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LIFTS OF (0,2) TENSOR FIELDS IN THE SEMI-TANGENT BUNDLE
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Abstract. In this paper the vertical, complete and horizontal lifts of tensor fields of
type (0, 2) to semi-tangent bundle and their properties are studied.
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1. Introduction

LetMn be a differentiable manifold of class C∞ and finite dimension n, and let (Mn, π1, Bm)
be a differentiable bundle over Bm. We use the notation (xi) = (xa, xα), where the indices
i, j, ... run from 1 to n, the indices a, b, ... from 1 to n −m and the indices α, β, ... from
n−m+ 1 to n, xα are coordinates in Bm, xa are fibre coordinates of the bundle

π1 : Mn → Bm.

Let now (T (Bm), π̃, Bm) be a tangent bundle [12] over base space Bm, and let Mn be
differentiable bundle determined by a natural projection (submersion) π1 : Mn → Bm.
The semi-tangent bundle (pull-back [[1],[2],[6],[9]]) of the tangent bundle (T (Bm), π̃, Bm)
is the bundle (t(Bm), π2,Mn) over differentiable bundle Mn with a total space

t(Bm) =
{

((xa, xα) , xα) ∈Mn × Tx(Bm) : π1 (xa, xα) = π̃
(
xα, xα

)
= (xα)

}
⊂ Mn × Tx(Bm)

and with the projection map π2 : t(Bm)→Mn defined by π2(x
a, xα, xα) = (xa, xα), where

Tx(Bm) (x = π1 (x̃) , x̃ = (xa, xα) ∈Mn) is the tangent space at a point x of Bm, where
xα = yα

(
α, β, ... = n+ 1, ..., 2n

)
are fibre coordinates of the tangent bundle T (Bm).

Where the pull-back (Pontryagin [3]) bundle t(Bm) of the differentiable bundle Mn also
has the natural bundle structure over Bm, its bundle projection π : t(Bm) → Bm being
defined by π : (xa, xα, xα)→ (xα), and hence π = π1 ◦ π2.
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Thus (t(Bm),π1 ◦ π2) is the composite bundle [[4], p.9] or step-like bundle [5]. Conse-
quently, we notice the semi-tangent bundle (t(Bm),π2) is a pull-back bundle of the tangent
bundle over Bm by π1 [6].

If (xi
′
) = (xa

′
, xα

′
) is another local adapted coordinates in differentiable bundle Mn,

then we have {
xa

′
= xa

′
(xb, xβ),

xα
′

= xα
′ (
xβ
)
.

(1)

The Jacobian of (1) has the components(
Ai

′
j

)
=

(
∂xi

′

∂xj

)
=

(
Aa

′
b Aa

′
β

0 Aα
′
β

)
,

where Aa
′
b = ∂xa

′

∂xb
, Aa

′
β = ∂xa

′

∂xβ
, Aα

′
β = ∂xα

′

∂xβ
[6].

To a transformation (1) of local coordinates of Mn, there corresponds on t(Bm) the
change of coordinate 

xa
′

= xa
′
(xb, xβ),

xα
′

= xα
′ (
xβ
)
,

xα
′

= ∂xα
′

∂xβ
yβ.

(2)

The Jacobian of (2) is:

Ā =
(
AI

′
J

)
=

 Aa
′
b Aa

′
β 0

0 Aα
′
β 0

0 Aα
′
βεy

ε Aα
′
β

 , (3)

where I = (a, α, α), J = (b, β, β), I, J, .... = 1, ..., 2n; Aα
′
βε = ∂2xα

′

∂xβ∂xε
[6]. Writing the inverse

of (2) as 
xa = xa(xb

′
, xβ

′
),

xα = xα
(
xβ

′
)
,

xα = ∂xα

∂xβ′
yβ

′
,

(4)

we have (
AIJ ′
)

=

 Aab′ Aaβ′ 0

0 Aαβ′ 0

0 Aαβ′ε′y
ε′ Aαβ′

 . (5)

The main purpose of this paper is to study vertical, complete and horizontal lifts of
tensor fields of type (0,2) to semi-tangent (pull-back) bundle (t(Bm), π2) and their metric
properties [7, 8].

