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EXACT SOLUTION WITH DUST AND SHELL-CROSSINGS FOR LTB

INHOMOGENEOUS COSMOLOGICAL MODELS

AHMED M. AL-HAYSAH1, A. H. HASMANI2, §

Abstract. We describe the solution of the Lemaitre-Tolman-Bondi (LTB) inhomoge-
neous cosmological models for a spherically symmetric with dust and an interaction term
modeled as anisotropic pressure is also studied and a differential equation governing the
time evolution is derived. The field equations are fully integrated for all parameter sub-
cases and compared with analogous subcases of LTB dust solutions of general relativity
(GR).

Keywords: LTB cosmology model, Spherically symmetric space-time, Inhomogeneous
universe, Exact solutions, Hubble parameter.

AMS Subject Classification: 83D05, 83F05, 83C15

1. Introduction

An inhomogeneous cosmological models plays an important role in understanding some
essential features of the universe such as the formation of galaxies during the early stages
of evolution and process of homogenization. Many papers have been published in which
various properties of the LTB model were discussed. The early attempt at the construc-
tion of such models has done by R. C. Tolman (1934) and H. Bondi (1947) who consider
spherically symmetric models [2, 20]. A. H. Taub (1951,1956) and later by N. Tomimura
(1978), P. Szekeres (1975), C. B. Collins and D. A. Szafron (1979) was first considered
inhomogeneous plane symmetric model [3, 11, 18, 19, 21].
Krasinski (1997) gave a very extensive survey of inhomogeneous cosmological models and
their physical properties [9]. He fitted the many specific models discussed in the literature
into a relatively small number of families, including only those classes which contain an
Friedmann Lemaitre Robertson Walker (FLRW) or Kantowski-Sachs (KSs) metric, which
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excludes a few models of physical importance. Stephani et al. (2003) give the ones with
a perfect fluid energy content [5, 17].
The LTB model (Lemaitre, 1933b, Tolman, 1934, Bondi, 1947), which is inhomogeneous
in the radial direction only. In its application later in this paper, we assume the Earth is
at or near the centre of isotropy [2, 5, 20].
The spherically symmetric cases are the simplest inhomogeneous models. The perfect fluid
cases include stellar models and collapse solutions (see e.g. Misner, Thorne, and Wheeler
(1973)): Bolejko et al. (2010) refer to these as the Lemaitre models, since they were
discussed in Lemaitre (1933b) [1, 10]. The dust solutions form the LTB class. A further
family that has been extensively studied is the self-similar subclass [9].
A LTB models are the simplest inhomogeneous expanding models, spherically symmetric
about a center. They have been used to give exact nonlinear models of inhomogeneous
cosmologies where no dark energy is needed the apparent acceleration of the universe seen
in the supernova data is not a consequence of dark energy (as in an FLRW model), but
it is due to spatial inhomogeneity. This is an important alternative to the standard inter-
pretation and is discussed in [5].
The evolution of LTB voids was studied in much more detail by Occhionero and colleagues
and Sato and colleagues (see Occhionero, Santangelo, and Vittorio (1983), Sato (1984),
and papers cited therein) [12, 16].
In this paper, we have considered inhomogeneous cosmological model with dust. Ex-
act values of parameters are calculated by using explicit solutions of the necessary field
equations and solved them to get various cosmological models.

2. The Metric and the Field Equations

The LTB metric for a spherically symmetric, inhomogeneous line element is given by
[6, 14]

ds2 = dt2 −A2
1 dr

2 −A2
2 dΩ2, (1)

where

dΩ2 = dθ2 + sin2θdφ2.

Because of the signature (−,−,−,+), and the functions A1 = A1(r, t) and A2 = A2(r, t)
have both temporal spatial dependencies on space and radial coordinates (r, t) respectively.
The homogeneous FRW metric is a special case and obtained by letting

A1 =
a(t)√

1− kr2
, (2)

A2 = a(t)r. (3)

The energy-momentum tensor for the above metric takes a diagonal form, and is given
by T 4

4 = −ρ, T ii = p with (i = 1, 2, 3), where ρ = ρ(r, t) is the proper energy density,
p = p(r, t) is the isotropic pressure. The Einstein field Equations (EFEs), Gij = 8πT ij , are
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given by

Ȧ2
2

A2
2

+
¨2A2

A2
+

1

A2
2

− A′22
A2

1A
2
2

= −8πp, (4)

