} \rightarrow B_{m}$. The semi-tangent bundle (pull-back [[1],[2],[6],[9]]) of the tangent bundle ($T\left(B_{m}\right), \widetilde{\pi}, B_{m}$) is the bundle $\left(t\left(B_{m}\right), \pi_{2}, M_{n}\right)$ over differentiable bundle M_{n} with a total space

$$
\begin{aligned}
t\left(B_{m}\right) & =\left\{\left(\left(x^{a}, x^{\alpha}\right), x^{\bar{\alpha}}\right) \in M_{n} \times T_{x}\left(B_{m}\right): \pi_{1}\left(x^{a}, x^{\alpha}\right)=\widetilde{\pi}\left(x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{\alpha}\right)\right\} \\
& \subset M_{n} \times T_{x}\left(B_{m}\right)
\end{aligned}
$$

and with the projection map $\pi_{2}: t\left(B_{m}\right) \rightarrow M_{n}$ defined by $\pi_{2}\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{a}, x^{\alpha}\right)$, where $T_{x}\left(B_{m}\right)\left(x=\pi_{1}(\widetilde{x}), \widetilde{x}=\left(x^{a}, x^{\alpha}\right) \in M_{n}\right)$ is the tangent space at a point x of B_{m}, where $x^{\bar{\alpha}}=y^{\alpha}(\bar{\alpha}, \bar{\beta}, \ldots=n+1, \ldots, 2 n)$ are fibre coordinates of the tangent bundle $T\left(B_{m}\right)$.

Where the pull-back (Pontryagin [3]) bundle $t\left(B_{m}\right)$ of the differentiable bundle M_{n} also has the natural bundle structure over B_{m}, its bundle projection $\pi: t\left(B_{m}\right) \rightarrow B_{m}$ being defined by $\pi:\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right) \rightarrow\left(x^{\alpha}\right)$, and hence $\pi=\pi_{1} \circ \pi_{2}$.

[^0]Thus $\left(t\left(B_{m}\right), \pi_{1} \circ \pi_{2}\right)$ is the composite bundle [[4], p.9] or step-like bundle [5]. Consequently, we notice the semi-tangent bundle $\left(t\left(B_{m}\right), \pi_{2}\right)$ is a pull-back bundle of the tangent bundle over B_{m} by π_{1} [6].

If $\left(x^{i^{\prime}}\right)=\left(x^{a^{\prime}}, x^{\alpha^{\prime}}\right)$ is another local adapted coordinates in differentiable bundle M_{n}, then we have

$$
\left\{\begin{array}{l}
x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}, x^{\beta}\right) \tag{1}\\
x^{\alpha^{\prime}}=x^{\alpha^{\alpha^{\prime}}}\left(x^{\beta}\right)
\end{array}\right.
$$

The Jacobian of (1) has the components

$$
\left(A_{j}^{i^{\prime}}\right)=\left(\frac{\partial x^{i^{\prime}}}{\partial x^{j}}\right)=\left(\begin{array}{cc}
A_{b}^{a^{\prime}} & A_{\beta}^{a^{\prime}} \\
0 & A_{\beta}^{\alpha^{\prime}}
\end{array}\right)
$$

where $A_{b}^{a^{\prime}}=\frac{\partial x^{a^{\prime}}}{\partial x^{b}}, A_{\beta}^{a^{\prime}}=\frac{\partial x^{a^{\prime}}}{\partial x^{\beta}}, A_{\beta}^{\alpha^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}}[6]$.
To a transformation (1) of local coordinates of M_{n}, there corresponds on $t\left(B_{m}\right)$ the change of coordinate

$$
\left\{\begin{array}{l}
x^{a^{\prime}}=x^{a^{\prime}}\left(x^{b}, x^{\beta}\right), \tag{2}\\
x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\beta}\right), \\
x^{\bar{\alpha}^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}} y^{\beta} .
\end{array}\right.
$$

The Jacobian of (2) is:

$$
\bar{A}=\left(A_{J}^{I^{\prime}}\right)=\left(\begin{array}{ccc}
A_{b}^{a^{\prime}} & A_{\beta}^{a^{\prime}} & 0 \tag{3}\\
0 & A_{\beta}^{\alpha^{\prime}} & 0 \\
0 & A_{\beta \varepsilon}^{\alpha^{\prime}} y^{\varepsilon} & A_{\beta}^{\alpha^{\prime}}
\end{array}\right)
$$

where $I=(a, \alpha, \bar{\alpha}), J=(b, \beta, \bar{\beta}), I, J, \ldots=1, \ldots, 2 n ; A_{\beta \varepsilon}^{\alpha^{\prime}}=\frac{\partial^{2} x^{\alpha^{\prime}}}{\partial x^{\beta} \partial x^{\varepsilon}}[6]$. Writing the inverse of (2) as

$$
\left\{\begin{array}{l}
x^{a}=x^{a}\left(x^{b^{\prime}}, x^{\beta^{\prime}}\right) \tag{4}\\
x^{\alpha}=x^{\alpha}\left(x^{\beta^{\prime}}\right) \\
x^{\bar{\alpha}}=\frac{\partial x^{\alpha}}{\partial x^{\beta^{\prime}}} y^{\beta^{\prime}}
\end{array}\right.
$$

we have

$$
\left(A_{J^{\prime}}^{I}\right)=\left(\begin{array}{ccc}
A_{b^{\prime}}^{a} & A_{\beta^{\prime}}^{a} & 0 \tag{5}\\
0 & A_{\beta^{\prime}}^{\alpha} & 0 \\
0 & A_{\beta^{\prime} \varepsilon^{\prime}}^{\alpha} y^{\varepsilon^{\prime}} & A_{\beta^{\prime}}^{\alpha}
\end{array}\right)
$$

The main purpose of this paper is to study vertical, complete and horizontal lifts of tensor fields of type $(0,2)$ to semi-tangent (pull-back) bundle $\left(t\left(B_{m}\right), \pi_{2}\right)$ and their metric properties [7, 8].

We denote by $\Im_{q}^{p}\left(M_{n}\right)$ the set of all tensor fields of class C^{∞} and of type (p, q) on M_{n}, i.e., contravariant degree p and covariant degree q. We now put $\Im\left(M_{n}\right)=\sum_{p, q=0}^{\infty} \Im_{q}^{p}\left(M_{n}\right)$, which is the set of all tensor fields on M_{n}. Smilarly, we denote by $\Im_{q}^{p}\left(B_{m}\right)$ and $\Im\left(B_{m}\right)$ respectively the corresponding sets of tensor fields in the base space B_{m}.