We denote by =pq(Mn) the set of all tensor fields of class C∞ and of type (p, q) on Mn,
i.e., contravariant degree p and covariant degree q. We now put =(Mn) =

∑∞
p,q=0=

p
q(Mn),

which is the set of all tensor fields on Mn. Smilarly, we denote by =pq(Bm) and =(Bm)
respectively the corresponding sets of tensor fields in the base space Bm.

2. Vertical Lifts of tensor field of type (0,2)

If f is a function on Bm, we write vvf for the function on t(Bm) obtained by forming
the composition of π : t(Bm)→ Bm and vf = f ◦ π1, so that

vvf = vf ◦ π2 = f ◦ π1 ◦ π2 = f ◦ π.
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Thus, the vertical lift vvf of the function f to t(Bm) satisfies
vvf(xa, xα, xα) = f(xα). (6)

We note here that value vvf is constant along each fibre of π : t(Bm)→ Bm.
On the other hand, if f = f(xa, xα) is a function in Mn, we write ccf for the function

in t(Bm) defined by
ccf = ı(df) = xβ∂βf = yβ∂βf (7)

and call of the complete lift ccf of the function f [6].
Let X ∈ =1

0(Bm), i.e. X = Xα∂α. On putting

vvX =
(
vvXI

)
=

 0
0
Xα

 , (8)

from (3), we easily see that vvX ′ = Ā(vvX). The vector field vvX is called the vertical lift
of X to t(Bm).

Let X̃ ∈ =1
0(Mn) be a projectable vector field [10] with projection X = Xα(xα)∂α i.e.

X̃ = X̃a(xa, xα)∂a +Xα(xα)∂α. Now, consider X̃ ∈ =1
0(Mn), then ccX̃ (complete lift) has

the components on the semi-tangent bundle t(Bm) [6]:

ccX̃ =
(
ccX̃I

)
=

 X̃a

Xα

yε∂εX
α

 (9)

with respect to the coordinates (xa, xα, xα).
Let G ∈ =0

2(Mn), i.e. G = Gαβdx
α ⊗ dxβ. On putting

vvG = (vvGIJ) =

 0 0 0
0 Gαβ 0
0 0 0

 , (10)

from (3), we easily see that vvGI′J ′ = AII′A
J
J ′(vvGIJ). The tensor field vvG of type (0,2)

is called the vertical lift of G to t(Bm).
Since Det(vvG) = 0, we have:

Theorem 2.1. The semi-tangent bundle t(Bm) has a trivial metric vvG.

Theorem 2.2. If G is tensor field of type (0,2) on Bm, and X̃, Ỹ ∈ =1
0(Mn), then

(i) vvG(vvX, vvY ) = 0,
(ii) vvG(vvX, ccY ) = 0,

(iii) vvG(ccX, vvY ) = 0,
(iv) vvG(ccX, ccY ) = vv (G(X,Y )).

Proof. (i) If X̃, Ỹ ∈ =1
0(Mn) and G ∈ =0

2(Bm), from (8) and (10), then we have

vvG(vvX, vvY ) = vvGIJ
vvXIvvY J

= vvGab
vvXa︸ ︷︷ ︸

0

vvY b + vvGaβ
vvXa︸ ︷︷ ︸

0

vvY β + vvGaβ
vvXa︸ ︷︷ ︸

0

vvY β

+vvGαb
vvXα︸ ︷︷ ︸

0

vvY b + vvGαβ
vvXα︸ ︷︷ ︸

0

vvY β + vvGαβ
vvXα︸ ︷︷ ︸

0

vvY β

+vvGαb
vvXα vvY b︸︷︷︸

0

+vvGαβ
vvXα vvY β︸ ︷︷ ︸

0

+ vvGαβ︸ ︷︷ ︸
0

vvXαvvY β

= 0.
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(ii) If X̃, Ỹ ∈ =1
0(Mn) and G ∈ =0

2(Bm), from (8), (9) and (10), then we have

vvG(vvX, ccY ) = vvGIJ
vvXI ccY J

= vvGab
vvXa︸ ︷︷ ︸

0

ccY b + vvGaβ
vvXa︸ ︷︷ ︸

0

ccY β + vvGaβ
vvXa︸ ︷︷ ︸

0

ccY β

+vvGαb
vvXα︸ ︷︷ ︸

0

ccY b + vvGαβ
vvXα︸ ︷︷ ︸

0

ccY β + vvGαβ
vvXα︸ ︷︷ ︸

0

ccY β

+ vvGαb︸ ︷︷ ︸
0

vvXαccY b + vvGαβ︸ ︷︷ ︸
0

vvXαccY β + vvGαβ︸ ︷︷ ︸
0

vvXαccY β

= 0.

