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Surpassing the classical limit 
in magic square game with distant 
quantum dots coupled to optical 
cavities
Sinan Bugu1*, Fatih Ozaydin2,3 & Tetsuo Kodera1

The emergence of quantum technologies is heating up the debate on quantum supremacy, usually 
focusing on the feasibility of looking good on paper algorithms in realistic settings, due to the 
vulnerability of quantum systems to myriad sources of noise. In this vein, an interesting example of 
quantum pseudo-telepathy games that quantum mechanical resources can theoretically outperform 
classical resources is the Magic Square game (MSG), in which two players play against a referee. Due 
to noise, however, the unit winning probability of the players can drop well below the classical limit. 
Here, we propose a timely and unprecedented experimental setup for quantum computation with 
quantum dots inside optical cavities, along with ancillary photons for realizing interactions between 
distant dots to implement the MSG. Considering various physical imperfections of our setup, we first 
show that the MSG can be implemented with the current technology, outperforming the classical 
resources under realistic conditions. Next, we show that our work gives rise to a new version of the 
game. That is, if the referee has information on the physical realization and strategy of the players, he 
can bias the game through filtered randomness, and increase his winning probability. We believe our 
work contributes to not only quantum game theory, but also quantum computing with quantum dots.

Quantum mechanical resources can enable some tasks such as superdense coding and teleporting an unknown 
state1 which are impossible to realize with classical resources. Many approaches to optimizing quantum resources 
for efficient quantum computation and quantum communication such as gate-model, quantum channel capacity, 
optimizing quantum memory, and algorithms have been studied2–12. On the other hand, speeding up classically 
possible computational tasks which are beyond the ability of any classical computer such as unsorted database 
search and factorization1 and some other devoted efforts13–15 in achieving supremacy have been attracting an 
intense attention. One of the most groundbreaking advances in quantum technologies is the recent claim of 
Google that they have achieved quantum supremacy16.

Surpassing the classically achievable limit in various tasks is also in the center of attraction. For example in 
quantum metrology, surpassing the classical shot noise limit has been studied extensively under various sce-
narios taking into account the standard decoherence channels and thermal noise17–23. Quantum resources also 
enable advantages in thermodynamics24–27. Quantum games—where “everyone wins”28, provide an interesting 
playground for investigating the advantages of utilizing various quantum weirdness over classical resources. 
Among quantum pseudo-telepathy games where quantum mechanical resources can theoretically outperform 
classical resources, a widely studied one is the so-called Magic Square game (MSG), in which two players, say 
Alice and Bob, play against a referee. In the MSG, players are allowed to communicate, share any resources and 
agree on any strategy, only until the game starts. The game is played on a 3× 3 square matrix with binary entries. 
Once the game starts, referee gives numbers a and b to Alice and Bob, respectively, where a, b ∈ {1, 2, 3} . Alice 
fills row a and Bob fills column b, i.e. each tell referee the numbers to fill. They win if the sum of numbers in row 
a (column b) is even (odd) and the intersecting element is the same. Otherwise, they lose, i.e. the referee wins. 
Let us illustrate one of the nine possible instances that referee gives Alice a = 2 , and Bob b = 3 . They will win 
if they can fill the row and column as {0, 0, 0}, {0, 0, 1} , respectively, or {0, 1, 1}, {0, 1, 0} , for example, resulting in 
two possible winning instances (i) and (ii) given in Table  1.

OPEN

1Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2‑12‑1 Ookayama, 
Meguro‑ku, Tokyo  152‑8552, Japan. 2Institute for International Strategy, Tokyo International University, 1‑13‑1 
Matoba‑kita, Kawagoe, Saitama 350‑1197, Japan. 3Department of Information Technologies, Isik University, Sile, 
Istanbul 34980, Turkey. *email: bugu.s.aa@m.titech.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-79295-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2020) 10:22202  | https://doi.org/10.1038/s41598-020-79295-x

www.nature.com/scientificreports/

The shortcoming of utilizing classical resources in playing the MSG is that no matter what strategy they 
choose, the players can win against the referee only in eight cases out of nine, resulting in the average winning 
probability 8/9. However, this winning probability could theoretically achieve unity if they could have shared a 
four-qubit entangled state given in Eq. (1), and applied an appropriate quantum strategy29.

where Alice holds the first two qubits and Bob holds the third and fourth qubits. This four qubit state is actually 
the composition of two EPR (Einstein–Podolsky–Rosen) pairs in the form 1√

2
(|01� − |10�)⊗ 1√

2
(|01� − |10�) , 

each shared by Alice and Bob, such that Alice (Bob) possesses the first and third (second and fourth) qubits. The 
strategy they determine before the game starts is as follows. According to the row (column) number given by 
the referee, Alice (Bob) applies one of the three two-qubit operations Aa ( Bb ), where a, b ∈ {1, 2, 3} , given in 
Eqs. (2) and (3). That is, following the above example, Alice applies A2 , and Bob applies B3.

