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RECIPROCAL VERSION OF PRODUCT DEGREE DISTANCE OF

CACTUS GRAPHS

K. PATTABIRAMAN1, M. A. BHAT1, §

Abstract. The reciprocal version of product degree distance is a product degree weighted

version of Harary index defined for a connected graphG asRDD∗(G) =
∑

{x,y}⊆V (G)

(dG(x).dG(y))
dG(x,y)

,

where dG(x) is the degree of the vertex x and dG(x, y) is the distance from x to y in G.
This article is attain the value of RDD∗ of different types of cactus such as triangular,
square and hexagonal chain cactus graphs.
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1. Introduction

All graphs considered in this paper are simple and connected. One of the oldest and
well-studied distance based graph invariants associated with a connected graph G is the
Wiener numberW (G), also termed as Wiener index in chemical or mathematical chemistry
literature, which is defined [13] as the sum of distance over all unordered vertex pairs in
G. The motivation for studying the quantity that we intend to call reciprocal product
degree distance of a graph, comes from the following observation. The sum of distances
between all pairs of vertices in a graph, namely, W (G) =

∑
u,v∈V (G)

dG(u, v). For more

results on Wiener index one may be referred to those in Dobrynin and Kochetova [2] and
its references.

Another distance-based graph invariant defined [15, 16] in a fully analogous manner to
Wiener index is the Harary index which is equal to the sum of reciprocal distances over
all unordered vertex pairs in G, that is, H(G) =

∑
{u,v}⊆V (G)

1
dG(u,v) .

Dobrynin and Kochetova [2] and Gutman [4] independently proposed a vertex-degree-
weighted version of Wiener index called degree distance, which is defined for a connected
graph G as DD(G) = 1

2

∑
u,v∈V (G)

(dG(u) + dG(v))dG(u, v), where dG(u) is the degree of the

vertex u in G. Tomescu [9] showed that the star is the unique graph with minimum degree
distance within the class on n-vertex connected graphs. Tomescu [9] deduced properties
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of graphs with minimum degree distance in the class of n-vertex connected graphs with
m ≥ n − 1 edges. Similarly, the product degree distance or Gutman index of a connected
graph G is defined as DD∗(G) = 1

2

∑
u,v∈V (G)

dG(u)dG(v)dG(u, v).

The reciprocal degree distance is defined in [1] as RDD(G) = 1
2

∑
u,v∈V (G)

(dG(u)+dG(v))
dG(u,v) .

Similarly, Su et al. [17] introduce the reciprocal product degree distance of graphs, which

is defined as RDD∗(G) = 1
2

∑
u,v∈V (G)

dG(u)dG(v)
dG(u,v) . In [18], Hamzeh et al. recently introduced

generalized degree distance of graphs. Hua and Zhang [5] have obtained lower and upper
bounds for the reciprocal degree distance of graph in terms of other graph invariants. The
chemical applications and mathematical properties of the reciprocal degree distance are
well studied in [1, 6, 10].

Cactus chain is a class of linear polymers it is known initially as Husimi tree [5, 6, 10].
Some mathematical aspects of this chain studied by various authors in [3,7]. A connected
graph with no edges lies in more than one cycle is called cactus graph, that is, each block
of a cactus graph is either an edge or a cycle. If all blocks of a cactus are triangle, then it
is called triangular cactus. If each C3 of a triangular cactus has at most two cut vertices
and each cut vertex is shared by exactly two triangles. If we replacing triangles in G by
C4 we obtain cacti whose block is C4, and it is called square cacti. If the cut vertices of
square Cacti are adjacent, we call such a cacti an Ortho-square, if the cut vertices are not
adjacent, then we say it is a para-square [1]. In this paper, we obtain the upper bounds
for reciprocal product degree distance of some classes of cactus graph such as triangular,
square and hexagonal chain cactus graphs.

