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SYMMETRIZED p-CONVEXITY AND RELATED SOME INTEGRAL

INEQUALITIES

İMDAT İŞCAN, §

Abstract. In this paper, a new concept called as the symmetrized p -convex function
which is a generalization of the symmetrized convex and symmetrized harmonic convex
functions is introduced and some Hermite-Hadamard type inequalities for symmetrized
p-convex functions is given.
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1. Introduction

Let f be real function defined on some nonempty interval I of real line R. The function
f is said to be convex on I if the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (1)

holds for all x, y ∈ I and t ∈ [0, 1] .
In [3], the author, gave the definition Harmonically convex and concave functions as

follow.

Definition 1.1. Let I ⊂ R\ {0} be a real interval. A function f : I → R is said to be
harmonically convex, if

f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x) (2)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (2) is reversed, then f is said to be
harmonically concave.

The following result of the Hermite-Hadamard type holds for harmonically convex func-
tions.
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Theorem 1.1 ([3]). Let f : I ⊂ R\ {0} → R be a harmonically convex function and
a, b ∈ I with a < b. If f ∈ L[a, b] then the following inequalities hold

f

(
2ab

a+ b

)
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ f(a) + f(b)

2
. (3)

The above inequalities are sharp.

In [4], the author gave the definition of p-convex function as follow:

Definition 1.2. Let I ⊂ (0,∞) be a real interval and p ∈ R\ {0} . A function f : I → R
is said to be a p-convex function, if

f
(

[txp + (1− t)yp]1/p
)
≤ tf(x) + (1− t)f(y) (4)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (4) is reversed, then f is said to be
p-concave.

According to Definition 1.2, it can be easily seen that for p = 1 and p = −1, p-
convexity reduces to ordinary convexity and harmonically convexity of functions defined
on I ⊂ (0,∞), respectively.

Since the condition (4) can be written as

(f ◦ g) (txp + (1− t)yp) ≤ t (f ◦ g) (xp) + (1− t) (f ◦ g) (yp), g(x) = x1/p,

then it is observed that f : I ⊆ (0,∞)→ R is p-convex on I if and only if f ◦ g is convex
on g−1(I) := {zp, z ∈ I} .

Example 1.1. Let f : (0,∞)→ R, f(x) = xp, p 6= 0, and g : (0,∞)→ R, g(x) = c, c ∈
R, then f and g are both p-convex and p-concave functions.

In [2, Theorem 5], if it is taken I ⊂ (0,∞), p ∈ R\ {0} and h(t) = t , then the following
Theorem can be given.

Theorem 1.2. Let f : I ⊆ (0,∞) → R be a p-convex function, p ∈ R\ {0}, and a, b ∈ I
with a < b. If f ∈ L[a, b] then the following inequalities hold

f

([
ap + bp

2

]1/p
)
≤ p

bp − ap

b∫
a

f(x)

x1−pdx ≤
f(a) + f(b)

2
. (5)

Definition 1.3 ([6]). Let p ∈ R\ {0} . A function w : [a, b] ⊆ (0,∞) → R is said to be

p-symmetric with respect to
[
ap+bp

2

]1/p
if

w(x) = w
(

[ap + bp − xp]1/p
)

holds for all x ∈ [a, b] .

In [5], Kunt and İşcan gave Hermite-Hadamard-Fejér type inequalities for p-convex
functions as follow:

Theorem 1.3. Let f : I ⊆ (0,∞) → R be a p-convex function, p ∈ R\ {0} , a, b ∈ I with
a < b. If f ∈ L[a, b] and w : [a, b] → R is nonnegative, integrable and p-symmetric with
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respect to
[
ap+bp

2

]1/p
, then the following inequalities hold:

f

([
ap + bp

2

]1/p
) b∫

a

w(x)

x1−p dx ≤
b∫
a

f(x)w(x)

x1−p dx

≤ f(a) + f(b)

2

b∫
a

w(x)

x1−p dx. (6)

Definition 1.4. Let f ∈ L [a, b]. The left-sided and right-sided Riemann Liouville frac-
tional integrals Jαa+f and Jαb−f of oder α > 0 with b > a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

x∫
a

(x− t)α−1 f(t)dt, a < x < b

and

Jαb−f(x) =
1

Γ(α)

b∫
x

(t− x)α−1 f(t)dt, a < x < b

respectively, where Γ(α) is the Gamma function defined by Γ(α) =
∞∫
0

e−ttα−1dt (see [7]).