Next, measuring their qubits, each obtains two classical bits and determine the third bit according to the parity 
conditions. Note that the measurement of each party do not provide a single result, but one of the possible results 
with some probability. However, thanks to the entangled state and quantum strategy, in the ideal case where 
there is no noise and experimental imperfections, the results of Alice and Bob are found to be both satisfying 
the parity conditions and that the intersecting number is the same. Following the same example ( a = 2 , b = 3 ), 
in addition to two instances given in Table 1, the instances (iii) through (viii) given in Table 2 could occur each 
with 1/8 probability, summing up to unity. For a more detailed example, let us take instance (iv), that after apply-
ing A2 and B3 , measurement results yield two classical bits {0, 1} for Alice and {1, 1} for Bob. To satisfy the parity 
conditions, Alice extends her two-bit string to {0, 1, 1} , and Bob to {1, 1, 1}.

However, quantum systems are very fragile that any source of imperfections during the process might affect 
the performance of the task, and the MSG is of no exception. Gawron et al.’s work on the noise effects in the 
MSG30 clearly showed that if qubits hold by Alice and Bob are subject to noise, that their four-qubit state is not 
the pure state in Eq. (1) but rather a mixed state, the average winning probability decreases and with increasing 
noise, the probability can drop well below the classical limit 8/9. This work was followed by others in various 
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Table 1.   Two possible winning instances for players Alice and Bob, if they are given a = 2 and b = 3 , 
respectively. They will win if Alice can fill the second row as {0, 0, 0} and Bob the third column as {0, 0, 1} , or 
{0, 1, 1} and {0, 1, 0} corresponding to the final matrices shown on left (i) and right (ii), respectively.

i Bob ii Bob

Alice

0

Alice

0

0 0 0 0 1 1

1 0

Table 2.   Given a = 2 for Alice and b = 3 for Bob under ideal conditions, in addition to two possible winning 
instances given in Table 1, any of these six winning instances can occur each with probability 1/8 by applying 
A2 and B3 and performing the measurement.
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settings31–35. Hence, although quantum advantage is imminent in theory, it is of great interest to design a physical 
system to bring this advantage to life and investigate the conditions for surpassing the classically achievable limit.

In this work, addressing this problem, we propose a few nanometer-sized silicon single quantum dots 
(SQDs)36–38 with bandgap small enough to allow spin-photon interaction based setup within the reach of cur-
rent technology. Electron spins confined in quantum dots provide a promising basis for quantum computation 
with potential for scaling and reasonably long coherence time39–43. In the basic proposal39, single spins form a 
logical basis with a single qubit operation via spin resonance. The silicon-based quantum dot has been studied 
intensively and attracted great interest thanks to its charge offset stability and compatibility with CMOS and 
quantum information technology44–49. Hence, progressive approaches based on quantum dots have been proposed 
in various areas of quantum information such as preparing multipartite entanglement via Pauli spin blockade in 
double quantum dot system50, and coupling photonic and electronic qubits in microcavity systems51,52. What is 
more, coupling quantum dots to nanophotonic waveguide53, and optical microcavity54 for quantum information 
processing have recently been experimentally demonstrated. By considering various physical imperfections, we 
first show that the MSG can be implemented in a quantum system outperforming the classical resources under 
realistic conditions. Next, thanks to our physical analysis, we design a new version of the game, that having 
information on the physical realization and strategy of the players, in order to decrease their winning probability, 
referee can bias the game.

Results
Our setup is based on quantum computation with quantum dots coupled to spatially separated optical cavities. 
In our setup, each spin of a quantum dot constituting each logical qubit of Alice and Bob is coupled to the optical 
field of the cavity. Introducing ancillary photons, quantum operations on two distant qubits of each player are 
realized through photon-spin interactions. That is, as illustrated in Fig. 1 each two-qubit operation on logical 
qubits is extended to an equivalent three-qubit operation which is realized by only single-qubit operations on 
photons or spins, and two-qubit operations on photon-spin pairs. As already considered in many works55 and 
explained in Methods section, our configuration realizes a controlled-phase CP(π − θ) gate between spin and 
photon, which reduces to a controlled-Z (CZ) gate in the ideal condition for θ = 0 , with CZ = CP(π) . Hence, 
before considering physical imperfections and taking into account the effect of finite θ on winning probability, 
we first decompose each two-qubit unitary operation in terms of single-qubit gates (detailed in Methods section) 
and CZ gates, and then extend the decomposed two-qubit circuits to three-qubit circuits.