2. Vertical Lifts of tensor field of type $(0,2)$

If f is a function on B_{m}, we write ${ }^{v v} f$ for the function on $t\left(B_{m}\right)$ obtained by forming the composition of $\pi: t\left(B_{m}\right) \rightarrow B_{m}$ and ${ }^{v} f=f \circ \pi_{1}$, so that

$$
{ }^{v v} f={ }^{v} f \circ \pi_{2}=f \circ \pi_{1} \circ \pi_{2}=f \circ \pi
$$

Thus, the vertical lift ${ }^{v v} f$ of the function f to $t\left(B_{m}\right)$ satisfies

$$
\begin{equation*}
{ }^{v v} f\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)=f\left(x^{\alpha}\right) \tag{6}
\end{equation*}
$$

We note here that value ${ }^{v v} f$ is constant along each fibre of $\pi: t\left(B_{m}\right) \rightarrow B_{m}$.
On the other hand, if $f=f\left(x^{a}, x^{\alpha}\right)$ is a function in M_{n}, we write ${ }^{c c} f$ for the function in $t\left(B_{m}\right)$ defined by

$$
\begin{equation*}
{ }^{c c} f=\imath(d f)=x^{\bar{\beta}} \partial_{\beta} f=y^{\beta} \partial_{\beta} f \tag{7}
\end{equation*}
$$

and call of the complete lift ${ }^{c c} f$ of the function $f[6]$.
Let $X \in \Im_{0}^{1}\left(B_{m}\right)$, i.e. $X=X^{\alpha} \partial_{\alpha}$. On putting

$$
{ }^{v v} X=\left({ }^{v v} X^{I}\right)=\left(\begin{array}{l}
0 \tag{8}\\
0 \\
X^{\alpha}
\end{array}\right)
$$

from (3), we easily see that ${ }^{v v} X^{\prime}=\bar{A}\left({ }^{v v} X\right)$. The vector field ${ }^{v v} X$ is called the vertical lift of X to $t\left(B_{m}\right)$.

Let $\widetilde{X} \in \Im_{0}^{1}\left(M_{n}\right)$ be a projectable vector field [10] with projection $X=X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$ i.e. $\widetilde{X}=\widetilde{X}^{a}\left(x^{a}, x^{\alpha}\right) \partial_{a}+X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$. Now, consider $\widetilde{X} \in \Im_{0}^{1}\left(M_{n}\right)$, then ${ }^{c c} \widetilde{X}$ (complete lift) has the components on the semi-tangent bundle $t\left(B_{m}\right)$ [6]:

$$
{ }^{c c} \widetilde{X}=\left({ }^{c c} \tilde{X}^{I}\right)=\left(\begin{array}{l}
\tilde{X}^{a} \tag{9}\\
X^{\alpha} \\
y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$.
Let $G \in \Im_{2}^{0}\left(M_{n}\right)$, i.e. $G=G_{\alpha \beta} d x^{\alpha} \otimes d x^{\beta}$. On putting

$$
{ }^{v v} G=\left({ }^{v v} G_{I J}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{10}\\
0 & G_{\alpha \beta} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

from (3), we easily see that ${ }^{v v} G_{I^{\prime} J^{\prime}}=A_{I^{\prime}}^{I} A_{J^{\prime}}^{J}\left({ }^{v v} G_{I J}\right)$. The tensor field ${ }^{v v} G$ of type $(0,2)$ is called the vertical lift of G to $t\left(B_{m}\right)$.

Since $\operatorname{Det}\left({ }^{v v} G\right)=0$, we have:
Theorem 2.1. The semi-tangent bundle $t\left(B_{m}\right)$ has a trivial metric ${ }^{v v} G$.
Theorem 2.2. If G is tensor field of type $(0,2)$ on B_{m}, and $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$, then
(i) ${ }^{v v} G\left({ }^{v v} X,{ }^{v v} Y\right)=0$,
(ii) ${ }^{v v} G\left({ }^{v v} X,{ }^{c c} Y\right)=0$,
(iii) ${ }^{v v} G\left({ }^{c c} X,{ }^{v v} Y\right)=0$,
(iv) ${ }^{v v} G\left({ }^{c c} X,{ }^{c c} Y\right)={ }^{v v}(G(X, Y))$.

Proof. (i) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $G \in \Im_{2}^{0}\left(B_{m}\right)$, from (8) and (10), then we have

$$
\begin{array}{rl}
{ }^{v v} G\left({ }^{v v} X,{ }^{v v} Y\right)= & { }^{v v} G_{I J}{ }^{v v} X^{I v v} Y^{J} \\
= & { }^{v v} G_{a b} \underbrace{v v}_{0} X^{a}{ }^{v v} Y^{b}+{ }^{v v} G_{a \beta} \underbrace{v v}_{0} X^{a}{ }^{v v} Y^{\beta}+{ }^{v v} G_{a \bar{\beta}} \underbrace{v v}_{0} X^{a}{ }^{v v} Y^{\bar{\beta}} \\
& +{ }^{v v} G_{\alpha b} \underbrace{v v}_{0} X^{\alpha} \\
{ }^{v v} Y^{b}+{ }^{v v} G_{\alpha \beta} \underbrace{v v}_{0} X^{\alpha}{ }^{v v} Y^{\beta}+{ }^{v v} G_{\alpha \bar{\beta}} \underbrace{v v}_{0} X^{\alpha}{ }^{v v} Y^{\bar{\beta}} \\
& +{ }^{v v} G_{\bar{\alpha} b}^{v v} X^{\bar{\alpha}} \underbrace{v v}_{0} Y^{b}
\end{array}{ }^{v v} G_{\bar{\alpha} \beta}^{v v} X^{\bar{\alpha}} \underbrace{v v}_{0} Y^{\beta})+\underbrace{{ }_{0}^{v v} G_{\bar{\alpha} \bar{\beta}}{ }^{v v} X^{\bar{\alpha} v v} Y^{\bar{\beta}}}_{0} \begin{aligned}
= & 0 .
\end{aligned}
$$

F. YILDIRIM, M. SIMSEK: LIFTS OF (0,2) TENSOR FIELDS IN THE SEMI-TANGENT BUNDLE 869
(ii) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $G \in \Im_{2}^{0}\left(B_{m}\right)$, from (8), (9) and (10), then we have

$$
\begin{aligned}
{ }^{v v} G\left({ }^{v v} X,{ }^{c c} Y\right)= & { }^{v v} G_{I J}{ }^{v v} X^{I c c} Y^{J} \\
= & { }^{v v} G_{a b} \underbrace{v v}_{0} X^{a}{ }^{c c} Y^{b}+{ }^{v v} G_{a \beta} \underbrace{v v}_{0} X^{a}{ }^{c c} Y^{\beta}+{ }^{v v} G_{a \bar{\beta}} \underbrace{v v}_{0} X^{a}{ }^{c c} Y^{\bar{\beta}} \\
& +{ }^{v{ }^{v v} G_{\alpha b}} \underbrace{v v}_{0} X^{\alpha}{ }^{c c} Y^{b}+{ }^{v v} G_{\alpha \beta} \underbrace{v v}_{0} X^{\alpha}{ }^{c c} Y^{\beta}+{ }^{v v} G_{\alpha \bar{\beta}} \underbrace{v v}_{0} X^{\alpha}{ }^{c c} Y^{\bar{\beta}} \\
& +\underbrace{v v}_{0} G_{\bar{\sigma} b}^{v v} X^{\bar{\alpha} c c} Y^{b}+\underbrace{{ }_{0}^{v v} G_{\bar{\alpha} \beta}^{v v}}_{0}{ }^{v 0} X^{\bar{\alpha} c c} Y^{\beta}+\underbrace{{ }^{v v} G_{\bar{\alpha} \bar{\beta}}^{v 0} X^{\bar{\alpha} c c} Y^{\bar{\beta}}}_{0} \\
= & 0 .
\end{aligned}
$$

