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A GEOMETRICAL STUDY OF WANG-CHEN SYSTEM IN VIEW OF

KCC THEORY

M. K. GUPTA1, C. K. YADAV1, ANIL K. GUPTA1, §

Abstract. The present paper discuss the stability of Wang-Chen system from the ap-
proach of KCC theory. we show that the system is Jacobi unstable for any value of
parameter where as it is linear stable for some choosen parameter. We also show the
dynamics of deviation vector near the equilibrium point.

Keywords: Finsler Space; geodesics; KCC-theory; Jacobi stability; Wang-Chen system.
AMS Subject Classification: 53B40; 53C22; 53C60.

1. Introduction

In 1994, Sprott has proposed 19 distinct simple examples of chaotic flows with quadratic
non-linearities and these are distinct in the sense that there is no transformation of one
to another [1]. In the list Sprott E system is described by

dx

dt
= yz,

dy

dt
= x2 − y, dz

dt
= 1− 4x. (1)

There are five terms in which two are nonlinear. This system has a degenerate equilibrium
point in the sense that eigenvalues at the equilibrium point are λ1 = −1, λ2,3 = ±0.5i,
that is, one real number and conjugate pair of pure imaginary number. The equilibrium
point (0.25, 0.625, 0) is unstable. In the sprott E system, a modification has been made by
adding a control parameter in the first equation by Wang and Chen [2]. The Wang-Chen
system can be described as

dx

dt
= yz + a,

dy

dt
= x2 − y,

dz

dt
= 1− 4x,

(2)
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where a is the control parameter. They have obtain the eigenvalues for some chosen
values of parameter a and have also shown that the system has single stable node-focus
equilibrium point and preserves its chaotic dynamics. Through some simple coordinate
transformation on the Wang-Chen system, the different number of equilibria will be ob-
tained [3]. The horseshoe chaos in the Wang-Chen system is shown by Huan et al. by
using computer aided approach [4]. Wei and Wang constructed an extended form of Wang-
Chen system and its modified function projection on synchronisation was described in [5].
The coexistense of point, stable limit cycle and starange attractor in Wang-Chen system
demonstrated by Sprott et al. [6].

There are various method to discuss the stability of dynamical system. Some are well
established and some going to their development stage. For example the linear stability
and lyapunov stabilty methods are well established. Now, we study the dynamical system
through geometro-dynamical approach will be introduced independently by Kosambi [7],
Cartan [8] and Chern [9], known as KCC theory. In the KCC theory it is considered that
second order differential equation and geodesic equation are topologically equivalent in
the Finsler space. The KCC theory is a differential geometric theory of the variational
equation for the deviation equation of the whole trajectories to nearby ones [10].

2. KCC-Theory and Jacobi Stability

The terminology and basic concepts are reffered to [[7]-[20]]. Let (x1, x2, ...xn) = (x),

(dx
1

dt ,
dx2

dt , ...,
dxn

dt ) = (dxdt ) = y and t be (2n+1) co-ordinates in an open connected subset Ω

of the (2n+1)-dimensional euclidean space Rn×Rn×R1. Suppose that system of Second
Order Differential Equation (SODE) is of the form

d2xi

dt2
+ 2gi(xj , yj , t) = 0, i, j = 1, 2, ....., n . (3)

where each function gi is C∞ in a neighbourhood of initial points ((x)0, (y)0, t0) ∈ Ω.
The intrinsic geometric properties of (3) under a non-singular coordinate transforma-

tions of the type

xi = f i(x1, x2, ...xn), i = 1, 2, ....., n .

t = t,
(4)

were described by the five KCC- differential invariants, named after D. Kosambi[7], E.
Cartan[8] and S. S. Chern[9]. Let us define KCC-covariant derivative of a contravariant
vector field ξi(x) on Ω by [11, 12]

Dξi

dt
=
dξi

dt
+N i

jξ
j , (5)

where N i
j = ∂gi

∂yj
, is the coefficients of the non-linear connection and we have used the

Einstein summation convention throughout.
By putting ξi = yi and using (3), the above equation becomes

Dyi

dt
= N i

jy
j − 2gi = −εi, (6)

where εi is the contravariant vector field, called as first KCC- invariant, represents an
‘external force’ [12].

