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SOME FRACTIONAL ESTIMATES OF UPPER BOUNDS INVOLVING
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Abstract. The main objective of this article is to consider the class of exponentially
convex functions. We derive a new integral identity involving Riemann-Liouville frac-
tional integral. Utilizing this identity as an auxiliary result we obtain new fractional
bounds involving the functions having exponential convexity property.
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1. Introduction

We start with the well known Hermite-Hadamard inequality. Let [a, b] ⊂ R be a bounded
closed interval with a < b. If f : I ⊂ R→ R be a convex function, then we have the double
inequality

f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
.

Equality holds in either side only for affine functions. It gives us an estimate of the (inte-
gral) mean value of a continuous convex functions. This result of Hermite and Hadamard
is very simple in nature but very powerful. Interestingly both sides of the above integral
inequality characterizes convex functions. For some interesting details and applications
of Hermite-Hadamard’s inequality, we refer readers to [3–8, 10, 14–22, 25, 26]. Theory of
convexity played a vital role in the development of theory of inequalities. Other than
Hermite-Hadamard’s inequality there are many famous results known in the theory of
inequalities which can be obtained using the functions having convexity property. Many
researchers have used different novel and innovative ideas in obtaining new generalizations
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of classical inequalities. Sarikaya et al. [25] used elegantly the concepts of fractional cal-
culus and obtained a fractional refinement of Hermite-Hadamard’s inequality. This idea
compelled many researchers to use fractional calculus concepts in theory of inequalities
and gradually many new fractional analogues of classical inequalities have been obtained
in the literature. For details, see [4, 8–14,17–19,23–27].
In recent years theory of convexity experienced a rapid development and consequently the
classical concept of convexity has been extended and generalized in different directions.
For details, see [1,3,5,20,21]. Recently the class of exponential convex functions has been
introduced and studied.

Definition 1.1 ( [28,29]). Let I ⊂ R be an interval. Throughout the paper, we will use a
function f : I → R that satisfies the inequality

ef(tx+(1−t)y) ≤ tef(x) + (1− t)ef(y),

for every pair x, y ∈ I and every t ∈ [0, 1]. Since the above inequality represents the
convexity of the function ef , we could say that the function f is exp-convex (inspired by the
term of log-convex function). Here we also note that terms exp-convex and exponentially
convex do not represent one and the same.

Exponentially convex functions are used to manipulate for statistical learning, sequential
prediction and stochastic optimization, see [1, 3, 24] and the references therein.
The class of exponentially convex functions was mentioned by Antczak [2], Dragomir et
al. [5] and Noor et al. [20].
The motivation of this article is to discuss some new fractional bounds involving the
functions having exponential convexity property. In order to obtain main results of the
article we derive a new fractional integral identity. We hope that the ideas and techniques
of this article will inspire interested readers.
We now recall the definition of Riemann-Liouville fractional integrals.

Definition 1.2 ( [23]). Let α > 0. The left- and right-hand side Riemann-Liouville
fractional integrals of order α are given by

Jαu+f(x) =
1

Γ(α)

x∫
u

(x− t)α−1f(t)dt,

and

Jαv−f(x) =
1

Γ(α)

v∫
x

(t− x)α−1f(t)dt,

where Γ(α) =
∞∫
0

e−ttα−1dt is the gamma function.

2. New Fractional Integral Identity

In this section, we derive a new integral identity essentially using the concept of Riemann-
Liouville fractional integral.
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Lemma 2.1. Let α > 0 be a number and let f : [a, b]→ R be a function that is differen-
tiable on (a, b), then

Υf (a, b, α) =
b− a

16

[ 1∫
0

tαef
(
t 3a+b

4
+(1−t)a

)
f ′
(
t
3a+ b

4
+ (1− t)a

)
dt

+

1∫
0

(tα − 1)ef
(
ta+b

2
+(1−t) 3a+b

4

)
f ′
(
t
a+ b

2
+ (1− t)3a+ b

4

)
dt

+

1∫
0

tαef
(
ta+3b

4
+(1−t)a+b

2

)
f ′
(
t
a+ 3b

4
+ (1− t)a+ b

2

)
dt

+

1∫
0

(tα − 1)ef
(
tb+(1−t)a+3b

4

)
f ′
(
tb+ (1− t)a+ 3b

4

)
dt

]
, (1)

where

Υf (a, b, α) =
1

2

[
ef(

3a+b
4

) + ef(
a+3b

4
)

]
− 4α−1Γ(α+ 1)

(b− a)α[
Jα
( 3a+b

4
)−
ef(a) + Jα

(a+b
2

)−
ef(

3a+b
4

) + Jα
(a+3b

4
)−
ef(

a+b
2

) + Jαb−e
f(a+3b

4
)

]
.