In [6], the authors presented Hermite–Hadamard-Fejér inequalities for p-convex func-
tions in fractional integral forms as follows:

Theorem 1.4. Let f : I ⊆ (0,∞) → R be a p-convex function, p ∈ R\ {0} , α > 0 and
a, b ∈ I with a < b. If f ∈ L[a, b] and w : [a, b] → R is nonnegative, integrable and p-

symmetric with respect to
[
ap+bp

2

]1/p
, then the following inequalities for fractional integrals

hold
i.) If p > 0

f

([
ap + bp

2

]1/p
)[

Jαap+ (w ◦ g) (bp) + Jαbp− (w ◦ g) (ap)
]

(7)

≤
[
Jαap+ (fw ◦ g) (bp) + Jαbp− (fw ◦ g) (ap)

]
≤ f(a) + f(b)

2

[
Jαap+ (w ◦ g) (bp) + Jαbp− (w ◦ g) (ap)

]
with g(x) = x1/p, x ∈ [ap, bp].

ii.) If p > 0

f

([
ap + bp

2

]1/p
)[

Jαbp+ (w ◦ g) (ap) + Jαap− (w ◦ g) (bp)
]

≤
[
Jαbp+ (fw ◦ g) (ap) + Jαap− (fw ◦ g) (bp)

]
≤ f(a) + f(b)

2

[
Jαbp+ (w ◦ g) (ap) + Jαap− (w ◦ g) (bp)

]
with g(x) = x1/p, x ∈ [bp, ap].
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For a function f : [a, b]→ R, the symmetrical transform of f on the interval [a, b] is

denoted by
^
f [a,b] or simply

^
f , when the interval [a, b] is implicit, and is defined by

^
f (x) :=

1

2
[f(x) + f (a+ b− x)] , x ∈ [a, b] .

The anti symmetrical transform of f on the interval [a, b] is denoted by
∼
f [a,b]or simply

∼
f

and is defined by
∼
f(x) :=

1

2
[f(x)− f (a+ b− x)] , x ∈ [a, b] .

It is obvious that
^
f +

∼
f = f for any function f .

If f is convex on [a, b], then
^
f is also convex on [a, b]. But, when

^
f is onvex on [a, b], f

may not be convex on [a, b] ( [1]).
In [1], Dragomir introduced symmetrized convexity concept as follow:

Definition 1.5. A function f : [a, b]→ R is said to be symmetrized convex (concave)on

[a, b] if symmetrical transform
^
f is convex (concave) on [a, b].

Dragomir extends the Hermite-Hadamard inequality to the class of symmetrized convex
functions as follow:

Theorem 1.5 ([1]). Assume that f : [a, b]→ R is symmetrized convex on the interval
[a, b], then the following Hermite-Hadamard inequalities hold

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
. (8)

Theorem 1.6 ([1]). Assume that f : [a, b]→ R is symmetrized convex on the interval
[a, b]. Then the following bounds hold

f

(
a+ b

2

)
≤

^
f (x) =

1

2
[f(x) + f(a+ b− x)] ≤ f(a) + f(b)

2
(9)

for any x ∈ [a, b].

Corollary 1.1. If f : [a, b]→ R is symmetrized convex on the interval [a, b] and w : [a, b]→
[0,∞)is integrable on [a, b], then

f

(
a+ b

2

)∫ b

a
w(x)dx ≤

∫ b

a
f(x)w(x)dx ≤ f(a) + f(b)

2

∫ b

a
w(x)dx.