2. Different cactus graphs

In this section, initially we take a chain triangular cactus. The length of the chain is the
number of triangles in the cactus. One can easily observe that all chain triangular cacti
of the same length are isomorphic. The length z of the chain triangular cactus graph is
denoted by Tk. First we find the exact value of reciprocal product degree distance of Tk.

Theorem 2.1. The reciprocal product degree distance of the chain triangular cactus Tk, k ≥

2 is RDD∗(Tk) = 4(4+9k−10k2+3k(1+3k))α1

k , where α1 =
k−1∑
i

1
i .

Proof: Suppose u and v be any two vertices of Tk. Let dG(u, v) = r. We have the following
three cases:
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(i) If dG(u, v) = 1, then there exists two pairs of vertices with dG(u) = dG(v) = 2, 2k
pairs of vertices with dG(u) = 2 and dG(v) = 4, and k − 2 pairs of vertices with dG(u) =
dG(v) = 4, such as u, v ∈ V (G).
(ii) If dG(u, v) = r, such that 2 ≤ r ≤ k − 1, then there exists k − r + 3 pairs of vertices
with dG(u) = dG(v) = 2, 2(k− r+ 1) pair of vertices with dG(u) = 2, and dG(v) = 4, and
k − r − 1 pairs of vertices with dG(u) = dG(v) = 4,like as u, v ∈ V (G).
(iii) If dG(u, v) = k, then there are four pairs of vertices with dG(u) = dG(v) = 2, like as
u, v ∈ V (G).

By the definition of reciprocal product degree distance of a graph, we obtain

RDD∗(Tk) =
∑

{u,v}⊆V (G)

(dG(u).dG(v))

dG(u, v)

=
∑

{u,v}⊆V (G), d(u,v)=r, r∈{2,...,k−1}

(dG(u).dG(v))

dG(u, v)
+

∑
{u,v}⊆V (G), d(u,v)=1

(dG(u).dG(v))

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=k

(dG(u).dG(v))

dG(u, v)

=
k−1∑
r=2

4(k − r + 3)

r
+
k−1∑
r=2

16(k − r + 1)

r
+
k−1∑
r=2

16(k − r − 1)

r

+2(4) + 2k(8) + 16(k − 2) +
4(2)(2)

k

= 4(−1− 2k + (3 + k)

k−1∑
i

1

i
) + 16(1− 2k + (1 + k)

k−1∑
i

1

i
)

+16(3− 2k + (−1 + k)
k−1∑
i

1

i
) + 8 + 16k + 16(k − 2) +

16

k
.

=

4(4 + 9k − 10k2 + 3k(1 + 3k)
k−1∑
i

1
i )

k
.

Polygamma functions gives the nth derivative of the digamma function ψn(z).The

Polygamma functions PolyGamma[n, z] are given by ψn(z) = dnψ(z)
dzn . Notice that the

Di-gamma function corresponds to ψ0(z). The general form ψn(z) is the (n+1)th, not the
nth, logarithmic derivative of the gamma function. The polygamma functions satisfy the

relation ψn(z) = (−1)n+1n!
∞∑
k=0

1
(z+k)(n+1) . For negative polygamma functions satisfy the

relation ψn(z) = (ψr(1) +
n∑
k=1

r!
(k)(r+1) ).

Theorem 2.2. The Reciprocal product degree distance of the Para-chain square cactus

graph Pk, k ≥ 2 is RDD ∗ (Pk) ≤ (2−4k−46k2+28k3)
(k−2k2) + 16kα1 − 8

(
− 4 − ψ0

(
1
2

)
+ 2k

(
1 +

ψ0
(
1
2

))
+ ψ0

(
3
2

)
− 2k

(
ψ0(1) + β1

))
, where α1 =

k−1∑
i

1
i and β1 =

1
2
+k∑
k=1

0!
k(0+1) .