As controlled-Not (CNOT) gates with single qubit gates constitute a universal set, any unitary operation can 
be decomposed in terms of these gates1,56. What is more, a CNOT is equivalent to a CZ up to two Hadamard 
(Had) gates applied to the target qubit before and after the CZ gate, i.e. CNOT1,2 ≡ Had2.CZ.Had2 , where the 
superscript of single qubit gates represent which qubit it is applied to, and we use CNOT1,2 for the first qubit 
being the control and second qubit being the target qubit, and CNOT2,1 for the opposite case. For each operation 
Aa (and Bb ), we find the decomposition Ad

a in terms of CNOT and single qubit gates, and then the extension to 
three-qubit circuit Ae

a , and finally the circuit ACZ
a  consisting of only CZ and single qubit gates. We are now ready 

to present the decompositions we find for the two-qubit operations given in Eqs. (2) and (3), as
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Figure 1.   Extending each two-qubit operation on two spin qubits denoted as q1 and q2 , to a three-qubit 
operation via an ancillary photon, so that any two-qubit operation could be realized on spatially separated spin 
qubits.
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Unlike other four operations, requiring not one but two CNOT gates in the decomposition, A1 and B1 are going 
to play a significant role in the physical realization of the task, and give rise to a new version of the game.

For extending the decomposed two-qubit (spin–spin) circuits to three-qubit (spin–pho-
ton–spin) circuits as illustrated in Fig. 1, we will make use of two-qubit SWAP gates, which can be realized as 
SWAP ≡ CNOT1,2.CNOT2,1.CNOT1,2 . Our strategy for realizing the interaction between two spins via a three-
qubit operation using only two-qubit gates is as follows. For each player, the ancillary photon is sent to the first 
cavity to interact several times. Before and after each interaction which realizes a CZ gate between the photon 
and the spin, Hadamard gates are applied to both qubits appropriately, so that three CNOT gates equivalent to a 
SWAP gate are realized. That is, quantum states of the first spin and ancillary photon are swapped. The photon 
is then sent to the other cavity containing the second spin. Through interactions realizing CZ gates, and single 
qubit operations on spin and photon, the actual operation is realized. Finally, the photon is sent back to the first 
cavity to swap back the quantum state with the spin. The overall operation is equivalent to the corresponding 
two-qubit operation of the player. We illustrate the circuit diagram for each overall operation in Fig. 2, red and 
the corresponding experimental setup in Fig. 3.

We start with the initial state (in Eq. 1) and two ancillary photons each in |0� state in the physical order of 
qubits as Alice1,AncillaA,Alice2 and Bob1,AncillaB,Bob2 , which can be written as

(9)Bd3 =R1
y(π/2).R

2
z (π).R

2
y(π).CNOT

1,2.R1
y(π/2).R

1
z (π).R

2
y(π/2).

(10)|�� = (SWAP ⊗ id ⊗ id ⊗ SWAP).(|0�A ⊗ |φ� ⊗ |0�B),

Figure 2.   Circuit diagrams for realizing the operations of players. Blue H gate represent a Hadamard gate, 
purple gates represents Controlled-Z (CZ) gate or Rx , Ry , and Rz gates which are rotation around x, y, and z axis, 
respectively. Referee gives the row number a to Alice and column number b to Bob. Alice applies Aa and Bob 
applies Bb , each to his/her two spin qubits ( q1 and q2 ) in distant optical cavities through an ancillary photon. As 
the photon passes through the cavity, the interaction realizes a CZ operation between the photon and spin in the 
ideal conditions. We used IBM qiskit57 to draw our decomposed circuit diagrams.
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where id is the single qubit identity operator. Note first that this writing is only for the sake of clarity to explain 
the physical order of the qubits, hence the SWAP operations in Eq. (10) are not taken into account in the physical 
realization. Note also that for simplicity in tracing out operations during calculations, we start by swapping the 
ancillary photon with the first photon of Alice, while we swap the ancillary photon with the second photon of 
Bob. With a, b ∈ {1, 2, 3} , extended three-qubit operations Ae

a and Beb are defined as

Upon receiving the number a (b) from the referee, Alice (Bob) applies the operation Ae
a ( Beb ). Next step is to trace 

out the ancillary qubits, and finally perform the measurements. Under ideal conditions, as the ancillary qubits 
are back in their initial |0� states separable from the logical qubits, tracing them out will not disturb them. Note 
that as these measurements are not Bell measurements, they can be performed on distant spin qubits separately.