(iii) If X̃, Ỹ ∈ =1
0(Mn) and G ∈ =0

2(Bm), from (8), (9) and (10), then we have

vvG(ccX, vvY ) = vvGIJ
ccXIvvY J

= vvGab
ccXa vvY b︸︷︷︸

0

+vvGaβ
ccXa vvY β︸ ︷︷ ︸

0

+ vvGaβ︸ ︷︷ ︸
0

ccXavvY β

+vvGαb
ccXα vvY b︸︷︷︸

0

+vvGαβ
ccXα vvY β︸ ︷︷ ︸

0

+ vvGαβ︸ ︷︷ ︸
0

ccXαvvY β

+ vvGαb︸ ︷︷ ︸
0

ccXαvvY b + vvGαβ︸ ︷︷ ︸
0

ccXαvvY β + vvGαβ︸ ︷︷ ︸
0

ccXαvvY β

= 0.

(iv) If X̃, Ỹ ∈ =1
0(Mn) and G ∈ =0

2(Bm), from (6), (8), (9) and (10), then we have

vvG(ccX, ccY ) = vvGIJ
ccXI ccY J

= vvGab︸ ︷︷ ︸
0

ccXaccY b + vvGaβ︸ ︷︷ ︸
0

ccXaccY β + vvGaβ︸ ︷︷ ︸
0

ccXaccY β

+ vvGαb︸ ︷︷ ︸
0

ccXαccY b + vvGαβ︸ ︷︷ ︸
Gαβ

ccXα︸ ︷︷ ︸
Xα

ccY β︸︷︷︸
Y β

+ vvGαβ︸ ︷︷ ︸
0

ccXαccY β

+ vvGαb︸ ︷︷ ︸
0

ccXαccY b + vvGαβ︸ ︷︷ ︸
0

ccXαccY β + vvGαβ︸ ︷︷ ︸
0

ccXαccY β

= GαβX
αY β

= vv (G(X,Y )) .

�

3. Complete Lifts of tensor field of type (0,2)

Let G̃ ∈ =0
2(Mn) be a projectable tensor field of type (0,2) [10] with projection G =

Gαβ (xα) dxα ⊗ dxβ, i.e. G̃ has the componets

G̃ =
(
G̃ij

)
=

(
0 0
0 Gαβ (xα)

)
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with respect to the coordinates (xa, xα) [11]. On putting

ccG̃ =
(
ccG̃IJ

)
=

 0 0 0
0 yε∂εGαβ Gαβ
0 Gαβ 0

 , (11)

we easily see that ccGI′J ′ = AII′A
J
J ′(ccGIJ). We call ccG̃ the complete lift of the tensor

field G̃ of type (0,2) to t(Bm) [11].
Since Det(ccG) = 0, we have:

Theorem 3.1. The semi-tangent bundle t(Bm) has a degenerate metric ccG [11].

Theorem 3.2. If G is projectable tensor field of type (0,2) on Mn, and X̃, Ỹ ∈ =1
0(Mn),

then

(i) ccG̃(vvX, vvY ) = 0,

(ii) ccG̃(vvX, ccỸ ) = vv (G(X,Y )) ,

(iii) ccG̃(ccX̃, vvY ) = vv (G(X,Y )) ,

(iv) ccG̃(ccX̃, ccỸ ) = cc (G(X,Y )).