Proof: Suppose u and v be two arbitrary vertices of Pk, and dG(u, v) = r. We have the
following cases:
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(i) If dG(u, v) = r and r = 2s + 1(0 ≤ s ≤ k − 2) then we have the following pairs of
vertices:

(a) There are four pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 4(k − s − 1) pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and

dG(v) = 4.

(ii) If dG(u, v) = 2 then we have the following pairs of vertices:
(a) There are 5(k−1)+1 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are two pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.
(c) There are k − 2 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(iii) If dG(u, v) = r and r = 2s(2 ≤ s ≤ k−1) then we have the following pairs of vertices:
(a) There are 4(k − s) pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are two pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.
(c) There are k − s− 1 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(iv) If dG(u, v = 2k − 1, then there are four pairs of vertices such as u, v ∈ V (G) with
dG(u) = dG(v) = 2.

(v) If dG(u, v) = 2k, then there is one pair of vertices such as u, v ∈ V (G) with dG(u) =
dG(v) = 2. Hence

RDD∗(Pk) =
∑

{u,v}⊆V (G)

(dG(u).dG(v))

dG(u, v)

=
∑

{u,v}⊆V (G), d(u,v)=2s+1, s∈{0,...,k−2}

(dG(u).dG(v))

dG(u, v)
+

∑
{u,v}⊆V (G), d(u,v)=2

(dG(u).dG(v))

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=2s, s∈{2,...,k−1}

(dG(u).dG(v))

dG(u, v)
+

∑
{u,v}⊆V (G), d(u,v)=2k−1

(dG(u).dG(v))

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=2k

(dG(u).dG(v))

dG(u, v)

=

k−2∑
s=0

4(4)

2s+ 1
+

k−2∑
s=0

4(k − s− 1)(8)

2s+ 1
+

(5(k − 1) + 1)(4)

2

+
2(8)

2
+

(k − 2)(16)

2
+

k−1∑
s=2

4(k − s)(4)

2s
+

k−1∑
s=2

2(8)

2s

+

k−1∑
s=2

(k − s− 1)(16)

2s
+

4(4)

2s− 1
+

(4)

2s

≤ −8

(
− 4 − ψ0

(
1

2

)
+ 2k

(
1 + ψ0

(
1

2

))
+ ψ0

(
3

2

)
− 2k

(
ψ0(1) +

1
2
+k∑

k=1

0!

k(0+1)

))

+8(2 − 2k + k

k−1∑
i

1

i
) + 8(−1 +

k−1∑
i

1

i
) + 8

(
3 − 2k + (−1 + k)

k−1∑
i

1

i

)
+

(5(k − 1) + 1)((2)(2))

2
+

2((2)(4))

2
+

(k − 2)((4)(4))

2
+

4((2)(2))

2k − 1
+

((2)(2))

2k

≤ −8

(
− 4 − ψ0

(
1

2

)
+ 2k

(
1 + ψ0

(
1

2

))
+ ψ0

(
3

2

)
− 2k

(
ψ0(1) +

1
2
+k∑

k=1

0!

k(0+1)

))

+16(2 − 2k + k

k−1∑
i

1

i
) +

2 − 36k + 50k2 − 36k3

k − 2k2
.
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≤ (2 − 4k − 46k2 + 28k3)

(k − 2k2)
+ 16k

k−1∑
i

1

i
− 8

(
− 4 − ψ0

(
1

2

)
+ 2k

(
1 + ψ0

(
1

2

))

+ψ0

(
3

2

)
− 2k

(
ψ0(1) +

1
2
+k∑

k=1

0!

k(0+1)

))
.

Next we find the reciprocal product degree distance of another kind of ortho-chain
square cactus graph Ok, k ≥ 5, shown in Figure 3.

Theorem 2.3. The reciprocal product degree distance of the ortho-chain square cactus

graph Qk, k ≥ 5 is RDD∗(Qk) = (408+1140k+250k2−708k3−298k4)
(6k+9k2+3k3)

+16(3+4k)α1, where α1 =

k−1∑
i

1
i .