Now, we consider trajectories variation xi(t) of system (3) into nearby ones according
to

xi(t) = xi(t) + ξi(t)η , (7)
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where η denotes a parameter, with |η| small and ξi(t) are the components of contravariants
vector defined along the path xi = xi(t). Since x and x are solution of (3), it is not difficult

to see that ηξ̈ + (g − g) = 0, where g − g := g(t, x+ ηξ, ẋ+ ηξ̇)− g(t, x, ẋ). In the view of
g − g as a function of η, applying the mean value theorem and taking the limit as η → 0,
we get [11, 19, 20]

d2ξi

dt2
+ 2N i

j

dξj

dt
+ 2

∂gi

∂xj
ξj = 0 , (8)

Using the KCC-covariant differential (5), the above equation (8) becomes

D2ξi

dt2
= P i

j ξ
j , (9)

where

P i
j = −2

∂gi

∂xj
− 2glgijl + yl

∂N i
j

∂xl
+N i

lN
l
j +

∂N i
j

∂t
. (10)

Here gijl =
∂N i

j

∂yl
is the Berwald connection [11, 12]. The tensor P i

j is second KCC-invariant

or ‘deviation tensor’ of (3). The third, fourth and fifth invariants of the system (3) are
[11, 12]

P i
jk =

1

3

(
∂P i

j

∂yk
−
∂P i

k

∂yj

)
, P i

jkl =
∂P i

jk

∂yl
, Di

jkl =
∂gijk
∂yl

. (11)

The third, fourth and fifth invariants are called the torsion tensor, Riemann-curvature
tensor and Douglas curvature tensor respectively. Alternatively, we give another definition
for the third and fourth invariants as [12]

Bi
jk =

δN i
j

δxk
−
δN i

k

δxj
, (12)

and

Bi
jkl =

∂Bi
kl

∂yi
, (13)

where
δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
. (14)

2.1. Jacobi stability of dynamical system: Suppose that the trajectories xi=xi(t) of
(3) as curves in the Euclidean space (Rn, 〈· , ·〉), where 〈· , ·〉 is the canonical inner product
of the Rn. We assume that the deviation vector ξ satisfies the initial conditions

ξ(0) = O, ξ̇(0) = W 6= O,

where O ∈ Rn is the null vector. Let us consider an adapted inner product 〈〈· , ·〉〉 to the
deviation tensor ξ by

〈〈X,Y 〉〉 :=
1

〈W,W 〉
· 〈X,Y 〉,

for any vectors X,Y ∈ Rn. Obviously, ‖W‖2 := 〈〈W,W 〉〉 = 1. Then, for t ≈ 0+, the
trajectories of (3) are [19, 20, 21]
• bunching together if and only if the real part of the eigenvalues of deviation vector

P i
j (0) are strictly negative.

• dispersing if and only if the real part of eigenvalues of deviation vector P i
j (0) are

strictly positive.
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Now, we define the Jacobi stability for SODE based on above cosideration [19, 20]. In
a small vicinity of t0 this type of stability refers to the focusing tendency of trajectories
of (3) with respect to the variation (7) that satisfy the conditions

‖xi(t0)− xi(t0)‖ = 0, ‖ẋi(t0)− ẋ
i
(t0)‖ 6= 0.

Definition 2.1. The trajectory of (3) are called Jacobi stable at (x(t0), ẋ(t0)) if and only
if real parts of the eigenvalues of the deviation tensor P i

j |t0 are strictly negative, and Jacobi
unstable, otherwise.

A basic result of the KCC theory is the following [10]:
Two systems of the form (3) on Ω can be locally transfered, relative to equation (4), one

into another, if and only if the five KCC-invariants εi, P i
j , P

i
jk, P

i
jkl, D

i
jkl are equivalent

tensor. In particular, there exist coordinates (x) for which the Gi(x, y, t) vanish if and
only if all KCC-invariants are zero.