(iii) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $G \in \Im_{2}^{0}\left(B_{m}\right)$, from (8), (9) and (10), then we have

$$
\begin{aligned}
{ }^{v v} G\left({ }^{c c} X,{ }^{v v} Y\right)= & { }^{v v} G_{I J}{ }^{c c} X^{I v v} Y^{J} \\
= & { }^{v v} G_{a b}{ }^{c c} X^{a} \underbrace{v^{\prime} Y^{b}}_{0}+{ }^{v v} G_{a \beta}{ }^{c c} X^{a} \underbrace{v_{0} Y^{\beta}}_{0}+\underbrace{{ }^{v v} G_{a \bar{\beta}}{ }^{c c} X^{a v v} Y^{\bar{\beta}}}_{0} \\
& +{ }^{v v} G_{\alpha b}{ }^{c c} X^{\alpha} \underbrace{v v}_{0} Y^{b}
\end{aligned}+{ }^{v v} G_{\alpha \beta}{ }^{c c} X^{\alpha} \underbrace{v v}_{0} Y^{\beta}+\underbrace{{ }^{v v} G_{\alpha \bar{\beta}}{ }^{c c} X^{\alpha v v} Y^{\bar{\beta}}}_{0} \begin{aligned}
& +\underbrace{v v}_{0} G_{\bar{\alpha}}{ }^{c c} X^{\bar{\alpha} v v} Y^{b}+\underbrace{v v}_{0} G_{\bar{\alpha} \beta}^{c c} X^{\bar{\alpha} v v} Y^{\beta}+\underbrace{{ }^{v v} G_{\bar{\alpha} \bar{\beta}}{ }^{c c} X^{\bar{\alpha} v v} Y^{\bar{\beta}}}_{0} \\
= & 0 .
\end{aligned}
$$

(iv) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $G \in \Im_{2}^{0}\left(B_{m}\right)$, from (6), (8), (9) and (10), then we have

$$
\begin{aligned}
&{ }^{v v} G\left({ }^{c c} X,{ }^{c c} Y\right)={ }^{v v} G_{I J}{ }^{c c} X^{I c c} Y^{J} \\
&= \underbrace{{ }^{v v} G_{a b}{ }^{c c} X^{a c c} Y^{b}+\underbrace{{ }^{v v} G_{a \beta}}_{0}{ }^{c c} X^{a c c} Y^{\beta}}_{0}+\underbrace{{ }^{v v} G_{a \bar{\beta}}{ }^{c c} X^{a c c} Y^{\bar{\beta}}}_{0} \\
&+\underbrace{v v}_{0} G_{\alpha b}{ }^{c c} X^{\alpha c c} Y^{b}+\underbrace{{ }^{v v} G_{\alpha \beta}}_{G_{\alpha \beta}} \underbrace{}_{X^{\alpha}}{ }^{c c} X^{\alpha} \underbrace{}_{Y^{\beta}}{ }^{c c} Y^{\beta} \\
&{ }^{v v} \underbrace{{ }^{v} G_{\alpha \bar{\beta}}}_{0}{ }^{c c} X^{\alpha c c} Y^{\bar{\beta}} \\
&+\underbrace{v v}_{0} G_{\bar{\alpha} b}^{c}{ }^{c} X^{\bar{\alpha} c c} Y^{b}+\underbrace{{ }^{v v} G_{\bar{\alpha} \beta}{ }^{c c} X^{\bar{\alpha} c c} Y^{\beta}}_{0}+\underbrace{{ }^{v v} G_{\bar{\alpha} \bar{\beta}}{ }^{c}}_{0} X^{\bar{\alpha} c c} Y^{\bar{\beta}} \\
&= G_{\alpha \beta} X^{\alpha} Y^{\beta} \\
&={ }^{v v}(G(X, Y)) .
\end{aligned}
$$

3. Complete Lifts of tensor field of type $(0,2)$

Let $\widetilde{G} \in \Im_{2}^{0}\left(M_{n}\right)$ be a projectable tensor field of type $(0,2)$ [10] with projection $G=$ $G_{\alpha \beta}\left(x^{\alpha}\right) d x^{\alpha} \otimes d x^{\beta}$, i.e. \widetilde{G} has the componets

$$
\widetilde{G}=\left(\widetilde{G}_{i j}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & G_{\alpha \beta}\left(x^{\alpha}\right)
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}\right)$ [11]. On putting

$$
{ }^{c c} \widetilde{G}=\left({ }^{c c} \widetilde{G}_{I J}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{11}\\
0 & y^{\varepsilon} \partial_{\varepsilon} G_{\alpha \beta} & G_{\alpha \beta} \\
0 & G_{\alpha \beta} & 0
\end{array}\right)
$$

we easily see that ${ }^{c c} G_{I^{\prime} J^{\prime}}=A_{I^{\prime}}^{I} A_{J^{\prime}}^{J}\left({ }^{c c} G_{I J}\right)$. We call ${ }^{c c} \widetilde{G}$ the complete lift of the tensor field \widetilde{G} of type $(0,2)$ to $t\left(B_{m}\right)$ [11].

Since $\operatorname{Det}\left({ }^{c c} G\right)=0$, we have:

Theorem 3.1. The semi-tangent bundle $t\left(B_{m}\right)$ has a degenerate metric ${ }^{c c} G$ [11].
Theorem 3.2. If G is projectable tensor field of type $(0, \mathcal{Q})$ on M_{n}, and $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$, then
(i) ${ }^{c c} \widetilde{G}\left({ }^{v v} X,{ }^{v v} Y\right)=0$,
(ii) ${ }^{c c} \widetilde{G}\left({ }^{v v} X,{ }^{c c} \widetilde{Y}\right)={ }^{v v}(G(X, Y))$,
(iii) ${ }^{c c} \widetilde{G}\left({ }^{c c} \widetilde{X},{ }^{v v} Y\right)={ }^{v v}(G(X, Y))$,
$(i v){ }^{c c} \widetilde{G}\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)={ }^{c c}(G(X, Y))$.
Proof. (i) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $\widetilde{G} \in \Im_{2}^{0}\left(M_{n}\right)$, from (8) and (11), then we have