Proof: Consider two arbitrary u and v vertices of Qk, let dG(u, v) = r. We have the
following cases:
(i) If dG(u, v) = 1 then we have the following pairs of vertices:

(a) There are k + 2 of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 2k pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.
(c) There are k − 2 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(ii) If dG(u, v) = 2 then we have the following pairs of vertices:
(a) There are k + 3 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 4(k−1) pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.
(c) There are k − 3 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(iii) If dG(u, v) = 3 then we have the following pairs of vertices:
(a) There are 3k pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 4(k − 3) + 2 pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and

dG(v) = 4.
(b) There are k − 4 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(iv) If dG(u, v) = r(4 ≤ r ≤ k − 1) then we have the following pairs of vertices:
(a) There are 4(k− r+ 3) pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 4(k − r) + 2 pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and

dG(v) = 4.
(b) There are k − r − 1 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(v) If dG(u, v) = k then we have the following pairs of vertices:
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(a) There are thirteen pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are two pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.

(vi) If dG(u, v) = k + 1 then there are six pairs of vertices such as u, v ∈ V (G)
with dG(u) = dG(v) = 2.
(vii) If dG(u, v) = k + 2 then there is one pair of vertices such as u, v ∈ V (G)
with dG(u) = dG(v) = 2.

RDD∗(Qk) =
∑

{u,v}⊆V (G)

(dG(u).dG(v))

dG(u, v)

=
∑

{u,v}⊆V (G),d(u,v)=1

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G),d(u,v)=2

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G),d(u,v)=3

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G), d(u,v)=r, r∈{4,...,k−1}

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=k

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G), d(u,v)=k+1

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=k+2

[dG(u).dG(v)]

dG(u, v)

= (k + 2)((2)(2)) + 2k((2)(4)) + (k − 2)((4)(4)) +
(k + 3)((2)(2))

2
+

4(k − 1)((2)(4))

2

+
(k − 3)((4)(4))

2
+

3k((2)(2))

3
+

(4(k − 3) + 2)((2)(4))

3
+

(k − 4)((4)(4))

3

+

k−1∑
r=4

4(k − r + 3)((2)(2))

r
+

k−1∑
r=4

(4(k − r) + 2)((2)(4))

r
+

k−1∑
r=4

(k − r − 1)((4)(4))

r

+
13((2)(2))

k
+

2((2)(4))

k
+

6((2)(2))

k + 1
+

((2)(2))

k + 2

= (k + 2)((2)(2)) + 2k((2)(4)) + (k − 2)((4)(4)) +
(k + 3)((2)(2))

2
+

4(k − 1)((2)(4))

2

+
(k − 3)((4)(4))

2
+

3k((2)(2))

3
+

(4(k − 3) + 2)((2)(4))

3
+

(k − 4)((4)(4))

3

+
13((2)(2))

k
+

2((2)(4))

k
+

6((2)(2))

k + 1
+

((2)(2))

k + 2
+

8

3
(−9 − 17k + 6(3 + k))

k−1∑
i

1

i
)

+
8

3
(37 − 34k + 6(1 + 2k))

k−1∑
i

1

i
+

8

3
(35 − 17k + 6(−1 + k))

k−1∑
i

1

i
)

=
(2(68 + 22k − 29k2 + 70k3 + 41k4))

(k(2 + 3k + k2))
+

8

3
(63 − 68k + 6(3 + 4k))

k−1∑
i

1

i

=
(408 + 1140k + 250k2 − 708k3 − 298k4)

(6k + 9k2 + 3k3)
+ 16(3 + 4k)

k−1∑
i

1

i
.