Proof. (i) If X̃, Ỹ ∈ =1
0(Mn) and G̃ ∈ =0

2(Mn), from (8) and (11), then we have

ccG̃(vvX, vvY ) = ccG̃IJ
vvXIvvY J

= ccG̃ab
vvXa︸ ︷︷ ︸

0

vvY b + ccG̃aβ
vvXa︸ ︷︷ ︸

0

vvY β + ccG̃aβ
vvXa︸ ︷︷ ︸

0

vvY β

+ccG̃αb
vvXα︸ ︷︷ ︸

0

vvY b + ccG̃αβ
vvXα︸ ︷︷ ︸

0

vvY β + ccG̃αβ
vvXα︸ ︷︷ ︸

0

vvY β

+ccG̃αb
vvXα vvY b︸︷︷︸

0

+ccG̃αβ
vvXα vvY β︸ ︷︷ ︸

0

+ ccG̃αβ︸ ︷︷ ︸
0

vvXαvvY β

= 0.

(ii) If X̃, Ỹ ∈ =1
0(Mn) and G̃ ∈ =0

2(Mn), from (6), (8), (9) and (11), then we have

ccG̃(vvX, ccỸ ) = ccG̃IJ
vvXI ccỸ J

= ccG̃ab
vvXa︸ ︷︷ ︸

0

ccỸ b + ccG̃aβ
vvXa︸ ︷︷ ︸

0

ccỸ β + ccG̃aβ
vvXa︸ ︷︷ ︸

0

ccỸ β

+ccG̃αb
vvXα︸ ︷︷ ︸

0

ccỸ b + ccG̃αβ
vvXα︸ ︷︷ ︸

0

ccỸ β + ccG̃αβ
vvXα︸ ︷︷ ︸

0

ccỸ β

+ ccG̃αb︸ ︷︷ ︸
0

vvXαccỸ b + ccG̃αβ︸ ︷︷ ︸
Gαβ

vvXα︸ ︷︷ ︸
Xα

ccỸ β︸︷︷︸
Y β

+ ccG̃αβ︸ ︷︷ ︸
0

vvXαccỸ β

= GαβX
αY β

= vv (G(X,Y )) .
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(iii) If X̃, Ỹ ∈ =1
0(Mn) and G̃ ∈ =0

2(Mn), from (6), (8), (9) and (11), then we have

ccG̃(ccX̃, vvY ) = ccG̃IJ
ccX̃IvvY J

= ccG̃ab
ccX̃a vvY b︸︷︷︸

0

+ccG̃aβ
ccX̃a vvY β︸ ︷︷ ︸

0

+ ccG̃aβ︸ ︷︷ ︸
0

ccX̃avvY β

+ccG̃αb
ccX̃α vvY b︸︷︷︸

0

+ccG̃αβ
ccX̃α vvY β︸ ︷︷ ︸

0

+ ccG̃αβ︸ ︷︷ ︸
Gαβ

ccX̃α︸ ︷︷ ︸
Xα

vvY β︸ ︷︷ ︸
Y β

+ ccG̃αb︸ ︷︷ ︸
0

ccX̃αvvY b + ccG̃αβ
ccX̃α vvY β︸ ︷︷ ︸

0

+ ccG̃αβ︸ ︷︷ ︸
0

ccX̃αvvY β

= GαβX
αY β

= vv (G(X,Y )) .

(iv) If X̃, Ỹ ∈ =1
0(Mn) and G̃ ∈ =0

2(Mn), from (7), (8), (9) and (11), then we have

ccG̃(ccX̃, ccỸ ) = ccG̃IJ
ccX̃I ccỸ J

= ccG̃ab︸ ︷︷ ︸
0

ccX̃accỸ b + ccG̃aβ︸ ︷︷ ︸
0

ccX̃accỸ β + ccG̃aβ︸ ︷︷ ︸
0

ccX̃accỸ β

+ ccG̃αb︸ ︷︷ ︸
0

ccX̃αccỸ b + ccG̃αβ︸ ︷︷ ︸
yε∂εGαβ

ccX̃α︸ ︷︷ ︸
Xα

ccỸ β︸︷︷︸
Y β

+ ccG̃αβ︸ ︷︷ ︸
Gαβ

ccX̃α︸ ︷︷ ︸
Xα

ccỸ β︸︷︷︸
yε∂εY β

+ ccG̃αb︸ ︷︷ ︸
0

ccX̃αccỸ b + ccG̃αβ︸ ︷︷ ︸
Gαβ

ccX̃α︸ ︷︷ ︸
yε∂εXα

ccỸ β︸︷︷︸
Y β

+ ccG̃αβ︸ ︷︷ ︸
0

ccX̃αccỸ β

= yε (∂εGαβ)XαY β +GαβX
αyε

(
∂εY

β
)

+Gαβy
ε (∂εX

α)Y β

= yε∂ε

(
GαβX

αY β
)

= cc (G(X,Y )) .