Theorem 1.7 ([1]). Assume that f : [a, b] ⊆ (0,∞) → R is symmetrized convex on the
interval [a, b]. Then for any x, y ∈ [a, b] with x 6= y the Hermite-Hadamard inequalities
hold

1

2

[
f

(
x+ y

2

)
+ f

(
a+ b− x+ y

2

)]
(10)

≤ 1

2 (y − x)

[∫ y

x
f(t)dt+

∫ a+b−x

a+b−y
f(t)dt

]
≤ 1

4
[f(x) + f(y) + f (a+ b− x) + f (a+ b− y)] .
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For a function f : [a, b] ⊆ R\ {0}→C, the symmetrical transform of f on the interval

[a, b], is denoted by
^
Hf [a,b] or simply

^
Hf and is defined by

^
Hf(x) :=

1

2

[
f(x) + f

(
abx

(a+ b)x− ab

)]
, x ∈ [a, b] .

Definition 1.6 ([8]). A function f : I ⊆ R\ {0}→ R is said to be symmetrized harmonic

convex (concave)on [a, b] if
^
Hf is harmonic convex (concave) on I.

The results, similar to those mentioned above for the symmetrized convex function class
were found by Wu et. al., in [8], in the case of harmonic symmetrized convex functions
class.

Theorem 1.8 ([8]). Assume that f : [a, b] ⊆ R\ {0}→ R is symmetrized harmonic convex
and integrable on the interval [a, b]. Then the Hermite-Hadamard type inequalities hold

f

(
2ab

a+ b

)
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ f(a) + f(b)

2
. (11)

Theorem 1.9 ([8]). Assume that f : [a, b] ⊆ R\ {0}→ R is symmetrized harmonic convex
on the interval [a, b]. Then the following bounds hold

f

(
2ab

a+ b

)
≤

^
Hf (x) =

1

2

[
f(x) + f

(
abx

(a+ b)x− ab

)]
≤ f(a) + f(b)

2
(12)

for any x ∈ [a, b].

Theorem 1.10 ([8]). Assume that f : [a, b] ⊆ R\ {0} → R is symmetrized harmonic
convex on the interval [a, b]. Then the following Hermite-Hadamard inequalities hold

1

2

[
f

(
2xy

x+ y

)
+ f

(
2abxy

2xy (a+ b)− ab(x+ y)

)]
(13)

≤ xy

2 (y − x)

[∫ y

x

f(t)

t2
dt+

∫ abx
(a+b)x−ab

aby
(a+b)y−ab

f(t)

t2
dt

]

≤ 1

4

[
f(x) + f(y) + f

(
abx

(a+ b)x− ab

)
+ f

(
aby

(a+ b) y − ab

)]
.

for any x, y ∈ [a, b] with x 6= y.

Motivated by the above results, in this paper the concept of the symmetrized p-convex
function is introduced and some Hermite-Hadamard type inequalities is established. Some
examples of interest are provided as well.

2. Symmetrized p-Convexity

For a function f : [a, b] ⊆ (0,∞)→ R, the p-symmetrical transform of f on the interval
[a, b] is denoted by P(f ;p),[a,b] or simply P(f ;p) and is defined by

P(f ;p)(x) :=
1

2

[
f(x) + f

(
[ap + bp − xp]1/p

)]
, x ∈ [a, b] .

The anti p-symmetrical transform of f on the interval [a, b] is denoted by AP(f ;p),[a,b] or
simply AP(f ;p) and is defined by

AP(f ;p)(x) :=
1

2

[
f(x)− f

(
[ap + bp − xp]1/p

)]
, x ∈ [a, b] .
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It is obvious that P(f ;p) +AP(f ;p) = f for any function f. Also, it is seen that P(f ;1)(x) =

1
2 [f(x) + f (a+ b− x)] =

^
f (x) and P(f ;−1)(x) = 1

2

[
f(x) + f

(
abx

(a+b)x−ab

)]
=

^
Hf(x).

If f is p-convex on [a, b], then P(f ;p) is also p-convex on [a, b]. Indeed, for any x, y ∈ [a, b]
and t ∈ [0, 1] it is easily seen that

P(f ;p)([tx
p + (1− t)yp]1/p)

=
1

2

[
f([txp + (1− t)yp]1/p) + f

(
[ap + bp − txp − (1− t)yp]1/p

)]
=

1

2

[
f([txp + (1− t)yp]1/p) + f

(
[t (ap + bp − xp) + (1− t) (ap + bp − yp)]1/p

)]
≤ t

1

2

[
f(x) + f

(
[ap + bp − xp]1/p

)]
+ (1− t)1

2

[
f(y) + f

(
[ap + bp − yp]1/p

)]
= tP(f ;p)(x) + (1− t)P(f ;p)(y).