$$
\begin{aligned}
& { }^{c c} \widetilde{G}\left({ }^{v v} X,{ }^{v v} Y\right)={ }^{c c} \widetilde{G}_{I J}{ }^{v v} X^{I v v} Y^{J} \\
& ={ }^{c c} \widetilde{G}_{a b} \underbrace{v v}_{0} X^{a}{ }^{v v} Y^{b}+{ }^{c c} \widetilde{G}_{a \beta} \underbrace{v v}_{0} X^{a}{ }^{v v} Y^{\beta}+{ }^{c c} \widetilde{G}_{a \bar{\beta}} \underbrace{v v}_{0} X^{a}{ }^{v v} Y^{\bar{\beta}} \\
& +{ }^{c c} \widetilde{G}_{\alpha b} \underbrace{v v}_{0} X^{\alpha}{ }^{v v} Y^{b}+{ }^{c c} \widetilde{G}_{\alpha \beta} \underbrace{v v}_{0} X^{\alpha}{ }^{v v} Y^{\beta}+{ }^{c c} \widetilde{G}_{\alpha \bar{\beta}} \underbrace{v v}_{0} X^{\alpha}{ }^{v v} Y^{\bar{\beta}} \\
& +{ }^{c c} \widetilde{G}_{\bar{\alpha} b}{ }^{v v} X^{\bar{\alpha}} \underbrace{v v}_{0} Y^{b}+{ }^{c c} \widetilde{G}_{\bar{\alpha} \beta}{ }^{v v} X^{\bar{\alpha}} \underbrace{v v}_{0} Y^{\beta} \quad \underbrace{{ }^{c c} \widetilde{G}_{\bar{\alpha} \bar{\beta}}}_{0}{ }^{v v} X^{\bar{\alpha} v v} Y^{\bar{\beta}} \\
& =0 \text {. }
\end{aligned}
$$

(ii) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $\widetilde{G} \in \Im_{2}^{0}\left(M_{n}\right)$, from (6), (8), (9) and (11), then we have

$$
\begin{aligned}
& { }^{c c} \widetilde{G}\left({ }^{v v} X,{ }^{c c} \widetilde{Y}\right)={ }^{c c} \widetilde{G}_{I J}{ }^{v v} X^{I c c} \widetilde{Y}^{J} \\
& ={ }^{c c} \widetilde{G}_{a b} \underbrace{v v}_{0} X^{a}{ }^{c c} \widetilde{Y}^{b}+{ }^{c c} \widetilde{G}_{a \beta} \underbrace{v v}_{0} X^{a}{ }^{c c} \widetilde{Y}^{\beta}+{ }^{c c} \widetilde{G}_{a \bar{\beta}} \underbrace{v v}_{0} X^{a}{ }^{c c} \widetilde{Y}^{\bar{\beta}} \\
& +{ }^{c c} \widetilde{G}_{\alpha b} \underbrace{v v}_{0} X^{\alpha}{ }^{c c} \widetilde{Y}^{b}+{ }^{c c} \widetilde{G}_{\alpha \beta} \underbrace{v v}_{0} X^{\alpha}{ }^{c c} \widetilde{Y}^{\beta}+{ }^{c c} \widetilde{G}_{\alpha \bar{\beta}} \underbrace{v v}_{0} X^{\alpha}{ }^{c c} \widetilde{Y}^{\bar{\beta}} \\
& +\underbrace{{ }^{c c} \widetilde{G}_{\bar{\alpha} b}}_{0}{ }^{v v} X^{\bar{\alpha} c c} \widetilde{Y}^{b}+\underbrace{{ }^{c c} \widetilde{G}_{\bar{\alpha} \beta}}_{G_{\alpha \beta}} \underbrace{{ }^{v v} X^{\bar{\alpha}}}_{X^{\alpha}} \underbrace{{ }^{c} \tilde{Y}^{\beta}}_{Y^{\beta}}+\underbrace{{ }^{c c} \widetilde{G}_{\bar{\alpha} \bar{\beta}}}_{0}{ }^{v v} X^{\bar{\alpha} c c} \widetilde{Y}^{\bar{\beta}} \\
& =G_{\alpha \beta} X^{\alpha} Y^{\beta} \\
& ={ }^{v v}(G(X, Y)) \text {. }
\end{aligned}
$$

F. YILDIRIM, M. SIMSEK: LIFTS OF (0,2) TENSOR FIELDS IN THE SEMI-TANGENT BUNDLE 871
(iii) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $\widetilde{G} \in \Im_{2}^{0}\left(M_{n}\right)$, from (6), (8), (9) and (11), then we have

$$
\begin{aligned}
& { }^{c c} \widetilde{G}\left({ }^{c c} \widetilde{X},{ }^{v v} Y\right)={ }^{c c} \widetilde{G}_{I J}{ }^{c c} \widetilde{X}^{I v v} Y^{J} \\
& ={ }^{c c} \widetilde{G}_{a b}{ }^{c c} \widetilde{X}^{a} \underbrace{v v}_{0} Y^{b}+{ }^{c c} \widetilde{G}_{a \beta}{ }^{c c} \widetilde{X}^{a} \underbrace{v v}_{0} Y^{\beta} \quad+\underbrace{{ }^{c c} \widetilde{G}_{a \bar{\beta}}}_{0}{ }^{c c} \widetilde{X}^{a v v} Y^{\bar{\beta}} \\
& +{ }^{c c} \widetilde{G}_{\alpha b}{ }^{c c} \widetilde{X}^{\alpha} \underbrace{v v}_{0} Y^{b}+{ }^{c c} \widetilde{G}_{\alpha \beta}{ }^{c c} \widetilde{X}^{\alpha} \underbrace{v^{v} Y^{\beta}}_{0}+\underbrace{{ }^{c c} \widetilde{G}_{\alpha \bar{\beta}}}_{G_{\alpha \beta}} \underbrace{{ }^{c} \widetilde{X}^{\alpha}}_{X^{\alpha}} \underbrace{v v}_{Y^{\beta}} Y^{\bar{\beta}} \\
& +\underbrace{c c}_{0} \widetilde{G}_{\bar{\alpha} b}{ }^{c c} \widetilde{X}^{\bar{\alpha} v v} Y^{b}+{ }^{c c} \widetilde{G}_{\bar{\alpha} \beta}{ }^{c c} \widetilde{X}^{\bar{\alpha}} \underbrace{v v}_{0} Y^{\beta}+\underbrace{{ }^{c c} \widetilde{G}_{\bar{\alpha} \bar{\beta}}}_{0}{ }^{c c} \widetilde{X}^{\bar{\alpha} v v} Y^{\bar{\beta}} \\
& =G_{\alpha \beta} X^{\alpha} Y^{\beta} \\
& ={ }^{v v}(G(X, Y)) \text {. }
\end{aligned}
$$