Proof. Consider

Υf (a, b, α) =
b− a

16

4∑
n=1

In,
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where

I1 =

1∫
0

tαef
(
t 3a+b

4
+(1−t)a

)
f ′
(
t
3a+ b

4
+ (1− t)a

)
dt

=
4

b− a
ef(

3a+b
4

) − 4α+1Γ(α+ 1)

(b− a)α+1
Jα
( 3a+b

4
)−
ef(a),

I2 =

1∫
0

(tα − 1)ef
(
ta+b

2
+(1−t) 3a+b

4

)
f ′
(
t
a+ b

2
+ (1− t)3a+ b

4

)
dt

=
4

b− a
ef(

3a+b
4

) − 4α+1Γ(α+ 1)

(b− a)α+1
Jα
(a+b

2
)−
ef(

3a+b
4

),

I3 =

1∫
0

tαef
(
ta+3b

4
+(1−t)a+b

2

)
f ′
(
t
a+ 3b

4
+ (1− t)a+ b

2

)
dt

=
4

b− a
ef(

a+3b
4

) − 4α+1Γ(α+ 1)

(b− a)α+1
Jα
(a+3b

4
)−
ef(

a+b
2

)

and

I4 =

1∫
0

(tα − 1)ef
(
tb+(1−t)a+3b

4

)
f ′
(
tb+ (1− t)a+ 3b

4

)
dt

=
4

b− a
ef(

a+3b
4

) − 4α+1Γ(α+ 1)

(b− a)α+1
Jαb−e

f(a+3b
4

).

Multiplying above integrals by b−a
16 and adding, then we get equality (1). The proof is

complete. �

Theorem 2.1. Let α > 0 be a number and let f : [a, b] → R be a function that is
differentiable on (a, b). If the function |f | is exp-convex and |f ′| is convex, then∣∣∣Υf (a, b, α)

∣∣∣ ≤ b− a
96(α+ 1)(α+ 2)(α+ 3)

[
12|ef(a)f ′(a)| − (2α3 + 11α2 + 18α− 2)∣∣∣ef( 3a+b

4
)f ′
(3a+ b

4

)∣∣∣− (2α3 + 3α2 + 4α− 12
)∣∣∣ef(a+b

2
)f ′
(a+ b

2

)
−
(

2α3 + 4α− 12
)∣∣∣ef(a+3b

4
)f ′
(a+ 3b

4

)
− 2α(α2 + 3α+ 2)|ef(b)f ′(b)|

+6(α+ 1)
{

∆1(a, b) + ∆3(a, b)
}
− α(α2 + 6α+ 5){∆2(a, b) + ∆4(a, b)}

]
, (2)

where

∆1(a, b) =

{
|ef(a)f ′

(3a+ b

4

)
|+ |ef(

3a+b
4

)f ′(a)|

}
,

∆2(a, b) =

{
|ef(

a+b
2

)f ′
(3a+ b

4

)
|+ |ef(

3a+b
4

)f ′
(a+ b

2

)
|

}
,

∆3(a, b) =

{
|ef(

a+b
2

)f ′
(a+ 3b

4

)
|+ |ef(

a+3b
4

)f ′
(a+ b

2

)
|

}
,
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∆4(a, b) =

{
|ef(b)f ′

(a+ 3b

4

)
|+ |ef(

a+3b
4

)f ′(b)|

}
.

Proof. Using Lemma 2.1, the property of modulus and the given hypothesis of the theorem,
we have

∣∣∣Υf (a, b, α)
∣∣∣ ≤ b− a

16

n∑
i=1

Hi (3)

H1 =

1∫
0

tα

∣∣∣∣∣ef
(
t 3a+b

4
+(1−t)a

)
f ′
(
t
3a+ b

4
+ (1− t)a

)∣∣∣∣∣dt
≤

1∫
0

tα

[
t
∣∣∣ef( 3a+b

4
)
∣∣∣+ (1− t)|ef(a)|

][
t
∣∣∣f ′(3a+ b

4

)∣∣∣+ (1− t)|f ′(a)|

]
dt

=

1∫
0

tα

[
t2
∣∣∣ef( 3a+b

4
)f ′
(3a+ b

4

)∣∣∣+ (1− t)2
∣∣∣ef(a)f ′(a)