Remark 2.1. If P(f ;p) is p-convex on [a, b] for a function f : [a, b] ⊆ (0,∞)→ R, then
the function f is nor necessary p-convex on [a, b]. For example, let p = −1, consider the
function f(x) = − lnx, x ∈ (0,∞). The function f is not −1-convex (or harmonically
convex), but P(f ;−1) is −1-convex [8].

Definition 2.1. A function f : [a, b] ⊆ (0,∞)→ R is said to be symmetrized p-convex
(p-concave)on [a, b], if p-symmetrical transform P(f ;p) is p-convex (p-concave) on [a, b].

Example 2.1. Let a, b ∈ R with 0 < a < b and α ≥ 2. Then the function f : [a, b] →
R, f(x) = (xp − ap)α−1 , p > 0, (or f(x) = (ap − xp)α−1 , p < 0) is p-convex on [a, b].
Indeed, for any u, v ∈ [a, b] and t ∈ [0, 1] by convexity of the function g(ς) = ςα−1,ζ ≥ 0,
it is easily seen that

f([tup + (1− t)vp]1/p) = (tup + (1− t)vp − ap)α−1

= (t [up − ap] + (1− t) [vp − ap])α−1

≤ t (up − ap)α−1 + (1− t) (vp − ap)α−1

= tf(u) + (1− t)f(v).

Thus P(f ;p) is also p-convex on [a, b]. Therefore, f is symmetrized p-convex function.

Example 2.2. Let α ≥ 2. Then the function f : [a, b] ⊆ (0,∞)→ R, f(x) = (bp − xp)α−1 ,

p > 0, (or f(x) = (xp − bp)α−1 , p < 0) is p-convex on [a, b] .Therefore f is symmetrized
p-convex function.

Example 2.3. Let α ≥ 2. Then the function f : [a, b] ⊆ (0,∞)→ R, f(x) = (xp − ap)α−1+

(bp − xp)α−1 , p > 0, (or f(x) = (ap − xp)α−1 + (xp − bp)α−1 , p < 0) is symmetrized p-
convex function.

Now if PC[a, b] is the class of p-convex functions defined on I and SPC[a, b] is the class
of symmetrized p-convex functions on [a, b] then

PC[a, b] ⊆ SPC[a, b].

Also, if [c, d] ⊂ [a, b] and f ∈ SPC[a, b], then this does not imply in general that f ∈
SPC[c, d].

Proposition 2.1. Let f : [a, b] ⊆ (0,∞)→ R be a function and g(x) = x1/p, x > 0, p 6= 0.
f is symmetrized p-convex on the interval [a, b] if and only if f ◦ g is symmetrized convex
on the interval g−1 ([a, b]) = [ap, bp] (or [bp, ap]).
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Proof. Let f be a symmetrized p-convex function on the interval [a, b] and x, y ∈ g−1 ([a, b])
be arbitrary, then there exist u, v ∈ [a, b] such that x = up and y = g(v) = vp

^

(f ◦ g)(tx+ (1− t)y) (14)

=
1

2
[(f ◦ g) (tx+ (1− t)y) + (f ◦ g) (ap + bp − tx− (1− t)y)]

=
1

2
[(f ◦ g) (tup + (1− t)vp) + (f ◦ g) (ap + bp − [tup + (1− t)vp])]

= P(f ;p)([tu
p + (1− t)vp]1/p).

Since f is a symmetrized p-convex function on the interval [a, b], it is easily seen that

P(f ;p)([tu
p + (1− t)vp]1/p) ≤ tP(f ;p)(u) + (1− t)P(f ;p)(v) (15)

= t
1

2

[
f(u) + f

(
[ap + bp − up]1/p

)]
+ (1− t)1

2

[
f(v) + f

(
[ap + bp − vp]1/p

)]
= t

1

2
[(f ◦ g) (x) + (f ◦ g) (ap + bp − x)] + (1− t)1

2
[(f ◦ g) (y) + (f ◦ g) (ap + bp − vp)]

=
^

t (f ◦ g)(x) + (1− t)
^

(f ◦ g)(y).