(iv) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $\widetilde{G} \in \Im_{2}^{0}\left(M_{n}\right)$, from (7), (8), (9) and (11), then we have

$$
\begin{aligned}
& { }^{c c} \widetilde{G}\left({ }^{c c} \widetilde{X},{ }^{c c} \widetilde{Y}\right)={ }^{c c} \widetilde{G}_{I J}{ }^{c c} \widetilde{X}^{I c c} \widetilde{Y}^{J} \\
& =\underbrace{{ }^{c c} \widetilde{G}_{a b}}_{0}{ }^{c c} \widetilde{X}^{a c c} \widetilde{Y}^{b}+\underbrace{{ }^{c c} \widetilde{G}_{a \beta}}_{0}{ }^{c c} \widetilde{X}^{a c c} \widetilde{Y}^{\beta}+\underbrace{{ }^{c c} \widetilde{G}_{a \bar{\beta}}{ }^{c c} \widetilde{X}^{a c c} \widetilde{Y}^{\bar{\beta}}}_{0} \\
& +\underbrace{{ }^{c c} \widetilde{G}_{\alpha b}{ }^{c c} \widetilde{X}^{\alpha c c} \widetilde{Y}^{b}+\underbrace{{ }^{c c} \widetilde{G}_{\alpha \beta}}_{y^{\varepsilon} \partial_{\varepsilon} G_{\alpha \beta}} \underbrace{{ }^{c} \widetilde{X}^{\alpha}}_{X^{\alpha}} \underbrace{c c}_{Y^{\beta}} \widetilde{T}^{\beta}}_{0}+\underbrace{{ }^{c c} \widetilde{G}_{\alpha \beta} \bar{\beta}}_{G_{\alpha \beta}} \underbrace{c^{c} \widetilde{X}^{\alpha}}_{X^{\alpha}} \underbrace{{ }^{c} \widetilde{Y}^{\bar{\beta}}}_{y^{\varepsilon} \partial_{\varepsilon} Y^{\beta}}
\end{aligned}
$$

$$
\begin{aligned}
& =y^{\varepsilon}\left(\partial_{\varepsilon} G_{\alpha \beta}\right) X^{\alpha} Y^{\beta}+G_{\alpha \beta} X^{\alpha} y^{\varepsilon}\left(\partial_{\varepsilon} Y^{\beta}\right)+G_{\alpha \beta} y^{\varepsilon}\left(\partial_{\varepsilon} X^{\alpha}\right) Y^{\beta} \\
& =y^{\varepsilon} \partial_{\varepsilon}\left(G_{\alpha \beta} X^{\alpha} Y^{\beta}\right) \\
& ={ }^{c c}(G(X, Y)) \text {. }
\end{aligned}
$$

In addition, according to (10) and (11), we define new projectable tensor field of type $(0,2)$ i.e. ${ }^{c c} \widetilde{G}^{*}$ by

$$
{ }^{c c} \widetilde{G}^{*}={ }^{c c} \widetilde{G}+{ }^{v v} G
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ in $t\left(B_{m}\right)$, where

$$
\begin{aligned}
{ }^{c c} \widetilde{G}^{*} & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} G_{\alpha \beta} & G_{\alpha \beta} \\
0 & G_{\alpha \beta} & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & G_{\alpha \beta} & 0 \\
0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{lcc}
0 & 0 & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} G_{\alpha \beta}+G_{\alpha \beta} & G_{\alpha \beta} \\
0 & G_{\alpha \beta} & 0
\end{array}\right) .
\end{aligned}
$$

We call ${ }^{c c} \widetilde{G}^{*}$ the deformed complete lift of the tensor field \widetilde{G} of type $(0,2)$ to $t\left(B_{m}\right)$. Taking account of (5), we easily see that ${ }^{c c} \widetilde{G}_{I^{\prime} J^{\prime}}^{*}=A_{I^{\prime}}^{I} A_{J^{\prime}}^{J}\left(c{ }^{c c} \widetilde{G}_{I J}^{*}\right)$.

Proof. For simplicity we take only ${ }^{c c} \widetilde{G}_{\alpha^{\prime} \beta^{\prime}}^{*}$. In fact, from (5)

$$
\begin{aligned}
& { }^{c c} \widetilde{G}_{\alpha^{\prime} \beta^{\prime}}^{*}=A_{\alpha^{\prime}}^{a} A_{\beta^{\prime}}^{b} \underbrace{{ }^{c c}}_{0} \widetilde{G}_{a b}^{*}+A_{\alpha^{\prime}}^{a} A_{\beta^{\prime}}^{\beta} \underbrace{{ }^{c c} \widetilde{G}_{a \beta}^{*}}_{0}+A_{\alpha^{\prime}}^{a} A_{\beta^{\prime}}^{\bar{\beta}} \underbrace{c c}_{0} \widetilde{G}_{a \bar{\beta}}^{*} \\
& +A_{\alpha^{\prime}}^{\alpha} A_{\beta^{\prime}}^{b} \underbrace{c c}_{0} \widetilde{G}_{\alpha b}^{*}+\underbrace{A_{\alpha^{\prime}}^{\alpha}}_{A_{\alpha^{\prime}}^{\alpha}} \underbrace{A_{\beta^{\prime}}^{\beta}}_{A_{\beta^{\prime}}^{\beta}} \underbrace{{ }^{c c} \widetilde{G}_{\alpha \beta}^{*}}_{\varepsilon_{\varepsilon^{\prime}}{ }^{\varepsilon_{\alpha \beta}+G_{\alpha \beta}}} \\
& +\underbrace{A_{\alpha^{\prime}}^{\alpha}}_{A_{\alpha^{\prime}}^{\alpha}} \underbrace{A_{\beta^{\prime}}^{\bar{\beta}}}_{\beta^{\prime} \varepsilon^{\prime} y^{\varepsilon^{\prime}}} \underbrace{{ }^{c c} \widetilde{G}_{\alpha \bar{\beta}}^{*}}_{G_{\alpha \beta}} \\
& +A_{\alpha^{\prime}}^{\bar{\alpha}} A_{\beta^{\prime}}^{b} \underbrace{c c}_{0} \widetilde{G}_{\bar{\alpha} b}^{*}+\underbrace{A_{\alpha_{\alpha^{\prime}}}^{\bar{\alpha}}}_{A_{\alpha^{\prime} \varepsilon^{\prime}}^{\alpha \varepsilon^{\varepsilon^{\prime}}}} \underbrace{A_{\beta^{\prime}}^{\beta}}_{A_{\alpha^{\prime}}^{\alpha}} \underbrace{}_{G_{\alpha \beta}^{\prime c}} \widetilde{G}_{\bar{\alpha} \beta}^{*}+A_{\alpha^{\prime}}^{\bar{\alpha}} A_{\beta^{\prime}}^{\bar{\beta}} \underbrace{c c}_{0} \widetilde{G}_{\bar{\alpha} \bar{\beta}}^{*} \\
& =A_{\alpha^{\prime}}^{\alpha} A_{\beta^{\prime}}^{\beta}\left(y^{\varepsilon^{\prime}} \partial_{\varepsilon^{\prime}} G_{\alpha \beta}+G_{\alpha \beta}\right)+y^{\varepsilon^{\prime}}\left(\partial_{\varepsilon^{\prime}} A_{\beta^{\prime}}^{\beta}\right) A_{\alpha^{\prime}}^{\alpha} G_{\alpha \beta}+y^{\varepsilon^{\prime}}\left(\partial_{\varepsilon^{\prime}} A_{\alpha^{\prime}}^{\alpha}\right) A_{\beta^{\prime}}^{\beta} G_{\alpha \beta} \\
& =A_{\alpha^{\prime}}^{\alpha} A_{\beta^{\prime}}^{\beta}\left(y^{\varepsilon^{\prime}} \partial_{\varepsilon^{\prime}} G_{\alpha \beta}\right)+A_{\alpha^{\prime}}^{\alpha} A_{\beta^{\prime}}^{\beta} G_{\alpha \beta} \\
& +y^{\varepsilon^{\prime}}\left(\partial_{\varepsilon^{\prime}} A_{\beta^{\prime}}^{\beta}\right) A_{\alpha^{\prime}}^{\alpha} G_{\alpha \beta}+y^{\varepsilon^{\prime}}\left(\partial_{\varepsilon^{\prime}} A_{\alpha^{\prime}}^{\alpha}\right) A_{\beta^{\prime}}^{\beta} G_{\alpha \beta} \\
& =y^{\varepsilon^{\prime}} \partial_{\varepsilon^{\prime}}\left(A_{\alpha^{\prime}}^{\alpha} A_{\beta^{\prime}}^{\beta} G_{\alpha \beta}\right)+G_{\alpha^{\prime} \beta^{\prime}} \\
& =y^{\varepsilon^{\prime}} \partial_{\varepsilon^{\prime}} G_{\alpha^{\prime} \beta^{\prime}}+G_{\alpha^{\prime} \beta^{\prime}} .
\end{aligned}
$$