∣∣∣
+t(1− t)

{∣∣∣ef( 3a+b
4

)f ′(a)
∣∣∣+
∣∣∣ef(a)f ′(3a+ b

4

)∣∣∣}]dt
=

1∫
0

tα

[
t2
∣∣∣ef( 3a+b

4
)f ′
(3a+ b

4

)∣∣∣+ (1− t)2
∣∣∣ef(a)f ′(a)

∣∣∣+ t(1− t)∆1(a, b)

]
dt

=
(α2 + 3α+ 2)

∣∣∣ef( 3a+b
4

)f ′
(
3a+b
4

)∣∣∣+ 2
∣∣∣ef(a)f ′(a)

∣∣∣+ (α+ 1)∆1(a, b)

(α+ 1)(α+ 2)(α+ 3)
, (4)

H2 =

1∫
0

(tα − 1)

∣∣∣∣∣ef
(
ta+b

2
+(1−t) 3a+b

4

)
f ′
(
t
a+ b

2
+ (1− t)3a+ b

4

∣∣∣)dt
≤ −α

6(α+ 1)(α+ 2)(α+ 3)

[
2(α2 + 3α+ 2)|ef(

a+b
2

)f ′
(a+ b

2

)
|

+2(α2 + 6α+ 11)|ef(
3a+b

4
)f ′
(3a+ b

4

)
|+ (α2 + 6α+ 5)∆2(a, b)

]
, (5)

H3 =

1∫
0

tα

∣∣∣∣∣ef
(
t a+3b

4 +(1−t) a+b
2

)
f ′
(
t
a+ 3b

4
+ (1− t)a+ b

2

)∣∣∣∣∣dt
≤

(α2 + 3α+ 2)
∣∣∣ef( a+3b

4 )f ′
(
a+3b
4

)∣∣∣+ 2
∣∣∣ef( a+b

2 )f ′
(
a+b
2

)∣∣∣+ (α+ 1)∆3(a, b)

(α+ 1)(α+ 2)(α+ 3)
(6)
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and

H4 =

1∫
0

(tα − 1)

∣∣∣∣∣ef
(
tb+(1−t) a+3b

4

)
f ′
(
tb+ (1− t)a+ 3b

4

∣∣∣∣∣)dt
≤ −α

6(α+ 1)(α+ 2)(α+ 3)

[
2(α2 + 3α+ 2)|ef(b)f ′(b)|

+2(α2 + 6α+ 11)|ef(
a+3b

4 )f ′
(a+ 3b

4

)
|+ (α2 + 6α+ 5)∆4(a, b)

]
, (7)

Substituting (4), (5), (6) and (7) in (3), we get the desired inequality (2). �

Corollary 2.1. If we choose α = 1, then under the assumption of Theorem 2.1, we have
a new result∣∣∣∣∣12[ef( 3a+b

4
) + ef(

a+3b
4

)
]
− 1

b− a

b∫
a

ef(x)dx

∣∣∣∣∣ ≤ b− a
2304

[
12
{
|ef(a)f ′(a)| − |ef(b)f ′(b)|

+∆1(a, b)−∆2(a, b) + ∆3(a, b)−∆4(a, b)
}
− 29

∣∣∣ef( 3a+b
4

)f ′
(3a+ b

4

)∣∣∣
+3
∣∣∣ef(a+b

2
)f ′
(a+ b

2

)
+ 6
∣∣∣ef(a+3b

4
)f ′
(a+ 3b

4

)]
.

Theorem 2.2. Let α > 0 be a number and let f : [a, b] → R be a function that is

differentiable on (a, b). If the function |f | is exp-convex and |f ′ |q is convex where p−1 +
q−1 = 1, q > 1, then∣∣∣Υf (a, b, α)

∣∣∣
≤ b− a

6
1
q .16

(
1

α

) 1
p
[(

α

1 + pα

) 1
p
{[

2

(∣∣∣∣∣ef( 3a+b
4

)f ′
(3a+ b

4

)∣∣∣∣∣
q

+
∣∣∣ef(a)f ′(a)

∣∣∣q)+ ∆5(a, b)

] 1
q

+

[
2

(∣∣∣∣∣ef(a+b
2

)f ′
(a+ b

2

)∣∣∣∣∣
q

+
∣∣∣ef( 3a+b

4
)f ′
(3a+ b

4

)∣∣∣q)+ ∆6(a, b)