By (14) and (15), the function f ◦ g is symmetrized convex on the interval [ap, bp] (or
[bp, ap]) is obtained.

Conversely, if f ◦ g is symmetrized convex on the interval [ap, bp] (or [bp, ap]) then it is
easily seen that f is symmetrized p-convex on the interval [a, b] by a similar procedure.
The details are omitted. �

Theorem 2.1. If f : [a, b] ⊆ (0,∞)→ R is symmetrized p-convex on the interval [a, b],
then the following Hermite-Hadamard inequalities hold

f

([
ap + bp

2

]1/p
)
≤ p

bp − ap

∫ b

a

f(x)

x1−pdx ≤
f(a) + f(b)

2
. (16)

Proof. Since f : [a, b] ⊆ (0,∞)→ R is symmetrized p-convex on the interval [a, b], then by
writing the Hermite-Hadamard inequality for the function P(f ;p)(x) it is obtained that

P(f ;p)

([
ap + bp

2

]1/p
)
≤ p

bp − ap

∫ b

a

P(f ;p)(x)

x1−p dx ≤
P(f ;p)(a) + P(f ;p)(b)

2
, (17)

where, it is easily seen that

P(f ;p)

([
ap + bp

2

]1/p
)

= f

([
ap + bp

2

]1/p
)
,
P(f ;p)(a) + P(f ;p)(b)

2
=
f(a) + f(b)

2
,

and
p

bp − ap

∫ b

a

P(f ;p)(x)

x1−p dx =
p

bp − ap

∫ b

a

f(x)

x1−pdx

Then by (17) required inequalities are got. �

Remark 2.2. In Theorem 2.1,
i.) if it is choosen as p = 1, then the inequalities (16) reduces to the inequalities (8) in

Theorem (1.5).
ii.) if it is choosen as p = −1, then the inequalities (16) reduces to the inequalities (11)

in Theorem (1.8).
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Remark 2.3. By helping Theorem 1.5 and Proposition 2.1, the proof of Theorem 2.1 can
also be given as follows :

Since f : [a, b] ⊆ (0,∞)→ R is symmetrized p-convex on the interval [a, b], f ◦ g is

symmetrized convex on the interval [ap, bp] (or [bp, ap]) with g(x) = x1/p, x > 0, p 6= 0. So,
by Theorem 1.5 it is obtained that

(f ◦ g)

(
ap + bp

2

)
≤ 1

bp − ap

∫ bp

ap
(f ◦ g) (x)dx ≤ (f ◦ g) (ap) + (f ◦ g) (bp)

2
,

i.e.

f

([
ap + bp

2

]1/p
)
≤ p

bp − ap

∫ b

a

f(x)

x1−pdx ≤
f(a) + f(b)

2
.

Theorem 2.2. If f : [a, b] ⊆ (0,∞)→ R is symmetrized p-convex on the interval [a, b].
Then for any x ∈ [a, b] the following bounds hold

f

([
ap + bp

2

]1/p
)
≤ P(f ;p) (x) ≤ f(a) + f(b)

2
. (18)

Proof. Since P(f ;p) is p-convex on [a, b], the inequality

f

([
ap + bp

2

]1/p
)

= P(f ;p)

([
ap + bp

2

]1/p
)
≤
P(f ;p)(x) + P(f ;p)([a

p + bp − xp]1/p)
2

= P(f ;p) (x)

holds for any x ∈ [a, b]. This give us the first inequality in (18).

Also, for any x ∈ [a, b], there exist a number t0 ∈ [0, 1] such that x = [t0a
p + (1− t0)bp]1/p.

Thus, by the p-convexity of P(f ;p) the following inequality hold

P(f ;p) (x) ≤ t0P(f ;p) (a) + (1− t0)P(f ;p) (b)

= P(f ;p) (a) =
f(a) + f(b)

2

which gives the second inequality in (18). �

Remark 2.4. In Theorem 2.2,
i.) if it is choosen as p = 1, then the inequalities (18) reduces to the inequalities (9) in

Theorem (1.6).
ii.) if it is choosen as p = −1, then the inequalities (18) reduces to the inequalities (12)

in Theorem (1.9).