Ȧ′2
A2
− Ȧ1A

′
2

A1A2
= 0, (5)

Ä2
2

A2
2

+
Ä1

A1
+
Ȧ1Ȧ2

A1A2
+
A′1A

′
2

A3
1A2
− A′′2
A2

1A2
= −8πp, (6)

Ȧ2
2

A2
2

+
1

A2
2

+ 2
Ȧ1Ȧ2

A1A2
+ +2

A′1A
′
2

A3
1A2
− A′22
A2

1A
2
2

− 2
A′′2
A2

1A2
= −8πρ, (7)

where dot and dash are, respectively denoted the derivative with respect to time t and
radial coordinate r. Solving the Equation (5) gives

A′2 = C(r)A1, (8)

where the function C(r) is an arbitrary function only of the radial coordinate r. We can
thus write the LTB metric Equation (1) in its usual form

ds2 = dt2 −A′22 C−2 dr2 −A2
2 dΩ2, (9)

The average scale-factor a(t) and spatial volume V are given by

V =
√
−g = a3 = A′2A

2
2. (10)

We define two Hubble parameters (HPs) and deceleration parameter (DP) as

Ht =
Ȧ2

A2
, Hr =

Ȧ2
′

A′2
, (11)

q(t) = −Ä2

A2
H−2t = −

(
1 +

Ḣt

H2
t

)
. (12)

The independent Equations for the above metric are given by

H2
t + 2(Ḣt +H2

t )− K(r)

A2
2

= −8πp, (13)

H2
t + 2HtHr −

K(r)

A2
2

− K(r)′

A2A′2
= −8πρ, (14)

where K(r) = C2 − 1. The cosmological parameters such as effective HP (Heff ), scalar
expansion (θ) and shear scalar (σ2) and anisotropy parameter (Am) are given by

Heff =
1

3
[2Ht +Hr] , (15)

θeff = 3Heff = 2Ht +Hr, (16)

σ2eff =
1

3
[Hr −Ht]

2 , (17)

Am(eff) =
1

3

3∑
i=1

[
Hi −Heff

Heff

]2
=

1

3

(
2

[
Ht −Heff

H

]2
+

[
Hr −Heff

Heff

]2)
.

(18)
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By integrating Equation (13), it follows that

H2
t =

E(r)

A3
2

+
8πp

3
+
K(r)

A2
2

, (19)

where E = E(r) is a non-negative function. Substitution Equation (19) into EFEs (13),
(14) respectively we get

ρ =
E′

8πA′2A
2
2

=
E′

8πV
, p = − Ė

8πȦ2A2
2

. (20)

Hence a physically realistic model must have E′ > 0. The energy density ρ in the LTB
model becomes infinite where A2 = A′2 = 0 6= E′. This singularity is called shell-crossing
singularity (SCS), because at those locations the radial distance between two adjacent.
The SCS, where the energy density goes to infinity and changes sign to become negative.
Equation (20) implies that, with E′ = 0, the LTB model becomes vacuum. Being spher-
ically symmetric, when E′ = 0, it must coincide with the Schwarzschild solution or its
extension through the event horizon and indeed it does as shown in [14].
An interesting thing happens when A′2 = 0. The metric (9) is then an inhomogeneous per-
turbation of the KSs (1966) metric: it is spherically symmetric but does not contain the
centers of symmetry in the hyper surfaces t = const. In Russian literature, such solutions
are called “T-models” (Novikov 1963, Ruban 1968, 1969 and 1983) [9].
Now we will explain that the universe is spatially flat to within a few percent we can take
C(r) = 1 such that the field equations finally reduce to the following two independent
Equations for the metric are given by

H2
t + 2(Ḣt +H2

t ) = −8πp, (21)

H2
t + 2HtHr = −8πρ. (22)

The matter satisfies the following conservation Equation

∇iT ij = 0. (23)

The conservation Equation gives above implies that the test particles describes geodesics
as in the case of GR which in turn yields

ρ̇+
1

A′2A
2
2

d

dt

(
A′2A

2
2

)
(ρ+ p) = 0. (24)

If we further assume that the perfect fluid obeys the barotropic Equation of state of the
form

p = ωρ, 0 ≤ ω ≤ 1,

with the equation of state parameter ω as time-independent. In this case, Equation (24)
can be integrated for the energy density to yield