] 1
q
}

+

(
β
(
α+ 1,

1

p

)){[
2

(∣∣∣∣∣ef(a+3b
4

)f ′
(a+ 3b

4

)∣∣∣∣∣
q

+
∣∣∣ef(a+b

2
)f ′
(a+ b

2

)∣∣∣q)+ ∆7(a, b)

] 1
q

+

[
2

(∣∣∣∣∣ef
(
b

)
f ′
(
b
)∣∣∣∣∣
q

+
∣∣∣ef(a+3b

4
)f ′
(a+ 3b

4

)∣∣∣q)+ ∆8(a, b)

] 1
q
}]

, (8)

where

∆5(a, b) =

∣∣∣∣∣ef( 3a+b
4

)f ′
(
a
)∣∣∣∣∣
q

+
∣∣∣ef( 3a+b

4
)f ′(a)

∣∣∣q, (9)

∆6(a, b) =

∣∣∣∣∣ef( 3a+b
4

)f ′
(a+ b

2

)∣∣∣∣∣
q

+
∣∣∣ef(a+b

2
)f ′
(3a+ b

4

)∣∣∣q, (10)

∆7(a, b) =

∣∣∣∣∣ef(a+3b
4

)f ′
(a+ b

2

)∣∣∣∣∣
q

+
∣∣∣ef(a+b

2
)f ′(

a+ 3b

4
)
∣∣∣q, (11)
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and

∆8(a, b) =

∣∣∣∣∣ef(a+3b
4

)f ′
(
b
)∣∣∣∣∣
q

+
∣∣∣ef
(
b

)
f ′(

a+ 3b

4
)
∣∣∣q. (12)

Proof. Using Lemma 2.1, Hölder’s inequality and the given hypothesis of the theorem, we
have ∣∣∣Υf (a, b, α)

∣∣∣
≤ b− a

16

[( 1∫
0

(
tα
)p
dt

) 1
p [ 2∑

i=1

K
1
q

i

]
+

{( 1∫
0

(
1− tα

)p
dt

) 1
p [ 4∑

i=3

K
1
q

i

]]
(13)

K1 =

1∫
0

∣∣∣∣∣ef
(
t 3a+b

4 +(1−t)a
)
f ′
(
t
3a+ b

4
+ (1− t)a

)∣∣∣∣∣
q

dt

≤

∣∣∣∣∣ef( 3a+b
4 )f ′

(3a+ b

4

)∣∣∣∣∣
q 1∫
0

t2dt+
∣∣∣ef(a)f ′(a)

∣∣∣q 1∫
0

(1− t)2dt+

{∣∣∣∣∣ef( 3a+b
4 )f ′(a)

∣∣∣∣∣
q

+

∣∣∣∣∣ef
(
a

)
f ′
(3a+ b

4

)∣∣∣∣∣
q} 1∫

0

t(1− t)dt

=
1

6

[
2

(∣∣∣∣∣ef( 3a+b
4 )f ′

(3a+ b

4

)∣∣∣∣∣
q

+
∣∣∣ef(a)f ′(a)

∣∣∣q)+ ∆5(a, b)

]
, (14)

K2 =

1∫
0

∣∣∣∣∣ef
(
t a+b

2 +(1−t) 3a+b
4

)
f ′
(
t
a+ b

2
+ (1− t)3a+ b

4

)∣∣∣∣∣
q

dt

≤ 1

6

[
2

(∣∣∣∣∣ef( a+b
2 )f ′

(a+ b

2

)∣∣∣∣∣
q

+
∣∣∣ef( 3a+b

4 )f ′
(3a+ b

4

)∣∣∣q)+ ∆6(a, b)

]
, (15)

K3 =

1∫
0

∣∣∣∣∣ef
(
t a+3b

4 +(1−t) a+b
2

)
f ′
(
t
a+ 3b

4
+ (1− t)a+ b

2

)∣∣∣∣∣
q

dt

≤ 1

6

[
2

(∣∣∣∣∣ef( a+3b
4 )f ′

(a+ 3b

4

)∣∣∣∣∣
q

+
∣∣∣ef( a+b

2 )f ′
(a+ b

2

)∣∣∣q)+ ∆7(a, b)

]
, (16)

and

K4 =

1∫
0

∣∣∣∣∣ef
(
tb+(1−t) a+3b

4

)
f ′
(
tb+ (1− t)a+ 3b

4

)∣∣∣∣∣
q

dt

≤ 1

6

[
2

(∣∣∣∣∣ef
(
b

)
f ′
(
b
)∣∣∣∣∣
q

+
∣∣∣ef( a+3b

4 )f ′
(a+ 3b

4

)∣∣∣q)+ ∆8(a, b)