Remark 2.5. By helping Theorem 1.6 and Proposition 2.1, the proof of Theorem 2.2 can
also be given as follows :

Since f : [a, b] ⊆ (0,∞)→ R is symmetrized p-convex on the interval [a, b], f ◦ g is

symmetrized convex on the interval [ap, bp] with g(x) = x1/p, x > 0, p 6= 0. So, by Theorem
1.6, it is obtained that

(f ◦ g)

(
ap + bp

2

)
≤

^

(f ◦ g)(xp) ≤ (f ◦ g) (ap) + (f ◦ g) (bp)

2
,

i.e.

f

([
ap + bp

2

]1/p
)
≤ P(f ;p) (x) ≤ f(a) + f(b)

2

for any x ∈ [a, b].
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Remark 2.6. If f : [a, b] ⊆ (0,∞)→ R is symmetrized p-convex on the interval [a, b],
then the following bounds hold

inf
x∈[a,b]

P(f ;p) (x) = f

([
ap + bp

2

]1/p
)

and

sup
x∈[a,b]

P(f ;p) (x) =
f(a) + f(b)

2
.

Corollary 2.1. If f : [a, b] ⊆ (0,∞)→ R is symmetrized p-convex on the interval [a, b]
and w : [a, b]→ [0,∞)is integrable on [a, b], then

f

([
ap + bp

2

]1/p
)∫ b

a

w(x)

x1−p dx ≤
∫ b

a

w(x)P(f ;p) (x)

x1−p dx ≤ f(a) + f(b)

2

∫ b

a

w(x)

x1−p dx. (19)

Moreover, if w is p-symmetric with respect to
[
ap+bp

2

]1/p
on [a, b], i.e. w(x) = w([ap + bp − xp]1/p)

for all x ∈ [a, b], then

f

([
ap + bp

2

]1/p
)∫ b

a

w(x)

x1−p dx ≤
∫ b

a

w(x)f (x)

x1−p dx ≤ f(a) + f(b)

2

∫ b

a

w(x)

x1−p dx. (20)

Proof. The inequality (19) follows by (18) multiplying by w(x)/x1−p ≥ 0 and integrating
over x on [a, b].

By changing the variable, it is seen that

∫ b

a

w(x)f
(

[ap + bp − xp]1/p
)

x1−p dx =

∫ b

a

w([ap + bp − xp]1/p)f (x)

x1−p dx.

Since w is p-symmetric with respect to
[
ap+bp

2

]1/p
, then∫ b

a

w([ap + bp − xp]1/p)f (x)

x1−p dx =

∫ b

a

w(x)f (x)

x1−p dx.

Thus∫ b

a

w(x)P(f ;p) (x)

x1−p dx =
1

2

∫ b

a

w(x)f (x)

x1−p dx+

∫ b

a

w(x)f
(

[ap + bp − xp]1/p
)

x1−p dx


=

∫ b

a

w(x)f (x)

x1−p dx

and by (19), the inequality (20) is got. �

Remark 2.7. The inequality (20) is known as weighted generalization of Hermite-Hadamard
inequality for p-convex functions (it is also given in Theorem 1.3). It has been shown now
that this inequality remains valid for the larger class of symmetrized p-convex functions f
on the interval [a, b].

Remark 2.8. By helping Corollary 1.1 and Proposition 2.1, the proof of Corollary 2.1
can also be given. The details is omitted.
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Remark 2.9. Let a, b, α ∈ R with 0 < a < b and α ≥ 2. Then the function f : [a, b] →
R, f(x) = (xp − ap)α−1 , p > 0, is symmetrized p-convex on [a, b]

i.) If the function

f(x) = (xp − ap)α−1

which is symmetrized p-convex on [a, b] in the inequality (19) is considered, then

1

2α−1

∫ b

a

w(x)

x1−p dx ≤
Γ(α)

2p (bp − ap)α−1

[
Jαap+ (w ◦ g) (bp) + Jαbp− (w ◦ g) (ap)