3. RDD∗ of chain hexagonal cactus

Replacing triangles in the definitions of triangular cactus, by cycles of length 6 we have
cacti whose every block is C6, and it is called hexagonal cacti, see Figure 4. One can
see that the internal hexagonal may differ in the way they connect to their neighbors,
if their cut-vertices are adjacent, we say that such a square is an Ortho-hexagonal and
if the cut-vertices are not adjacent, we call the square a para-hexagonal. We consider a
para-chain of length k, which is denoted by Lk as shown in Figure 4. Now we obtain the
value of reciprocal product degree distance of para-chain hexagonal cactus graph Lk.
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Theorem 3.1. The reciprocal degree distance of the para-chain hexagonal cactus graph

Lk k ≥ 3 is RDD∗(Lk) ≤ 4(2−129k+571k2−909k3+585k4)
3k(2−9k+9k2)

+ 16

(
7 − 4k + kα2 − kψ0

(
4
3

)
−

kψ0

(
5
3

)
+k(ψ0(1)+β2)+k(ψ0(1)+β3)

)
, where α2 =

k−2∑
i

1
i ,β2 =

2
3
+k∑
k=1

0!
k(0+1) ,β3 =

1
3
+k∑
k=1

0!
k(0+1) .

Proof: Suppose u and v be two arbitrary vertices of Lk, and dG(u, v) = r. We have the
following cases:
(i) If dG(u, v) = 1 then we have the following pairs of vertices:

(a) There are 2k + 4 of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 4(k−1) pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.

(ii) If dG(u, v) = 2 then we have the following pairs of vertices:
(a) There are 6k pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.

(ii)(b) There are 4(k − 1) pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and
dG(v) = 4.
(iii) If dG(u, v) = 3 then we have the following pairs of vertices:

(a) There are 10(k−1)+2 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 2 pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.
(c) There are k − 2 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(iv) If dG(u, v) = r and r = 3s + 1(1 ≤ s ≤ k − 2) then we have the following pairs of
vertices:

(a) There are 4(k− s+ 1) pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 4(k − s − 1) pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and

dG(v) = 4.
(v) If dG(u, v) = r and r = 3s + 2(1 ≤ s ≤ k − 2) then we have the following pairs of
vertices:

(a) There are 4(k − s) pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 4(k − s − 1) pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and

dG(v) = 4.
(vi) If dG(u, v) = r and r = 3s(2 ≤ s ≤ k − 1) then there are following pairs of vertices

(a) There are 8(k − s) pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 2 pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.
(c) There are k − s− 1 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(vii) If dG(u, v) = 3k − 2 then there are eight pair of vertices such as u, v ∈ V (G) with
dG(u) = dG(v) = 2.
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(viii) If dG(u, v) = 3k − 1 then there are four pair of vertices such as u, v ∈ V (G) with
dG(u) = dG(v) = 2.
(ix) If dG(u, v) = 3k then there is one pair of vertices such as u, v ∈ V (G) with dG(u) =
dG(v) = 2.

RDD∗(Lk) =
∑

{u,v}⊆V (G)

[dG(u).dG(v)]

dG(u, v)

=
∑

{u,v}⊆V (G),d(u,v)=1

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G),d(u,v)=2

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G),d(u,v)=3

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G), d(u,v)=3s+1, s∈{1,...,k−2}

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=3s+2, s∈{1,...,k−2}

[dG(u).dG(v)]

dG(u, v)
+

∑
d(u,v)=3s, s∈{2,...,k−1}

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=3k−2

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G), d(u,v)=3k−1

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=3k

[dG(u).dG(v)]

dG(u, v)

= (2k + 4)((2)(2)) + 4(k − 1)((2)(4)) +
6k((2)(2))

2
+

4(k − 1)((2)(4))

2
+

(10(k − 1) + 2)((2)(2))

3

+
2((2)(4))

3
+

(k − 2)((4)(4))

3
+ +

k−2∑
s=1

4(k − s+ 1)((2)(2))

(3s+ 1)
+

k−2∑
s=1

4(k − s− 1)((2)(4))