Thus, we have $\left.{ }^{c c} \widetilde{G}_{I^{\prime} J^{\prime}}^{*}=A_{I^{\prime}}^{I} A_{J^{\prime}}^{J}{ }^{c c} \widetilde{G}_{I J}^{*}\right)$. We can easily obtain other components of ${ }^{c c} \widetilde{G}_{I^{\prime} J^{\prime}}^{*}$ by using this way.

Since $\operatorname{Det}\left({ }^{c c} \widetilde{G}^{*}\right)=0$, we have:
Theorem 3.3. The semi-tangent bundle $t\left(B_{m}\right)$ has a degenerate deformed metric ${ }^{c c} \widetilde{G}^{*}$.

4. Horizontal Lifts of tensor field of type $(0,2)$

Firstly, we will give some preliminary definitions. For any $F \in \Im_{1}^{1}\left(B_{m}\right)$, if we take account of (5), we can prove that $(\gamma F)^{\prime}=\bar{A}(\gamma F)$, where γF is a vector field defined by

$$
\gamma F=\left(\gamma F^{I}\right)=\left(\begin{array}{l}
0 \tag{12}\\
0 \\
y^{\varepsilon} F_{\varepsilon}^{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$.
For any $S \in \Im_{3}^{0}\left(B_{m}\right)$, if we take account of (5), we can prove that $(\gamma S)^{\prime}=A_{I^{\prime}}^{I} A_{J^{\prime}}^{J}(\gamma S)$, where γS is a tensor field of type $(0,2)$ defined by

$$
\gamma S=\left(\gamma S_{I J}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{13}\\
0 & y^{\varepsilon} S_{\varepsilon \alpha \beta} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ and $\left(x^{b}, x^{\beta}, x^{\bar{\beta}}\right)$.
Let now $\widetilde{X} \in \Im_{0}^{1}\left(M_{n}\right)$ be a projectable vector field on M_{n} with projection $X \in \Im_{0}^{1}\left(B_{m}\right)$ [10]. Then we define the horizontal lift ${ }^{H H} \widetilde{X}$ of \widetilde{X} by

$$
{ }^{H H} \widetilde{X}={ }^{c c} \widetilde{X}-\gamma(\nabla \widetilde{X})
$$

on $t\left(M_{n}\right)$. Where ∇ is a symmetric affine connection in a differentiable manifold B_{m}. Then, remembering that ${ }^{c c} \widetilde{X}$ and $\gamma(\nabla \widetilde{X})$ have, respectively, local componenets

$$
{ }^{c c} \widetilde{X}=\left({ }^{c c} \widetilde{X}^{I}\right)=\left(\begin{array}{l}
\widetilde{X}^{a} \\
X^{\alpha} \\
y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}
\end{array}\right), \gamma(\nabla \widetilde{X})=\left(\gamma(\nabla \widetilde{X})^{I}\right)=\left(\begin{array}{l}
0 \\
0 \\
y^{\varepsilon} \nabla_{\varepsilon} X^{\alpha}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t\left(B_{m}\right) . \nabla_{\alpha} X^{\varepsilon}$ being the covariant derivative of X^{ε}, i.e.,

$$
\left(\nabla_{\alpha} X^{\varepsilon}\right)=\partial_{\alpha} X^{\varepsilon}+X^{\beta} \Gamma_{\beta \alpha}^{\varepsilon} .
$$

We find that the horizontal lift ${ }^{H H} \widetilde{X}$ of \widetilde{X} has the components

$$
{ }^{H H} X=\left({ }^{H H} X^{I}\right)=\left(\begin{array}{l}
\widetilde{X}^{a} \tag{14}\\
X^{\alpha} \\
-\Gamma_{\beta}^{\alpha} X^{\beta}
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t\left(B_{m}\right)$. Where

$$
\begin{equation*}
\Gamma_{\beta}^{\alpha}=y^{\varepsilon} \Gamma_{\varepsilon \beta}^{\alpha} . \tag{15}
\end{equation*}
$$

Suppose now that $\widetilde{G} \in \Im_{2}^{0}\left(M_{n}\right)$ and G has local components $G_{\alpha \beta}$ in a neighborhood U of $B_{m}, G=G_{\alpha \beta}\left(x^{\alpha}\right) d x^{\alpha} \otimes d x^{\beta}$. Then we define the horizontal lift ${ }^{H H} \widetilde{G}$ of \widetilde{G} by

$$
\begin{equation*}
{ }^{H H} \widetilde{G}={ }^{c c} \widetilde{G}-\nabla_{\gamma} \widetilde{G}={ }^{c c} \widetilde{G}-\gamma[\nabla \widetilde{G}] \tag{16}
\end{equation*}
$$

on $t\left(B_{m}\right)$. Where $\gamma[\nabla \widetilde{G}]$ is a tensor field of type (0,2) defined by

$$
\begin{equation*}
\gamma[\nabla \widetilde{G}]=y^{\varepsilon} \nabla_{\varepsilon} G_{\alpha \beta} d x^{\alpha} \otimes d x^{\beta} . \tag{17}
\end{equation*}
$$