]
≤ 1

2

∫ b

a

w(x)

x1−p dx

for any w : [a, b]→ [0,∞) is integrable on [a, b] with g(x) = x1/p, x ∈ [ap, bp] .
ii.) If the function

w(x) = (xp − ap)α−1 + (bp − xp)α−1

which is p-symmetric with respect to
[
ap+bp

2

]1/p
in the inequality (20) is considered, then

f

([
ap + bp

2

]1/p
)
≤ Γ(α+ 1)

2 (bp − ap)α
[
Jαap+ (f ◦ g) (bp) + Jαbp− (f ◦ g) (ap)

]
≤ f(a) + f(b)

2
,

where g(x) = x1/p, x ∈ [ap, bp] .

iii.) Let ϕ be p-symmetric with respect to
[
ap+bp

2

]1/p
. If the function

w(x) =
[
(xp − ap)α−1 + (bp − xp)α−1

]
ϕ(x)

which is p-symmetric with respect to
[
ap+bp

2

]1/p
in the inequality (20) is considered, then

the following inequalities hold

f

([
ap + bp

2

]1/p
)[

Jαap+ (ϕ ◦ g) (bp) + Jαbp− (ϕ ◦ g) (ap)
]

≤
[
Jαap+ (fϕ ◦ g) (bp) + Jαbp− (fϕ ◦ g) (ap)

]
≤ f(a) + f(b)

2

[
Jαap+ (ϕ ◦ g) (bp) + Jαbp− (ϕ ◦ g) (ap)

]
which are the same of inequalities in (7). Where g(x) = x1/p, x ∈ [ap, bp] .

Theorem 2.3. Assume that f : [a, b] ⊆ (0,∞) → R is symmetrized p-convex on the
interval [a, b] with p ∈ R \ {0} . Then the following Hermite-Hadamard inequalities hold

1

2

[
f(

[
xp + yp

2

]1/p

) + f

([
ap + bp − xp + yp

2

]1/p
)]

(21)

≤ p

2 (yp − xp)

[∫ y

x

f(t)

t1−p
dt+

∫ [ap+bp−xp]1/p

[ap+bp−yp]1/p

f(t)

t1−p
dt

]

≤ 1

4

[
f(x) + f(y) + f

(
[ap + bp − xp]1/p

)
+ f

(
[ap + bp − yp]1/p

)]
.

for any x, y ∈ [a, b] with x 6= y.

Proof. Since P(f ;p),[a,b] is p-convex on [a, b], then P(f ;p),[a,b] is also p-convex on any subin-
terval [x, y] (or [y, x]) where x, y ∈ [a, b].
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By Hermite-Hadamard inequalities for p-convex functions, the inequalities

P(f ;p),[a,b]

([
xp + yp

2

]1/p
)
≤ p

yp − xp

∫ y

x

P(f ;p),[a,b](t)

t1−p
dt ≤

P(f ;p),[a,b](x) + P(f ;p),[a,b](y)

2

(22)
hold for any x, y ∈ [a, b] with x 6= y.

By definition of P(f ;p), it is easily seen that

P(f ;p),[a,b]

([
xp + yp

2

]1/p
)

=
1

2

[
f(

[
xp + yp

2

]1/p

) + f

([
ap + bp − xp + yp

2

]1/p
)]

,

∫ y

x

P(f ;p),[a,b](t)

t1−p
dt =

1

2

∫ y

x

1

t1−p

[
f(t) + f

(
[ap + bp − tp]1/p

)]
dt

=
1

2

∫ y

x

f(t)

t1−p
dt+

1

2

∫ y

x

f
(

[ap + bp − tp]1/p
)

t1−p
dt

=
1

2

∫ y

x

f(t)

t1−p
dt+

1

2

∫ [ap+bp−xp]1/p

[ap+bp−yp]1/p

f(t)

t1−p
dt

and

P(f ;p),[a,b](x) + P(f ;p),[a,b](y)

2

=
1

4

[
f(x) + f(y) + f

(
[ap + bp − xp]1/p

)
+ f

(
[ap + bp − yp]1/p

)]
.

Thus, by (22) the desired the inequalities (21) are obtained. �

Remark 2.10. By helping Theorem 1.7 and Proposition 2.1, the proof of Theorem 2.3
can also be given. The details is omitted.