(3s+ 1)

+

k−2∑
s=1

4(k − s)((2)(2))

(3s+ 2)
+

k−2∑
s=1

4(k − s− 1)((2)(4))

(3s+ 2)
+

k−2∑
s=2

8(k − s)((2)(2))

3s
+

k−2∑
s=2

2((2)(4))

3s

+

k−2∑
s=2

(k − s− 1)((4)(4))

3s
+

8((2)(2))

3n− 2
+

4((2)(2))

3n− 1
+

((2)(2))

3n

≤ (2k + 4)((2)(2)) + 4(k − 1)((2)(4)) +
6k((2)(2))

2
+

4(k − 1)((2)(4))

2
+

(10(k − 1) + 2)((2)(2))

3

+
2((2)(4))

3
+

(k − 2)((4)(4))

3
− 16

9

(
− 6 + 4ψ0

(
4

3

)
+ 3k(1 + ψ0

(
4

3

)
− (4 + 3k)(ψ0(1) +

2
3
+k∑

k=1

0!

k(0+1)

)

−32

9

(
3k(1 + ψ0

(
4

3

)
) − 2(3 + ψ0

(
4

3

)
) + (2 − 3k)(ψ0(1) +

2
3
+k∑

k=1

0!

k(0+1)

)
) − 16

9

(
2

(
− 3 + ψ0

(
5

3

))

+3k(1 + ψ0

(
5

3

)
) − (2 + 3k)(ψ0(1) +

1
3
+k∑

k=1

0!

k(0+1)

)
) − 32

9

(
− 6 − ψ0

(
5

3

)
+ 3k(1 + ψ0

(
5

3

)
)

+(1 − 3k)(ψ0(1) +

1
3
+k∑

k=1

0!

k(0+1)

)
) +

32

3
(3 − 2k + k

k−2∑
i

1

i
) +

16

3
(−1 +

k−2∑
i

1

i
)

+
16

3
(4 − 2k + (−1 + k)

k−2∑
i

1

i
)) +

8((2)(2))

3n− 2
+

4((2)(2))

3n− 1
+

((2)(2))

3n

=
4(2 − 129k + 571k2 − 909k3 + 585k4)

3k(2 − 9k + 9k2)

+16

(
7 − 4k + k

k−2∑
i

1

i
− kψ0

(
4

3

)
− kψ0

(
5

3

)
+ k(ψ0(1) +

2
3
+k∑

k=1

0!

k(0+1)
+ k(ψ0(1) +

1
3
+k∑

k=1

0!

k(0+1)

))
.
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Theorem 3.2. The reciprocal product degree distance of the para-chain hexagonal cactus

graph Mk, k ≥ 4 is RDD∗(Mk) ≤ −60+351k+868k2−521k3+272k4+1268k5

3k(−1−k+4k2+4k3)
− 18(−6 + ψ0(52) +

2k(1 +ψ0(52)
)
− (1 + 2k)(ψ0(1) +β1)

)
+ 9
(

9− 10k+ (2 + 4k)(α1)
)
, where α1 =

k−1∑
i

1
i , and

β1 =

1
2
+k∑
k=1

0!
k(0+1) .

Proof: Suppose u and v be two arbitrary vertices of Mk, and dG(u, v) = r. We have the
following cases:

(i) If d(u, v) = 1 then we have the following pairs of vertices:
(a) There are 2k + 4 of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 4(k−1) pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.

(ii) If dG(u, v) = 2 then we have the following pairs of vertices:
(a) There are 5k pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 2k pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.
(c) There are (k − 2) pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(iii) If dG(u, v) = 3 then we have the following pairs of vertices:
(a) There are 5k + 2 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 6k−10 pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.