In two dimensional space the matrix form of the deviation tensor can be written as

P i
j =

(
P 1
1 P 1

2

P 2
1 P 2

2

)
, (15)

with eigenvalues as

λ± =
1

2

[
P 1
1 + P 2

2 ±
√

(P 1
1 − P 2

2 )2 + 4P 1
2P

2
1

]
. (16)

The eigenvalues are the solution of the equation

λ2 − (P 1
1 + P 2

2 )λ+ (P 1
1P

2
2 − P 1

2P
2
1 ) = 0. (17)

3. Jacobi Stability of the Wang-Chen System

The present section is devoted to the dynamical properties of Wang-Chen system by
differential geometric (KCC) approach. The nonlinear connection, Berwald connection
and deviation tensor are obtained.

Differentiating second equation of (2) with respect to t, we get

d2y

dt2
= 2x

dx

dt
− dy

dt
.

Substitute the value of dx
dt = yz+a from first equation of (2) and x = 1

4(1− dz
dt ) from third

equation of (2), then above equation becomes

d2y

dt2
− 1

2
(yz + a) +

1

2
(yz + a)

dz

dt
+
dy

dt
= 0. (18)

Again, from the third equation of (2) write x = 1
4(1− dz

dt ) and differentiating with respect

to t, we get dx
dt = −1

4
d2z
dt2

. Substitute the value of dx
dt in first equation of (2), we get

d2z

dt2
+ 4yz + 4a = 0. (19)

Let us introduce the new notation as y = x1, dydt = y1, z = x2, dzdt = y2, the equations (18)
and (19) yields the form

d2x1

dt2
− 1

2
(x1x2 + a) +

1

2
(x1x2 + a)y2 + y1 = 0.

d2x2

dt2
+ 4x1x2 + 4a = 0.

(20)
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3.1. The Nonlinear connection, Berwald connection and KCC invariants. The
second order differential formulation of Wang-Chen system is of the form

d2xi

dt2
+ 2gi(xi, yi) = 0, i = 1, 2, (21)

where

g1 = −1

4

[
(x1x2 + a)− (x1x2 + a)y2 − 2y1

]
,

g2 = 2(x1x2 + a).
(22)

The components of nonlinear connection N i
j = ∂gi

∂yj
are

N1
1 =

1

2
, N1

2 =
1

4
(x1x2 + a), N2

1 = 0, N2
2 = 0.

The components of Berwald connection Gi
jl =

∂N i
j

∂yl
, vanish identically. The components of

first KCC invariant, εi = 2gi −N i
jy

j , are given as

ε1 = −1

2
(x1x2 + a) +

1

4
(x1x2 + a)y2 +

1

2
y1,

ε2 = 4(x1x2 + a).
(23)

The components of deviation tensor of Wang-Chen system obtained by equation (10)
are as follows

P 1
1 =

1

4
+

1

2
(1− y2)x2,

P 1
2 =

1

2
x1 +

1

4
x1y2 +

1

4
x2y1 +

1

8
(x1x2 + a),

P 2
1 = −4x2, P 2

2 = −4x1.

(24)

Time variation of deviation tensor components are represented in figure 1.

3.2. Jacobi stability at the equilibrium point. The system (2) has only one equilib-
rium E(u, v, w) = (14 ,

1
16 ,−16a). In respect to system of SODE (20), the equilibrium point

is E(x1, x2) = ( 1
16 ,−16a).

The components of first KCC invariant at the equilibrium point E are identically equal
to zero, i.e.

ε1(E) = ε2(E) = 0,

The components of second KCC invariant (deviation tensor) are

P 1
1 =

1

4
− 8a, P 1

2 =
1

32
, P 2

1 = 64a, P 2
2 = −1

4
.

The Jacobi matrix at the equilibrium point is

P =

(
1
4 − 8a 1

32
64a −1

4

)
.

Its characteristics equation is

λ2 + 8aλ− 1

16
= 0, (25)

thereore eigenvalues are λ1 = −4a−
√
1+256a2

4 and λ2 = −4a+
√
1+256a2

4 , which shows that
λ1 is always negative and λ2 is always positive irespective of the choice of the parameter
a. Thus, we have:

Theorem 3.1. The equilibrium point E is Jacobi unstable.
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Figure 1. Time variation of deviation tensor component P 1
1 (t), P 1

2 (t), P 2
1 (t), P 2

2 (t),
trace(P (t)), det(P (t)), eigenvalue λ1 and eigenvalue λ2 respectively, for parameters value
a = 0.006. The initial conditions for the numerical integration are x1(0) = x2(0) =
x3(0) = 0.1.