Remark 2.11. If x = a and y = b are choosen in (21), then the inequalities (16) are

obtained. If y = [ap + bp − xp]1/p is choosen for a given x ∈ [a, b], x 6=
[
ap+bp

2

]1/p
, then

from (21) the inequality

f

([
ap + bp

2

]1/p
)
≤ p

ap + bp − 2xp

∫ [ap+bp−xp]1/p

x

f(t)

t1−p
dt ≤ 1

2

[
f(x) + f

(
[ap + bp − xp]1/p

)]
,

(23)
hold provided that f : [a, b] ⊆ (0,∞)→ R is symmetrized p-convex on the interval [a, b].

Multiplying the inequalities (23) by 1
x1−p , then integrating the resulting inequality over

x, the following refinement of the first part of (16)

f

([
ap + bp

2

]1/p
)

≤ p2

(bp − ap)

∫ b

a

[
1

x1−p (ap + bp − 2xp)

∫ [ap+bp−xp]1/p

x

f(t)

t1−p
dt

]
dx

≤ p

bp − ap

∫ b

a

f(x)

x1−pdx,

hold provided that f : [a, b] ⊆ (0,∞)→ R is symmetrized p-convex on the interval [a, b].

When the function is p-convex, the following inequalities are obtained as well:
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Remark 2.12. If f : [a, b] ⊆ (0,∞) → R is p-convex, then from (21) the following
inequalities

f

([
ap + bp

2

]1/p
)

(24)

≤ 1

2

[
f

([
xp + yp

2

]1/p
)

+ f

([
ap + bp − xp + yp

2

]1/p
)]

≤ p

2 (yp − xp)

[∫ y

x

f(t)

t1−p
dt+

∫ [ap+bp−xp]1/p

[ap+bp−yp]1/p

f(t)

t1−p
dt

]

≤ 1

4

[
f(x) + f(y) + f

(
[ap + bp − xp]1/p

)
+ f

(
[ap + bp − yp]1/p

)]
,

hold for any x, y ∈ [a, b] with x 6= y.
By multiplying the inequalities (24) by 1

(xy)1−p and integrating (24) over (x, y) on the

square [a, b]2 and dividing by p2

(bp−ap)2
, the following refinement of the first Hermite-

Hadamard inequality for p-convex functions holds

f

([
ap + bp

2

]1/p
)

≤ p2

2 (bp − ap)2

∫ b

a

∫ b

a

f

([
xp+yp

2

]1/p
)

(xy)1−p dxdy +

∫ b

a

∫ b

a

f

([
ap + bp − xp+yp

2

]1/p
)

(xy)1−p dxdy


≤ p2

2 (bp − ap)2

∫ b

a

∫ b

a

1

(xy)1−p (yp − xp)

[∫ y

x

f(t)

t1−p
dt+

∫ [ap+bp−xp]1/p

[ap+bp−yp]1/p

f(t)

t1−p
dt

]
dxdy

≤ p

(bp − ap)

∫ b

a

f(x)

x1−pdx.

Remark 2.13. In Theorem 2.3,
i.) if it is choosen as p = 1, then the inequalities (21) reduces to the inequalities (10)

in Theorem (1.7).
ii.) if it is choosen as p = −1, then the inequalities (21) reduces to the inequalities (13)

in Theorem (1.10).

3. Conclusions

The aim of this paper is to introduce the definition of symmetrized p-convexity for
the first time and to give some interesting examples and comparisons. Also, some new
Hermite-Hadamard type inequalities for this class of functions are obtained. Morever, The
obtained results are reduced to another obtained the results previously in the literature
in special cases.



1048 TWMS J. APP. ENG. MATH. V.10, N.4, 2020

References

[1] Dragomir, S. S., (2016), Symmetrized convexity and Hermite-Hadamard type inequalities, Journal of
Mathematical Inequalities, 10 (4), pp. 901-918.

[2] Fang, Z. B. and Shi, R., (2014), On the(p, h)-convex function and some integral inequalities, J. Inequal.
Appl., 2014 (45), 16 pages.
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[5] Kunt, M. and İşcan, İ., (2017), Hermite-Hadamard-Fejér type inequalities for p-convex functions, Arab
Journal of Mathematical Sciences, 23 (2), pp. 215-230.
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