(iv) If dG(u, v) = 4 then we have the following pairs of vertices:
(a) There are 9(k−1)−2 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 2(k−1) pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.
(c) There are (k − 3) pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(v) If dG(u, v) = r and r = 2s + 1(2 ≤ s ≤ k − 2) then we have the following pairs of
vertices:

(a) There are 6(k−s+1)+2 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 6(k− s− 1) + 2 pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and

dG(v) = 4.

(vi) If dG(u, v) = r and r = 2s(3 ≤ s ≤ k − 1) then there are following pairs of vertices
(a) There are 10(k − s + 1) − 1 pairs of vertices such as u, v ∈ V (G) with dG(u) =

dG(v) = 2.
(b) There are 2(k − s + 1) pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and

dG(v) = 4.
(c) There are k − s− 1 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 4.

(vii) If dG(u, v) = 2k − 1 then there are following pair of vertices
(a) There are fourteen pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = 2.
(b) There are 2 pairs of vertices such as u, v ∈ V (G) with dG(u) = 2 and dG(v) = 4.

(viii) If dG(u, v) = 2k then there are ten pair of vertices such as u, v ∈ V (G) with
dG(u) = dG(v) = 2.
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(ix) If dG(u, v) = 2k + 1 then there are four pair of vertices such as u, v ∈ V (G) with
dG(u) = dG(v) = 2.

(x) If dG(u, v) = 2k + 2 then there is one pair of vertices such as u, v ∈ V (G) with
dG(u) = dG(v) = 2.

By the definition of reciprocal product degree distance of graph G;

RDD∗(Mk) =
∑

{u,v}⊆V (G)

[dG(u).dG(v)]

dG(u, v)

=
∑

{u,v}⊆V (G),d(u,v)=1

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G),d(u,v)=2

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G),d(u,v)=3

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G),d(u,v)=4

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=2s, s∈{2,...,k−2}

[dG(u).dG(v)]

dG(u, v)
+

∑
d(u,v)=2s+1, s∈{3,...,k−1}

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=2k−1

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G), d(u,v)=2k

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G), d(u,v)=2k+1

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G) ,d(u,v)=2k+2

[dG(u).dG(v)]

dG(u, v)

= (2k + 4)((2)(2)) + 4(k − 1)((2)(4)) +
5k((2)(2))

2
+

2k((2)(4))

2
+

(k − 2)((4)(4))

2

+
(5k + 2)((2)(2))

3
+

(6k − 10)((2)(4))

3
+

(9(k − 1) − 2)((2)(2))

4
+

2(k − 1)((2)(4))

4

+
(k − 3)((4)(4))

4
+

k−2∑
s=2

(6(k − s+ 1) + 2)((2)(2))

(2s+ 1)
+

k−2∑
s=2

(6(k − s− 1) + 2)((2)(4))

(2s+ 1)

+

k−1∑
s=3

(10(k − s+ 1) − 1)((2)(2))

(2s)
+

k−2∑
s=3

2(k − s+ 1)((2)(4))

(2s)
+

k−1∑
s=3

(k − s− 1)((4)(4))

(2s)

+
14((2)(2))

(2k − 1)
+

2((2)(4))

(2k − 1)
+

10((2)(2))

(2k)
+

4((2)(2))

(2k + 1)
+

((2)(2))

(2k + 2)

≤ −60 + 351k + 868k2 − 521k3 + 272k4 + 1268k5

3k(−1 − k + 4k2 + 4k3)
− 2

(
− 18 + 11ψ0

(
5

2

)
+ 6k(1 + ψ0

(
5

2

)
)

−(11 + 6k)(ψ0(1) +

1
2
+k∑

k=1

0!

k(0+1)
)

)
− 4

(
− 18 − ψ0

(
5

2

)
+ 6k(1 + ψ0

(
5

2

)
) + (1 − 6k)(ψ0(1) +

1
2
+k∑

k=1

0!

k(0+1)
)

)