ρ = N(r)
(
A′2A

2
2

)−(1+ω)
, (25)

where N(r) is an arbitrary function of r. Plugging in the expression of ρ from equation
(22) we finally get

H2
t + 2HtHr = −8πN(r)

(
A′2A

2
2

)−(1+ω)
. (26)
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3. Dust Dominated LTB Line Element

We shall now consider LTB line element with dust only, putting p = 0. By using
Equation (13), we obtain the DP

q =
1

2

[
1− K

Ȧ2
2

]
. (27)

The condition for accelerated expansion now takes the form

K > Ȧ2
2
> 0 or C2 > 1 + Ȧ2

2
. (28)

Inserting the expression for the DP, Equation (13) takes the form

Ȧ2
2

+ 2A2Ä2 −K = 0. (29)

Integration leads to

A2Ȧ2
2

= KA2 + E(r) or Ȧ2 = ±

√
E(r)

A2
+K. (30)

Hence, the dynamical effects of K and E are similar to that of curvature and dust re-
spectively. Therefore E(r) is regarded as a gravitational energy function. Substituting
Equation (30) into Equation (27) we find

q =
E

2A2Ȧ2
2 or Ä2 = − E

2A2
2

. (31)

Allowing for inhomogeneity with −KA2 < E(r) < 0 seems to allow accelerated expansion
even for dust dominated universe models. The dynamical effect of E < 0 corresponds to
that of dust with negative density in a homogeneous universe model. It should be noted,
however, that the inequality above forbids accelerated expansion in a big bang (BB) model
where the scale factor has the initial value A2(r, 0) = 0 which implies E(r) ≥ 0. However
this initial condition may not be physically realistic. The universe may have started with
a finite scale factor, or maybe has collapsed and reached a finite minimum radius. In such
models accelerated expansion does not seem to be forbidden [6].
The solution of Equation (30) will contain one more arbitrary function (tB(r)), that will
appear in the combination (t − tB(r)). It is called the bang-time function [14]. After a
separation of variables, Equation (30) can be integrated in time [15]

t− tB(r) =

∫ A2(t0,r)

0

1√
K + E(r)

Ã2

dÃ2, (32)

where t0 denotes the present time. In general, tB = tB(r) is the third arbitrary function,
describing the time of the BB at the comoving radius r, which means that the BB does
not need to occur synchronously.
The solutions to A2(r, t) can be categorized into three classes,

(1) For K = 0, the parabolic evolution gives

A2 =

(
9

4
E (t− tB(r))2

) 1
3

. (33)

(2) For K > 0, the hyperbolic evolution gives

A2 =
E(coshη − 1)

2K
, sinhη − η =

(2K)
3
2 (t− tB(r))

E
. (34)
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(3) For K < 0, the elliptic evolution gives

A2 =
E(1− cosη)

(−2K)
, η − sinη =

(−2K)
3
2 (t− tB(r))

E
, (35)

where η is a parameter. The angular part of the line element is A2
2dΩ2 where dΩ is a solid

angle element. It represents the area of a surface extending a certain solid angle.
At the origin, r = 0, this area must vanish, and thus A2(0, t) = 0. From Equation (20)
we then get E(0) = 0. Since E′ > 0, it follows that E(r) > 0 for all r. But accelerated
expansion is only possible for models with E < 0. Hence the dust dominated LTB universe
models have decelerated expansion [6].
The LTB model is characterized by three arbitrary functions K(r), E(r) and tB(r) of the
coordinate radius r. K(r) ≥ −1 has a geometrical role, determining the local embedding
angle of spatial slices, and also a dynamical role, determining the local energy per unit
energy of the dust particles, and, hence, the type of evolution of A2. E(r) is the effective
gravitational energy within comoving radius r. tB(r) is the local time at which A2 = 0,
i.e. the local time of the BB. if tB 6= const, we have a non-simultaneous bang surface.
Specification of these three arbitrary functions fully determines the model, and while
each of them can be given some type of interpretation for arbitrary choice of the radial
coordinate r, there is still a freedom to choose this coordinate, leaving two physically
meaningful free functions, e.g. two of r = r(E), K = K(E), and tB = tB(E). For more
details of the dynamics of these models and its relation to initial data, see Bolejko et al.
(2010).
A physical limitation on the choices of the arbitrary functions is that if A′2 6= 0 we may
have a SCS, where comoving shells of distinct r collide (Hellaby and Lake, 1985). This
Equation also holds at an extremum of density if E′ and K have zeros of the same order
[5].
Adjacent contours of small constant A2 must have a similar shape. Hence, if either of
the two equations was not fulfilled, either the upper branch or the lower branch of some
contours would be a non-monotonic function, whose derivative by E would change the sign
somewhere. At the changeover points, the tangents to the contours would be horizontal,
and these would be the SCs [14].
Now we come to the conditions for avoiding SCs at those points where E′ 6= 0. We wish
to translate the condition A′2 6= 0 into properties of the functions E(r), K(r) and tB(r).
The cases A′2 > 0 and A′2 < 0 have to be considered separately. We will write out the
conditions only for A′2 > 0.
In all cases, in those regions where A′2 > 0, in order that the energy density is positive,
we must have