Physical imperfections.  Neglecting the imperfections such as the decoherence or absorption of photons 
between distant cavities, major physical imperfections we take into account in this analysis are due to Q-factor 
of the chosen optical cavity, coherence of qubits and the coupling, which all contribute to the imperfection in 
the desired operation between spin qubits and photon qubits. In general, according to the technology used, the 
realized operation might deviate from the ideal CZ ≡ CP(π) to CP(π − θ) . Following our decomposition and 
extension, it is straightforward to take this effect into account by simply replacing each CZ in the circuits with 
CP(π − θ) . This time, final states of the ancillary qubits will not be |0� , and measurement result on each qubit 
pair will not yield 1/8, but rather a function of θ . We plot the success probability Ps for each {a, b} in Fig. 4. As we 
expected, a = 1 and b = 1 is the worst case for players. On the contrary to the other cases, the decompositions of 
both A1 and B1 contain not one but two CNOT gates, they require two imperfect CZ gates in the realistic settings, 
which lead to a potential new version of MSG.

(11)Ae
a = (SWAP ⊗ id).(id ⊗ Ad

a).(SWAP ⊗ id),

(12)Beb = (id ⊗ SWAP).(Bdb ⊗ id).(id ⊗ SWAP).

Figure 3.   Proposed experimental setup for playing the game. Referee gives the number of row a (column b) to 
Alice (Bob) to fill with binary entries. The initial four-qubit state given in Eq. (1) is a composition of two EPR 
pairs (one illustrated with red and the other with green circles) shared by Alice and Bob. Each quantum dot (red 
or green circles) coupled to an optical cavity (blue toroids) constitutes one logical qubit. Following the extension 
strategy in Fig. 1, each two-qubit operation (given in Eqs. 2 and 3 ) on the logical qubits (distant quantum 
dots) is realized via an ancillary photon traveling between the optical cavities as: Following a SWAP operation 
between the photon and the spin coupled to the first cavity, the photon is sent to the second cavity to realize the 
desired operation. “Operations” represent the overall operations as decomposed in Eqs. (2) red and (3), each 
containing single qubit operations, and one or two CZ operations. Each CZ is realized through the interaction 
between ancillary photon and second spin qubit, qA2  (or qB2 ). Each “Op” represents either an identity operator, 
or a set of single qubit operations on photonic or spin qubit. After the “Operations”, the photon is sent back to 
the first cavity for swapping back the quantum state with the spin qubit. Two-spin qubits of each party are now 
ready to be measured for obtaining the binary entries.
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Discussion
Following the usual scenarios in quantum games, we assumed that Alice and Bob initially shared the ideal state 
given in Eq. (1), and did not take into account the imperfections in preparing the state, which could slightly 
decrease the overall success probabilities. However, as the initial state consists of two Bell states, its preparation 
is straightforward58,59. On the other hand, Alice and Bob could choose to prepare the initial state not based on 
four spin qubits, but two being the photonic qubits. Hence, the first SWAP gate (i.e. the imperfect CZ gates to 
realize it) could be removed, this time increasing the overall success probability.

For realizing the interaction between the incident photon and the spin qubit in not only in quantum dots but 
in also nitrogen-vacancy centers in diamond, and also atomic qubits, various optical microcavities are considered. 
Achieving ultra-high quality factor, microtoroid resonators with whispering gallery modes are promising60–63. 
Single-sided or double-sided cavities even with small Q-factors64,65 are also shown to be candidates for realizing 
atom-photon or spin-photon interactions with high success rate, enabling myriad quantum information pro-
cessing tasks from entanglement generation to quantum teleportation (see Refs.58,59,66,67 and references therein).

Note that, our particular setup herein is robust because due to Eq. (18), the parameter θ can take only two 
values, π , or 0, the latter being either for realizing the desired operation according to the conditions (as explained 
in the Methods section), or deviating from π only in the extremely imperfection conditions such as g ≪ 5

√
κγ  

(where g is the coupling strength of the cavity to the quantum dot, κ is the cavity decay rate and γ is the quantum 
dot spin decay rate), which is not anticipated with high-Q resonators. However, our analysis on the affect of 
physical imperfections on the success probability is more general for realization in any technology where the 
interaction yields the operation CP(π − θ) with a finite θ.