�

In addition, according to (10) and (11), we define new projectable tensor field of type

(0,2) i.e. ccG̃∗ by

ccG̃∗ = ccG̃+ vvG

with respect to the coordinates (xa, xα, xα) in t(Bm), where

ccG̃∗ =

 0 0 0
0 yε∂εGαβ Gαβ
0 Gαβ 0

+

 0 0 0
0 Gαβ 0
0 0 0


=

 0 0 0
0 yε∂εGαβ +Gαβ Gαβ
0 Gαβ 0

 .

We call ccG̃∗ the deformed complete lift of the tensor field G̃ of type (0,2) to t(Bm).

Taking account of (5), we easily see that ccG̃∗I′J ′ = AII′A
J
J ′(ccG̃∗IJ).



872 TWMS J. APP. ENG. MATH. V.10, N.4, 2020

Proof. For simplicity we take only ccG̃∗α′β′ . In fact, from (5)

ccG̃∗α′β′ = Aaα′Abβ′
ccG̃∗ab︸ ︷︷ ︸

0

+Aaα′A
β
β′
ccG̃∗aβ︸ ︷︷ ︸

0

+Aaα′A
β
β′
ccG̃∗

aβ︸ ︷︷ ︸
0

+Aαα′Abβ′
ccG̃∗αb︸ ︷︷ ︸

0

+ Aαα′︸︷︷︸
Aα
α′

Aββ′︸︷︷︸
Aβ
β′

ccG̃∗αβ︸ ︷︷ ︸
yε

′
∂ε′Gαβ+Gαβ

+ Aαα′︸︷︷︸
Aα
α′

Aββ′︸︷︷︸
Aβ
β′ε′y

ε′

ccG̃∗
αβ︸ ︷︷ ︸

Gαβ

+Aαα′Abβ′
ccG̃∗αb︸ ︷︷ ︸

0

+ Aαα′︸︷︷︸
Aα
α′ε′y

ε′

Aββ′︸︷︷︸
Aα
α′

ccG̃∗αβ︸ ︷︷ ︸
Gαβ

+Aαα′A
β
β′
ccG̃∗

αβ︸ ︷︷ ︸
0

= Aαα′A
β
β′

(
yε

′
∂ε′Gαβ +Gαβ

)
+ yε

′
(∂ε′A

β
β′)A

α
α′Gαβ + yε

′
(∂ε′A

α
α′)A

β
β′Gαβ

= Aαα′A
β
β′

(
yε

′
∂ε′Gαβ

)
+Aαα′A

β
β′Gαβ

+yε
′
(∂ε′A

β
β′)A

α
α′Gαβ + yε

′
(∂ε′A

α
α′)A

β
β′Gαβ

= yε
′
∂ε′(A

α
α′A

β
β′Gαβ) +Gα′β′

= yε
′
∂ε′Gα′β′ +Gα′β′ .

Thus, we have ccG̃∗I′J ′ = AII′A
J
J ′(ccG̃∗IJ). We can easily obtain other components of

ccG̃∗I′J ′ by using this way. �

Since Det(ccG̃∗) = 0, we have:

Theorem 3.3. The semi-tangent bundle t(Bm) has a degenerate deformed metric ccG̃∗.

4. Horizontal Lifts of tensor field of type (0,2)

Firstly, we will give some preliminary definitions. For any F ∈ =1
1(Bm), if we take

account of (5), we can prove that (γF )′ = Ā(γF ), where γF is a vector field defined by

γF = (γF I) =

 0
0
yεFαε

 (12)

with respect to the coordinates (xa, xα, xα).
For any S ∈ =0

3(Bm), if we take account of (5), we can prove that (γS)′ = AII′A
J
J ′(γS),

where γS is a tensor field of type (0,2) defined by

γS = (γSIJ) =

 0 0 0
0 yεSεαβ 0
0 0 0

 (13)

with respect to the coordinates (xa, xα, xα) and (xb, xβ, xβ).