From (11), (13), (16) and (17), we see that the horizontal lift ${ }^{H H} \widetilde{G}$ has the components of the form

$$
{ }^{H H} \widetilde{G}=\left({ }^{H H} \widetilde{G}_{I J}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{18}\\
0 & y^{\varepsilon} \Gamma_{\varepsilon \alpha}^{\sigma} G_{\sigma \beta}+y^{\varepsilon} \Gamma_{\varepsilon \beta}^{\sigma} G_{\alpha \sigma} & G_{\alpha \beta} \\
0 & G_{\alpha \beta} & 0
\end{array}\right)
$$

with respect to the coordinates $\left(x^{a}, x^{\alpha}, x^{\bar{\alpha}}\right)$ on $t\left(B_{m}\right)$, where $G_{\alpha \beta}$ are the local components of $G, \Gamma_{\varepsilon \alpha}^{\sigma}$ componenets of ∇ on $t\left(B_{m}\right)$ and Γ_{β}^{α} are defined by (15).
Proof. From (11), (13), (16) and (17), we have

$$
\begin{aligned}
{ }^{H H} \widetilde{G} & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & y^{\varepsilon} \Gamma_{\varepsilon \alpha}^{\sigma} G_{\sigma \beta}+y^{\varepsilon} \Gamma_{\varepsilon \beta}^{\sigma} G_{\alpha \sigma} & G_{\alpha \beta} \\
0 & G_{\alpha \beta} & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} G_{\alpha \beta}-y^{\varepsilon}\left(\partial_{\varepsilon} G_{\alpha \beta}-\Gamma_{\varepsilon \alpha}^{\sigma} G_{\sigma \beta}-\Gamma_{\varepsilon \beta}^{\sigma} G_{\alpha \sigma}\right) & G_{\alpha \beta} \\
0 & G_{\alpha \beta} \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & y^{\varepsilon} \partial_{\varepsilon} G_{\alpha \beta} & G_{\alpha \beta} \\
0 & G_{\alpha \beta} & 0
\end{array}\right)-\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & y^{\varepsilon} \nabla_{\varepsilon} G_{\alpha \beta} & 0 \\
0 & 0 & 0
\end{array}\right) \\
& ={ }^{c c} \widetilde{G}-\gamma[\nabla \widetilde{G}] .
\end{array}\right.
\end{aligned}
$$

Thus we have (18).
Theorem 4.1. If G is projectable tensor field of type (0,2) on M_{n}, and $\widetilde{X}, \tilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$, then
(i) ${ }^{H H} \widetilde{G}\left({ }^{v v} X,{ }^{v v} Y\right)=0$,
(ii) ${ }^{H H} \widetilde{G}\left({ }^{H H} \widetilde{X},{ }^{H H} \tilde{Y}\right)={ }^{H H}(G(X, Y))$,
(iii) ${ }^{H H} \widetilde{G}\left({ }^{v v} X,{ }^{H H} \tilde{Y}\right)={ }^{v v}(G(X, Y))$,
$(i v){ }^{H H} \widetilde{G}\left({ }^{H H} \widetilde{X},{ }^{v v} Y\right)={ }^{v v}(G(X, Y))$.
Proof. (i) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $\widetilde{G} \in \Im_{2}^{0}\left(M_{n}\right)$, from (8) and (18), then we have

$$
\begin{aligned}
{ }^{H H} \widetilde{G}\left({ }^{v v} X,{ }^{v v} Y\right)= & { }^{c c} \widetilde{G}_{I J}{ }^{v v} X^{I v v} Y^{J} \\
= & { }^{H H} \widetilde{G}_{a b} \underbrace{v v} X^{a v v} Y^{b}+{ }^{H H} \widetilde{G}_{a \beta} \underbrace{v v}_{0} X^{a v v} Y^{\beta}+{ }^{H H} \widetilde{G}_{a \bar{\beta}} \underbrace{v v}_{0} X^{a}{ }^{v v} Y^{\bar{\beta}} \\
& +{ }^{H H} \widetilde{G}_{\alpha b} \underbrace{v v}_{0} X^{\alpha}{ }^{v v} Y^{b}+{ }^{H H} \widetilde{G}_{\alpha \beta} \underbrace{v v}_{0} X^{\alpha}{ }_{0}^{v v} Y^{\beta}+{ }^{H H} \widetilde{G}_{\alpha \bar{\beta}}^{v v} \underbrace{X^{\alpha}}_{0}{ }^{v v} Y^{\bar{\beta}} \\
& +{ }^{H H} \widetilde{G}_{\bar{\alpha} b}^{v v} X^{\bar{\alpha}} \underbrace{v v}_{0} Y^{b}
\end{aligned}{ }^{H H} \widetilde{G}_{\bar{\alpha} \beta}^{v v} X^{\bar{\alpha} \underbrace{v v} Y^{\beta}}+\underbrace{{ }^{H H} \widetilde{G}_{\bar{\alpha} \bar{\beta}}{ }^{v v} X^{\bar{\alpha} v v} Y^{\bar{\beta}}}_{0} \begin{aligned}
0
\end{aligned}
$$

(ii) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $\widetilde{G} \in \Im_{2}^{0}\left(M_{n}\right)$, from (14) and (18), then we have

$$
\begin{aligned}
& { }^{H H} \widetilde{G}\left({ }^{H H} \widetilde{X},{ }^{H H} \widetilde{Y}\right) \quad={ }^{H H} \widetilde{G}_{I J}{ }^{H H} \widetilde{X}^{I H H} \widetilde{Y}^{J} \\
& =\underbrace{H H}_{0} \widetilde{G}_{a b}{ }^{H H} \widetilde{X}^{a H H} \widetilde{Y}^{b}+\underbrace{H H}_{0} \widetilde{G}_{a \beta}{ }^{H H} \widetilde{X}^{a H H} \widetilde{Y}^{\beta}+\underbrace{{ }^{H H} \widetilde{G}_{a \bar{\beta}}}_{0}{ }^{H H} \widetilde{X}^{a H H} \widetilde{Y}^{\bar{\beta}} \\
& +\underbrace{H H}_{0} \widetilde{G}_{\alpha b}{ }^{H H} \tilde{X}^{\alpha H H} \widetilde{Y}^{b}+{ }^{H H} \widetilde{G}_{\alpha \beta}{ }^{H H} \widetilde{X}^{\alpha H H} \widetilde{Y}^{\beta}+{ }^{H H} \widetilde{G}_{\alpha \bar{\beta}}{ }^{H H} \widetilde{X}^{\alpha H H} \widetilde{Y}^{\bar{\beta}} \\
& +\underbrace{H H}_{0} \widetilde{G}_{\bar{\alpha} b}{ }^{H H} \widetilde{X}^{\bar{\alpha} H H} \widetilde{Y}^{b}+{ }^{H H} \widetilde{G}_{\bar{\alpha} \beta}{ }^{H H} \widetilde{X}^{\bar{\alpha} H H} \widetilde{Y}^{\beta}+\underbrace{H H}_{0} \widetilde{G}_{\bar{\alpha} \bar{\beta}}{ }^{H H} \widetilde{X}^{\bar{\alpha} H H} \widetilde{Y}^{\bar{\beta}} \\
& =\left(y^{\varepsilon} \Gamma_{\varepsilon \alpha}^{\sigma} G_{\sigma \beta}+y^{\varepsilon} \Gamma_{\varepsilon \beta}^{\sigma} G_{\alpha \sigma}\right) X^{\alpha} Y^{\beta}+G_{\alpha \beta} X^{\alpha}\left(-y^{\varepsilon} \Gamma_{\varepsilon}^{\beta} \sigma^{\sigma}\right)+G_{\alpha \beta} Y^{\beta}\left(-y^{\varepsilon} \Gamma_{\varepsilon \sigma}^{\beta} X^{\sigma}\right) \\
& ={ }^{c c}(G(X, Y))-\gamma[\nabla(G(X, Y))] \\
& ={ }^{H H}(G(X, Y)) \text {. }
\end{aligned}
$$