E′ > 0. (36)

From here on, the three types of models have to be considered separately.

3.1. The Parabolic Evolution for K = 0. We calculate from the Equation (33) for
getting

A′2
A2

=
E′

3E
−
√

2E t′B

A
3
2
2

. (37)

As A2 → 0, the second term dominates, so, in order that A′2 > 0 everywhere, we must
have t′B < 0. Together with the Equation E′ > 0 this is then seen to be the necessary and

sufficient condition. If we take E(r) = 12
9 r

3, it is clear that

A2 = r (t− tB(r))
2
3 . (38)
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If at this stage, we assume that tB(r) vanishes or losing its space dependence becomes a
true constant, the line element reduces to

ds2 = dt2 − t
4
3
(
dr2 − r2 dΩ2

)
. (39)

This is a new solution and may be termed as the generalized Einstein-de Sitter metric for
the inhomogeneous space-time. From equation (25), we get the expression of density as

ρ = N(r)

(
r2 (t− tB(r))2 +

2

3
r3 (t− tB(r)) t′B

)−(1+ω)
. (40)

Figure 1. The behavior of ρ(r, t) versus t for different values of N(r) is
shown. The graphs clearly show that the density increases for greater N(r)
i.e., greater inhomogeneity. Taking r = 1 & ω = 0.

Figure (1) shows that the density depends on N(r) when tB(r) vanishes, which repre-
sents the inhomogeneity. So N(r) may be the measure of inhomogeneity.

3.2. The Hyperbolic Evolution for K > 0. We calculate from the Equation (34) and

making use of Equation (19) for expansion Ȧ2 > 0 we get

A′2
A2

=

(
E′

E
− K ′

K

)
+

(
3K ′

2K
− E′

E

)
Φ1(η)− (−2K)

3
2

E
t′B Φ2(η), (41)

where

Φ1(η) =
sinhη(sinhη − η)

(coshη − 1)2
, Φ2(η) =

sinhη

(coshη − 1)2
. (42)

The following properties of Φ1(η) and Φ2(η) are useful in calculations,

lim
η→0

Φ1(η) =
2

3
, lim
η→0

Φ2(η) =∞, (43)

lim
η→∞

Φ1(η) = 1, lim
η→∞

Φ2(η) = 0, (44)

dΦ1

dη
> 0 for η > 0,

dΦ2

dη
< 0 for η > 0. (45)
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Hence, taking (41) in the limit η → 0, the last term dominates and it will be positive if

t′B < 0. (46)

Now we take (41) in the limit η →∞, we easily obtain

K ′ > 0. (47)

The Equations (36), (46) and (47) are necessary conditions for A′2 > 0. To see that they
are also sufficient, it suffices to rewrite (41) in the form

A′2
A2

=
E′

E
(1− Φ1) +

K ′

K

(
3

2
Φ2 − 1

)
− (−2K)

3
2

E
t′B Φ2(η), (48)

and take note of Equations (43), (44) and (45).

3.3. The Elliptic Evolution for K < 0. We calculate from the Equation (35) and

making use of Equation (19) for expansion Ȧ2 > 0 we get

A′2
A2

=

(
E′

E
− K ′

K

)
+

(
3K ′

2K
− E′

E

)
Φ3(η)− (−2K)

3
2

E
t′BΦ4(η) = f(η) (say), (49)

where

Φ3(η) =
sinη(η − sinη)

(1− cosη)2
, Φ4(η) =

sinη

(1− cosη)2
. (50)

The function f(η) should be strictly positive in the whole range η ∈ [0, 2π]. Note that

lim
η→0

Φ3(η) =
2

3
, lim
η→0

Φ4(η) =∞, (51)

lim
η→2π

Φ3(η) = −∞, lim
η→2π

Φ4(η) = −∞, (52)

lim
η→2π

Φ3(η)