Let now X̃ ∈ =1
0(Mn) be a projectable vector field on Mn with projection X ∈ =1

0(Bm)

[10]. Then we define the horizontal lift HHX̃ of X̃ by

HHX̃ = ccX̃ − γ(∇X̃)



F. YILDIRIM, M. SIMSEK: LIFTS OF (0,2) TENSOR FIELDS IN THE SEMI-TANGENT BUNDLE 873

on t(Mn). Where ∇ is a symmetric affine connection in a differentiable manifold Bm.

Then, remembering that ccX̃ and γ(∇X̃) have, respectively, local componenets

ccX̃ =
(
ccX̃I

)
=

 X̃a

Xα

yε∂εX
α

 , γ(∇X̃) =
(
γ(∇X̃)I

)
=

 0
0
yε∇εXα


with respect to the coordinates (xa, xα, xα) on t(Bm). ∇αXε being the covariant derivative
of Xε, i.e.,

(∇αXε) = ∂αX
ε +XβΓεβα.

We find that the horizontal lift HHX̃ of X̃ has the components

HHX =
(
HHXI

)
=

 X̃a

Xα

−ΓαβX
β

 (14)

with respect to the coordinates (xa, xα, xα) on t(Bm). Where

Γαβ = yεΓαε β. (15)

Suppose now that G̃ ∈ =0
2(Mn) and G has local components Gαβ in a neighborhood U

of Bm, G = Gαβ (xα) dxα ⊗ dxβ. Then we define the horizontal lift HHG̃ of G̃ by

HHG̃ = ccG̃−∇γG̃ = ccG̃− γ[∇G̃] (16)

on t(Bm). Where γ[∇G̃] is a tensor field of type (0,2) defined by

γ[∇G̃] = yε∇εGαβdxα ⊗ dxβ. (17)

From (11), (13), (16) and (17), we see that the horizontal lift HHG̃ has the components
of the form

HHG̃ = (HHG̃IJ) =

 0 0 0
0 yεΓσε αGσβ + yεΓσε βGασ Gαβ
0 Gαβ 0

 (18)

with respect to the coordinates (xa, xα, xα) on t(Bm), where Gαβ are the local components
of G, Γσε α componenets of ∇ on t(Bm) and Γαβ are defined by (15).

Proof. From (11), (13), (16) and (17), we have

HHG̃ =

 0 0 0
0 yεΓσε αGσβ + yεΓσε βGασ Gαβ
0 Gαβ 0


=

 0 0 0
0 yε∂εGαβ − yε(∂εGαβ − Γσε αGσβ − Γσε βGασ) Gαβ
0 Gαβ 0


=

 0 0 0
0 yε∂εGαβ Gαβ
0 Gαβ 0

−
 0 0 0

0 yε∇εGαβ 0
0 0 0


= ccG̃− γ[∇G̃].

Thus we have (18). �

Theorem 4.1. If G is projectable tensor field of type (0,2) on Mn, and X̃, Ỹ ∈ =1
0(Mn),

then
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(i) HHG̃(vvX, vvY ) = 0,

(ii) HHG̃(HHX̃,HH Ỹ ) = HH (G(X,Y )) ,

(iii) HHG̃(vvX,HH Ỹ ) = vv (G(X,Y )) ,

(iv) HHG̃(HHX̃, vvY ) = vv (G(X,Y )).

Proof. (i) If X̃, Ỹ ∈ =1
0(Mn) and G̃ ∈ =0

2(Mn), from (8) and (18), then we have

HHG̃(vvX, vvY ) = ccG̃IJ
vvXIvvY J

= HHG̃ab
vvXa︸ ︷︷ ︸

0

vvY b + HHG̃aβ
vvXa︸ ︷︷ ︸

0

vvY β + HHG̃aβ
vvXa︸ ︷︷ ︸

0

vvY β

+HHG̃αb
vvXα︸ ︷︷ ︸

0

vvY b + HHG̃αβ
vvXα︸ ︷︷ ︸

0

vvY β + HHG̃αβ
vvXα︸ ︷︷ ︸

0

vvY β

+HHG̃αb
vvXα vvY b︸︷︷︸

0

+HHG̃αβ
vvXα vvY β︸ ︷︷ ︸

0

+HHG̃αβ︸ ︷︷ ︸
0

vvXαvvY β

= 0.