Our analysis showed that, if some of the possible cases for realizing a task requires more complicated opera-
tions, new versions of the task could arise. Suppose Alice and Bob are playing MSG against a referee, with the 
present experimental setup following our decomposition. Then the question lying in the heart of game theory is, 
whether the referee has information on their setup and strategy. If so, in order to decrease the winning probability 
of the players (that is increasing the own winning probability), instead of each round with an evenly distributed 
random numbers a and b for the row and column, respectively, the referee can tend to choose always a = 1 or 
b = 1 , and even a = b = 1.

In summary, taking into account possible physical imperfections, we proposed a physical setup for playing 
MSG feasible with the current technology. We found the limits of imperfections for surpassing the classical win-
ning probability. We also showed that, depending on the partial information, the referee can bias the game to 
increase his/her winning probability, which gives rise to a new version of the Magic Square game.

Methods
A quantum dot coupled to an optical cavity can be coupled to the cavity mode, and the interaction between the 
cavity and the quantum dot spin is governed by Jaynes-Cummings model with the Hamiltonian

where a† and a are the creation and annihilation operators of the cavity field, respectively. R and L denote the 
circular polarizations of the photon, associated with the optical transitions in the quantum dot (see Fig. 5) and 
index j runs for R and L. ω0 and ωC are the transition frequencies of the electronic energy levels and the fre-
quency of the cavity field, σ+ , σ− and σz are the raising, lowering and inversion operators of the quantum dot 
spin between the two corresponding levels, respectively. The Hamiltonian for the field and atomic reservoirs are 
denoted by HR , and we take ℏ = 1 . Applying a magnetic field, non-zero spin level splitting can be achieved, so 

(13)H =
∑

j=R,L

[
ωj0

2
σjz + ωjCa

†
j aj + igj(ajσj+ − a†j σj−)] +HR,

Figure 4.   Success probability Ps as a function of θ for each pair of numbers {a, b} referee can give Alice and 
Bob for filling the row and column, respectively, with binary entries. Here, θ represents the imperfection of 
the interaction between the logical qubit and the ancillary qubit, i.e. realizing not the desired CZ ≡ CP(π) but 
CP(π − θ) operation. Operations A1 and B1 (corresponding to a = 1 and b = 1 , respectively) are more complex 
than others that they contain more controlled operations, i.e. CP(π − θ) . Hence, success probability of players 
decreases faster for a = 1 or b = 1 , and the fastest for a = b = 1.
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that R and L polarized photons receive different phase shifts upon the interaction with the quantum dot-cavity 
system58, as explained below.

When an incident photon with frequency ωp is introduced to the cavity, the Langevin equations for a and σ− 
can be obtained for the low temperature reservoir and neglecting the vacuum input field, as

where g is the coupling strength of the cavity to the quantum dot, κ is the cavity decay rate and γ is the quantum 
dot spin decay rate. Assuming weak assumption limit �σz� = −1 and adiabatically eliminating the cavity mode, 
the reflection coefficient for the input photon pulse is found as59,68

If the quantum dot is uncoupled from the cavity, the reflection coefficient for the input photon becomes

The reflection coefficients can be obtained for the resonant condition ωp = ω0 = ωC as

Due to the spin-dependent optical transition rules55 as simply illustrated in Fig. 5, and optical Faraday rota-
tion, an |R� polarized incident photon receives a phase shift eiφ0 because, due to large level splitting, the spin state 
of the quantum dot is decoupled from the incident pulse58. However, if the incident photon is |L� polarized, it 
will receive a phase shift eiφ ( eiφ0 ) depending on the spin state of the quantum dot |−� (|+�) , where φ and φ0 are 
the arguments of r(ωp) and r0(ωp) , respectively. For the resonant condition, and g > 5

√
κγ  , one approximately 

finds φ = 0 and φ0 = π . Placing a π phase shifter to the photon reflection path, a controlled-Z gate between the 
electronic spin of the quantum dot and the incident photon is realized as |R�|+� → |R�|+� , |R�|−� → |R�|−� , 
|L�|+� → |L�|+� , |L�|−� → −|L�|−� . The implementations of single qubit operations on spins and incident 
photons can be realized effectively and with high fidelity via electric pulses69 and half wave plates70, respectively. 
One- and two-qubit operations we use in this work are
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Figure 5.   � type optical transitions possible in a quantum dot. The transitions |−� ↔ |e� and |+� ↔ |e� are 
associated with the left and right polarization of the photon, denoted as |L� and |R� respectively.
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