4. Dynamics of deviation vector

In the view of equation (8), the trajectories behavior of dynamical system is described
by the behaviour of deviation vector near the equilibrium point. In this case equations
are
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d2ξ1

dt2
+
dξ1

dt
+

1

2
(x1x2 + a)

dξ2

dt
− 1

2
x2(1− y2)ξ1 − 1

2
x1(1− y2)ξ2 = 0,

d2ξ2

dt2
+ 4x2ξ1 + 4x1ξ2 = 0,

The deviation vector is obtained as

ξ(t) =
√

[ξ1(t)]2 + [ξ2(t)]2.

The instability exponents δi, i = 1, 2 analogous to lyapunove exponents defined as [18]

δi(E) = limt→∞
1

t
ln
ξi(t)

ξi0
, i = 1, 2, and δ(E) = limt→∞

1

t
ln
ξ(t)

ξ10
.

4.1. Dynamics of deviation vector near E. The dynamics of deviation vector near
the equilibrium point E is given by the differential equation,

d2ξ1

dt2
+
dξ1

dt
+ 8aξ1 − 1

32
ξ2 = 0,

d2ξ2

dt2
− 64aξ1 +

1

4
ξ2 = 0,

Time variation of deviation vector and instability exponents are represented in the figure
2.

5. Comparison in Linear and Jacobi stability

By linearising the Wang-Chen system (2) at the equilibrium point E, the Jacobian
matrix is

J(E) =


0 −16a − 1

16

−1
2 −1 0

−4 0 −1

 . (26)

Its characteristics equation is

λ3 + λ2 + (0.25 + 8a)λ+ 0.25 = 0. (27)

In respect of system of equation (2) the equilibria and eigenvalue of Wang-Chen system
are given in the following table as in the paper [2],

Table 1

Value of a Equilibria Eigenvalue Linear Stability
-0.005 (0.25, 0.0625, 0.08) −1.03140, 0.01570± 0.49208i Unstable
0.006 (0.25, 0.0625, -0.096) −0.96069, −0.01966± 0.50975i Stable
0.022 (0.25, 0.0625, -0.352) −0.84580, −0.07710± 0.53818i Stable
0.030 (0.25, 0.0625, -0.48) −0.78217, −0.10891± 0.55476i Stable
0.050 (0.25, 0.0625, -0.8) −0.60746, −0.19627± 0.61076i Stable

However, in view of theorem (3.1), the Wang-Chen system is Jacobi unstable for every
parameter a.
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Figure 2. Time variation of deviation vector component ξ1(t) in above left fig., ξ2(t)
in above right fig., δ1(t) in middle left fig., δ2(t) in middle right fig., δ(t) in below fig.
respectively for parameter value a = 0.006 (solid, red), a = 0.06 (dashed, blue), a = 0.6
(long dashed, black), a = 1 (ultra long dashed, orange). The initial conditions for the

numerical integration are ξ1(0) = ξ2(0) = 0 and ξ̇1(0) = 10−10, ξ̇2(0) = 10−9.

6. Conclusion

The Wang-Chen system has been investigsted from the view point of geometro-dynamical
method. This theory is known as KCC theory. We converted the first order system to
second order system by elimination of one equation. Then we appled the KCC theory
and obtained the KCC invariant. The KCC invariants described the intrinsic geometric
properties of Wang-Chen system. All the KCC invariant vanish except the first, second
and third. The second KCC invariant (deviation tensor) gives the Jacobi stability of the
system. At the equilibrium point the Wang-Chen system is Jacobi unstable for any values
of parameter because one of the eigenvalue is positive. However, it is both linear stable
and unstable for some choosen values of parameter as shown in the table 1 . The dynamics
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of deviation vector is represented near the equilibrium point. This show that the chaotic
nature of the system.
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