(ii) If X̃, Ỹ ∈ =1
0(Mn) and G̃ ∈ =0

2(Mn), from (14) and (18), then we have

HHG̃(HHX̃,HH Ỹ ) = HHG̃IJ
HHX̃IHH Ỹ J

= HHG̃ab︸ ︷︷ ︸
0

HHX̃aHH Ỹ b + HHG̃aβ︸ ︷︷ ︸
0

HHX̃aHH Ỹ β + HHG̃aβ︸ ︷︷ ︸
0

HHX̃aHH Ỹ β

+HHG̃αb︸ ︷︷ ︸
0

HHX̃αHH Ỹ b + HHG̃αβ
HHX̃αHH Ỹ β + HHG̃αβ

HHX̃αHH Ỹ β

+HHG̃αb︸ ︷︷ ︸
0

HHX̃αHH Ỹ b + HHG̃αβ
HHX̃αHH Ỹ β + HHG̃αβ︸ ︷︷ ︸

0

HHX̃αHH Ỹ β

= (yεΓσε αGσβ + yεΓσε βGασ)XαY β +GαβX
α
(
−yεΓβε σY σ

)
+GαβY

β
(
−yεΓβε σXσ

)
= cc (G(X,Y ))− γ[∇ (G(X,Y ))]

= HH (G(X,Y )) .

(iii) If X̃, Ỹ ∈ =1
0(Mn) and G̃ ∈ =0

2(Mn), from (6), (8), (14) and (18), then we have

HHG̃(vvX,HH Ỹ ) = HHG̃IJ
vvXIHH Ỹ J

= HHG̃ab
vvXa︸ ︷︷ ︸

0

HH Ỹ b + HHG̃aβ
vvXa︸ ︷︷ ︸

0

HH Ỹ β + HHG̃aβ
vvXa︸ ︷︷ ︸

0

HH Ỹ β

+HHG̃αb
vvXα︸ ︷︷ ︸

0

HH Ỹ b + HHG̃αβ
vvXα︸ ︷︷ ︸

0

HH Ỹ β + HHG̃αβ
vvXα︸ ︷︷ ︸

0

HH Ỹ β

+HHG̃αb︸ ︷︷ ︸
0

vvXαHH Ỹ b + HHG̃αβ
vvXαHH Ỹ β + HHG̃αβ︸ ︷︷ ︸

0

vvXαHH Ỹ β

= GαβX
αY β

= vv (G(X,Y )) .
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(iv) If X̃, Ỹ ∈ =1
0(Mn) and G̃ ∈ =0

2(Mn), from (6), (8), (14) and (18), then we have

HHG̃(HHX̃, vvY ) = HHG̃IJ
HHX̃IvvY J

= HHG̃ab︸ ︷︷ ︸
0

HHX̃avvY b + HHG̃aβ︸ ︷︷ ︸
0

HHX̃avvY β + HHG̃aβ︸ ︷︷ ︸
0

HHX̃avvY β

+HHG̃αb︸ ︷︷ ︸
0

HHX̃αvvY b + HHG̃αβ
HHX̃α vvY β︸ ︷︷ ︸

0

+HHG̃αβ
HHX̃αvvY β

+HHG̃αb︸ ︷︷ ︸
0

HHX̃αvvY b + HHG̃αβ
HHX̃α vvY β︸ ︷︷ ︸

0

+HHG̃αβ︸ ︷︷ ︸
0

HHX̃αvvY β

= GαβX
αY β

= vv (G(X,Y )) .

�

5. Conclusions

Using the fiber bundle M over a manifold B, we define a semi-tangent (pull-back) bundle
tB. We consider vertical, complete and horizontal lifting problem of tensor fields of type (0,
2) on M to the semi-tangent bundle. Relations between lifted objects are also presented.
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