]
. (17)

Substituting (14), (15), (16) and (17) in (13), we get the desired inequality (8). This completes
the proof. �
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Corollary 2.2. If we choose α = 1, then under the assumption of Theorem 2.2, we have
a new result∣∣∣∣∣12[ef( 3a+b

4
) + ef(

a+3b
4

)
]
− 1

b− a

b∫
a

ef(x)dx

∣∣∣∣∣
≤ b− a

6
1
q .16

[(
1

1 + p

) 1
p
{[

2

(∣∣∣∣∣ef( 3a+b
4

)f ′
(3a+ b

4

)∣∣∣∣∣
q

+
∣∣∣ef(a)f ′(a)

∣∣∣q)+ ∆5(a, b)

] 1
q

+

[
2

(∣∣∣∣∣ef(a+b
2

)f ′
(a+ b

2

)∣∣∣∣∣
q

+
∣∣∣ef( 3a+b

4
)f ′
(3a+ b

4

)∣∣∣q)+ ∆6(a, b)

] 1
q
}

+

(
β
(

2,
1

p

)){[
2

(∣∣∣∣∣ef(a+3b
4

)f ′
(a+ 3b

4

)∣∣∣∣∣
q

+
∣∣∣ef(a+b

2
)f ′
(a+ b

2

)∣∣∣q)+ ∆7(a, b)

] 1
q

+

[
2

(∣∣∣∣∣ef
(
b

)
f ′
(
b
)∣∣∣∣∣
q

+
∣∣∣ef(a+3b

4
)f ′
(a+ 3b

4

)∣∣∣q)+ ∆8(a, b)

] 1
q
}]

.

Theorem 2.3. Let α > 0 be a number and let f : [a, b] → R be a function that is

differentiable on (a, b). If the function |f | is exp-convex and |f ′ |q is convex where p−1 +
q−1 = 1, q ≥ 1, then∣∣∣Υf (a, b, α)
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, (18)

where ∆5(a, b), ∆6(a, b), ∆7(a, b) and ∆8(a, b) are given in (9)-(12), respectively.

Proof. Using Lemma 2.1, the power mean inequality and the given hypothesis of the
theorem, we have

∣∣∣Υf (a, b, α)
∣∣∣ ≤ [( 1∫

0

tαdt

) 1
p 2∑
i=1

N
1
q

i

]
+

[( 1∫
0

(1− tα)dt

) 1
p 4∑
i=3

N
1
q

i

]
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where
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and
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Substituting (20), (21), (22) and (23) in (19). We get the inequality (18). �
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Corollary 2.3. If we choose α = 1, then under the assumption of Theorem 2.3, we have
a new result
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Theorem 2.4. Let α > 0 be a number and let f : [a, b] → R be a function that is

differentiable on (a, b). If the function |f | is exp-convex and |f ′ |q is convex where p−1 +
q−1 = 1, q ≥ 1, then∣∣∣Υf (a, b, α)
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. (24)

where ∆5(a, b), ∆6(a, b), ∆7(a, b) and ∆8(a, b) are given in (9)-(12), respectively.

Proof. From Lemma 2.1, Hölder’s inequality and the given hypothesis of the theorem, we
have ∣∣∣Υf (a, b, α)
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Substituting (20), (21), (22) and (23) in (25), we get the inequality (24). �

Corollary 2.4. If we choose α = 1, then under the assumption of Theorem 2.4, we have
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.

Theorem 2.5. Let α > 0 be a number and let f : [a, b] → R be a function that is

differentiable on (a, b). If the function |f | is exp-concave and |f ′ |q is concave where p−1 +
q−1 = 1 with q ≥ 1, then
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Proof. Using Lemma 2.1, Hölder inequality and the given hypothesis of the theorem, we
have ∣∣∣Υf (a, b, α)
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Using the exponential concavity of |f ′ |q and the Jensen’s integral inequality, we have
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Substituting (28), (29), (30) and (31) in (27), we get the inequality (26). �

Corollary 2.5. If we choose α = 1, then under the assumption of Theorem 2.5, we have
a new result∣∣∣∣∣12[ef( 3a+b
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3. Conclusions

In this paper, a new integral identity has been derived. Based on this identity, we have
proved several new integral inequalities for exponentially convex functions via Riemann-
Liouville fractional integral operators.
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