+

(
33 − 50k + 2(9 + 10k)

k−1∑
i

1

i

)
+ 4(3 − 5k + 2(1 + k)

k−1∑
i

1

i
) + 4(9 − 5k + 2(−1 + k)

k−1∑
i

1

i
)

≤ −60 + 351k + 868k2 − 521k3 + 272k4 + 1268k5

3k(−1 − k + 4k2 + 4k3)
− 18

(
− 6 + ψ0

(
5

2

)
+ 2k(1 + ψ0

(
5

2

)
)

−(1 + 2k)(ψ0(1) +

1
2
+k∑

k=1

0!

k(0+1)
)

)
+ 9

(
9 − 10k + (2 + 4k)

k−1∑
i

1

i

)
.

LetG be a connected graph constructed from pairwise disjoint connected graphsG1, . . . , Gr
as follows;

Select a vertex of G1, a vertex of G2, and identify these two vertices. Then continue
in this manner inductively. Note that the graph G constructed in this way has a tree-like
structure, the Gis being its building stones. Usually say that G is obtained by point-
attaching from G1, . . . , Gr and that Gis are the primary subgraphs of G. A particular case
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of this construction is the decomposition of a connected graph into blocks (see [3]). Cactus
chains which we considered in this paper are particular cases of point attaching of cycles
of length three, four and six. As another example consider the graph Q(m, k) constructed
in the following manner: consider the graph Km and m copies of Kk. The graph Q(m, k)
is obtained by identifying each vertex of Km with a vertex of a unique Kk . Finally, we
compute the value of reciprocal product degree distance of the graph Q(m, k), m, k ≥ 2.

Theorem 3.3. The reciprocal product degree distance of the graph Q(m, k)(m, k ≥ 2) is

RDD∗(Q(m, k)) = 1
6m
(
− 13 + k(10− 13m) + 22m− 12m2 + 3m3 + k4(2 +m)− k3(8 +

m) + 3k2(2 +m2)
)
.

Proof: Suppose u and v be two arbitrary vertices of Q(m, k), and dG(u, v) = r. We have
the following cases:

(i) If dG(u, v) = 1 then there are m(k−1)(k−2)
2 of vertices such as u, v ∈ V (G) with

dG(u) = dG(v) = k − 1, m(k − 1) pairs of vertices such as u, v ∈ V (G) with
dG(u) = k − 1 and dG(v) = m+ k − 2.

And there are m(m−1)
2 pairs of vertices such as u, v ∈ V (G) with dG(u) = dG(v) = m+k−2.

(ii) If dG(u, v) = 2 then there are m(m − 1)(k − 1) pairs of vertices such as u, v ∈ V (G)
with dG(u) = k − 1 and dG(v) = m+ k − 2.

(iii) If dG(u, v) = 3 then there are m(k−1)2(m−1)
2 pairs of vertices such as u, v ∈ V (G) with

dG(u) = dG(v) = k − 1.
We know reciprocal degree distance of a connected graph is,

RDD∗(Q(m, k)) =
∑

{u,v}⊆V (G)

[dG(u).dG(v)]

dG(u, v)
=

∑
{u,v}⊆V (G),d(u,v)=1

[dG(u).dG(v)]

dG(u, v)

+
∑

{u,v}⊆V (G),d(u,v)=2

[dG(u).dG(v)]

dG(u, v)
+

∑
{u,v}⊆V (G),d(u,v)=3

[dG(u).dG(v)]

dG(u, v)

=
m(k − 1)(k − 2)

2
(k − 1)2 +m(k − 1)2(m+ k − 2) +

m(m− 1)

2
(m+ k − 2)2

+
m(m− 1)(k − 1)2(m+ k − 2)

2
+

m(m−1)(k−1)2

2
(k − 1)2

3

=
1

6
m

(
− 13 + k(10 − 13m) + 22m− 12m2 + 3m3 + k4(2 +m) − k3(8 +m) + 3k2(2 +m2)

)
.
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