(iii) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $\widetilde{G} \in \Im_{2}^{0}\left(M_{n}\right)$, from (6), (8), (14) and (18), then we have

$$
\begin{array}{rl}
{ }^{H H} \widetilde{G}\left({ }^{v v} X,{ }^{H H} \widetilde{Y}\right)= & { }^{H H} \widetilde{G}_{I J}{ }^{v v} X^{I H H} \widetilde{Y}^{J} \\
= & { }^{H H} \widetilde{G}_{a b} \underbrace{v v}_{0} X^{a}{ }^{H H} \widetilde{Y}^{b}+{ }^{H H} \widetilde{G}_{a \beta} \underbrace{v v}_{0} X^{a H H} \widetilde{Y}^{\beta}+{ }^{H H} \widetilde{G}_{a \bar{\beta}} \underbrace{v v}_{0} X^{a H H} \widetilde{Y}^{\bar{\beta}} \\
& +{ }^{H H} \widetilde{G}_{\alpha b} \underbrace{v v} X^{\alpha}{ }^{H H} \widetilde{Y}^{b}+{ }^{H H} \widetilde{G}_{\alpha \beta} \underbrace{v v}_{0} X^{\alpha} H H \\
\widetilde{Y}^{\beta}
\end{array}+{ }^{H H} \widetilde{G}_{\alpha \bar{\beta}} \underbrace{v v}_{0} X^{\alpha}{ }^{H H} \widetilde{Y}^{\bar{\beta}}]
$$

(iv) If $\widetilde{X}, \widetilde{Y} \in \Im_{0}^{1}\left(M_{n}\right)$ and $\widetilde{G} \in \Im_{2}^{0}\left(M_{n}\right)$, from (6), (8), (14) and (18), then we have

$$
\left.\begin{array}{rl}
{ }^{H H} \widetilde{G}\left({ }^{H H} \widetilde{X},{ }^{v v} Y\right)= & { }^{H H} \widetilde{G}_{I J}{ }^{H H} \widetilde{X}^{I v v} Y^{J} \\
= & \underbrace{H H \widetilde{G}_{a b}}_{0}{ }^{H H} \widetilde{X}^{a v v} Y^{b}+\underbrace{H H}_{0} \widetilde{G}_{a \beta}{ }^{H H} \widetilde{X}^{a v v} Y^{\beta}+\underbrace{{ }^{H H} \widetilde{G}_{a \bar{\beta}}}_{0}{ }^{H H} \widetilde{X}^{a v v} Y^{\bar{\beta}} \\
& +\underbrace{{ }^{H H} \widetilde{G}_{\alpha b}}_{0}{ }^{H H} \widetilde{X}^{\alpha v v} Y^{b}+{ }^{H H} \widetilde{G}_{\alpha \beta}{ }^{H H} \widetilde{X}^{\alpha} \underbrace{v v}_{0} Y^{\beta}
\end{array}{ }^{H H} \widetilde{G}_{\alpha \bar{\beta}}{ }^{H H} \widetilde{X}^{\alpha v v} Y^{\bar{\beta}}\right)
$$

5. Conclusions

Using the fiber bundle M over a manifold B , we define a semi-tangent (pull-back) bundle tB . We consider vertical, complete and horizontal lifting problem of tensor fields of type (0 , 2) on M to the semi-tangent bundle. Relations between lifted objects are also presented.

Acknowledgement. The paper was supported by TUBITAK project MFAG-118F176.

References

[1] Husemoller, D., (1994), Fibre Bundles. Springer, New York.
[2] Lawson, H.B. and Michelsohn, M.L., (1989), Spin Geometry. Princeton University Press., Princeton.
[3] Pontryagin, L.S., (1950), Characteristic cycles on differentiable manifolds, Amer. Math. Soc. Translation., no. 32, pp. 72.
[4] Poor, W.A., (1981), Differential Geometric Structures, New York, McGraw-Hill .
[5] Ostianu, N.M., (1974), Step-fibred spaces, Tr. Geom. Sem. 5, Moscow. (VINITI), pp. 259-309.
[6] Salimov, A.A. and Kadıoğlu, E., (2000), Lifts of Derivations to the Semitangent Bundle, Turk J. Math., pp. 259-266.
[7] Serhan, E., (2019), Seiberg-Witten-like equations on the strictly pseudoconvex CR-3 manifolds, Bull. Korean Math. Soc., 56(6), pp. 1551-1567.
[8] Serhan, E., (2019), Seiberg-Witten-like equations on the strictly-pseudoconvex CR 7-manifolds, Miskolc Mathematical Notes, 20(1) , pp. 233-243.
[9] Steenrod, N., (1951), The Topology of Fibre Bundles, Princeton University Press., Princeton.
[10] Vishnevskii, V.V., (2002), Integrable affinor structures and their plural interpretationsi Geometry, 7.J. Math. Sci., (New York) 108(2), pp. 151-187.
[11] Vishnevskii, V.V., Shirokov, A.P. and Shurygin, V.V., (1985), Spaces over Algebras., Kazan. Kazan Gos. Univ. (in Russian).
[12] Yano, K. and Ishihara, S., (1973), Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York.

[^0]: ${ }^{1}$ Department of Mathematics, Faculty of Science, Atatürk University - Turkey.
 Corresponding author: F. Yıldırım.
 e-mail: furkan.yildirim@atauni.edu.tr; ORCID: https://orcid.org/0000-0003-0081-7857.
 e-mail: mervegulsimsek@gmail.com; ORCID: https://orcid.org/0000-0001-7770-3810.
 § Manuscript received: September 12, 2019; accepted: January 25, 2020.
 TWMS Journal of Applied and Engineering Mathematics, Vol.10, No.4; © Işık University, Department of Mathematics, 2020; all rights reserved.