Φ4(η)
= 2π. (53)

Hence, taking (49) in the limit η → 0, we see that the last term becomes unbounded, and
it will be positive only if

t′B < 0. (54)

Now we take (49) in the limit η → 2π. Then the last two terms become unbounded.
Factoring out Φ4, which goes to (−∞), and demanding that the (bounded) coefficient is
negative in the limit, we obtain:

2π

(
3K ′

2K
− E′

E

)
− (−2K)

3
2

E
t′B < 0. (55)

The Equations (36), (54) and (55) are the necessary and sufficient conditions for the
absence of SCs in the case A′2 > 0.
The meaning of Equation (55) is that the crunch time must be an increasing function of
r.



AHMED M. AL-HAYSAH, A. H. HASMANI : EXACT SOLUTION WITH DUST AND... 17

4. Cosmological Redshift in LTB

In several applications of a cosmological model, we need to calculate the redshift of
light emitted by a source at a given time and location and received by an observer located
down a null geodesic from the source. One of them is the following method (copied from
Bondi (1947)).
From the symmetry of the situation, it is clear that light can travel radially, that is,
there exist geodesics with dθ = dφ = 0. Moreover, since light always travels along null
geodesics, we have ds2 = 0. Inserting these conditions into the equation for the line
element, Equation (9), we obtain the constraint equation for light rays

dt

dr
=

A′2(r, t)√
1 +K(r)

. (56)

Let us consider two light rays be emitted in the same direction, the second one later by a
small time-interval τ . Let the equations of the first and second rays are given by

t = T (t), t = T (r) + τ(r). (57)

Both rays must obey Equation (56), so

dT (r)

dr
=
A′2(r, T (r))√

1 +K(r)
,
d(T (r) + τ(r))

dr
=
A′2(r, T (r) + τ(r)Ȧ′2(r, T (r))√

1 +K(r)
. (58)

Using the first Equation of (58) in the second Equation of (58), we obtain

dτ(r)

dr
= −τ(r)

Ȧ′2(r, T (r))√
1 +K(r)

. (59)

Differentiating the definition of the redshift, z ≡ τ(0)
τ(r) − 1, we obtain

1

1 + z

dz

dr
=
Ȧ′2(r, T (r))√

1 +K(r)
, (60)

we can combine Equations (56) and (60) to obtain the pair of differential equations

(1 + z)
dt

dz
=
A′2(r, T (r))

Ȧ′2(r, T (r))
. (61)

Hence by using Equation (60), the redshift may be calculated numerically from

ln(1 + z) =
dt

dz
=

∫ 0

r

Ȧ′2(r, T (r))√
1 +K(r)

dr. (62)

Now that we have related the redshift to the inhomogeneities, we still need the relation
between the redshift and the energy flux S, or the luminosity distance DL, defined as

DL(z) =

√
L

4πS
, (63)

where L is the total power radiated by the source. This is given by [4]

DLTB
L (z) = (1 + z)2A(r(z), t(z)), (64)

where the angular distance diameter is given by

DLTB
A (z) = A(r(z), t(z)). (65)
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5. Conclusions

The LTB models, with metrics as given containing arbitrary functions K(r), E(r) and
tB(r) of the coordinate radius r. Note that we can have LTB models that are FLRW for
certain ranges of r giving concentric shells of differing behavior.
The present work may be looked upon as an extension of one of our recent publications
where we examined the possibility in a higher dimensional LTB model if the inclusion of
extra space jointly with inhomogeneity can induce late inflation in a dust model. While
total volume acceleration is ruled out we found that preferential acceleration in a radial
direction is possible if the angular direction decelerates fast enough or vice versa.
Aside from space dependence the mathematical structure and its essentially similar to the
works of homogeneous space-time except for the appearance of the term, N(r) in Equation
(25), which unlike its homogeneous counterpart is not a true constant but depends on the
space coordinate. Its presence introduces all the differences in cosmic evolution. Like FRW
models our field equations are amenable to the exact solution only at extreme values. We
find that at early stage our solution reduces to an inhomogeneous analog of the Einstein
de-Sitter type of solution. In all cases, The SCs for the energy density is positive.

Acknowledgement. The authors are thankful to the anonymous referees for critical
comments that improved quality of this manuscript a lot.
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