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SEMI-ANALYTICAL APPROACH FOR SOLVING A MODEL FOR HIV

INFECTION OF CD4+ T-CELLS

S. DENİZ, §

Abstract. In this work, a mathematical model for the human immunodeficiency virus (HIV)
infection of CD4+ T-cells by using the optimal perturbation iteration method (OPIM) is an-
alyzed. Optimization and classical perturbation techniques are combined to build the new
proposed method. The iteration algorithm for systems of nonlinear differential equations for
this optimal perturbation iteration technique is constructed for the first time. A test problem
has been solved and some plots are given to show the reliability and efficiency of the pro-
posed method. Obtained results exhibit the effectiveness and accuracy of the semi-analytical
technique.
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1. Introduction

CD4, which means a cluster of differentiation antigen 4, is actually a glyco-protein located
in the outer region of immune cells such as T assistant cells, dendritic cells, and macrophages.
They were invented in 1970 and were firstly known as leu-3 and T4 before being they are named
as CD4 in 1984. CD4+ T assistant cells are blood white cells which are usually known as the
main part of the body immune system. They are often referred to as T-helper cells, CD4 cells
or T4 cells. The reason for saying ”helper cells” is that their main acts is to deliver signals
to alternative types of human immune cells, including CD8 terminator cells. After then they
demolish the poisonous particle. If those cells become consumed, for instance in untreated the
human immunodeficiency virus (HIV) infection, or following immune suppression prior to a
transplant, the body can be counted as defenceless to a wide range of contaminations that it
would in other way have been able to be forced to be defeated.

Analyzing the mathematical models of some constructive situations enables us to discover
the distinct dynamics of these kinds of situations. Many scientists have studied a number of
models to see different aspects of HIV infection. By doing so, they can also predict the spread
of this deadly ailment. To investigate the model, many different techniques have been used
such as variational iteration method [16], Laplace Adomian decomposition method [19], the
modified variational iteration method [15], the homotopy analysis method [11], etc. In addition
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Table 1. List of variables-parameters used in this work ([16]).

Parameters-variables Meaning
H Uninfected CD4+ T-cell concentration
I Unhealthy CD4 + T-cells
V Free HIV virus at time t
s Source term for healthy CD4+ T- cells
µH Natural death rate
g Growth rate of healthy CD4 + T-cells

Hmax Maximum possibility of presence of number of T-cells
k Rate at which healthy cells become infected
k′ Rate of infectious cells to become actively infected
K Number of viral particles
µI Blanket death rates for infected cells
µV Loss rate for virus.
τ The amount of delay

to those papers, Perelson [17] presented a comprehensive work on the mathematical model of
this infection involving a delay term in the differential equation. His team also investigated
different dynamics of HIV infection [20]. In [12], the authors also discussed the usefulness of
the delay term in ordinary differential equations for population dynamics and studied on the
stability analysis for the considered models. In [18], Nowak studied the injurious effects of long
incubation period of virus infection and introduced a simple model for this disease.

The motivation of this work is to improve the implementation of the semi-analytic optimal
perturbation iteration method (OPIM) to investigate a model for HIV infection of CD4+ T cells:

dH(t)

dt
= s− µHH(t) + gH(t)

(
1 − H(t) + I(t)

Hmax

)
− kH(t)V (t)

dI(t)

dt
= k′H(t− τ)V (t− τ) − µII(t) (1)

dV (t)

dt
= KµII(t) − kH(t)V (t) − µV V (t).

The above equation is the mathematical description of human health related phenomena, par-
ticularly about the presence, decrease or increase in HIV. Figure 1 represents flow diagram for
the Eq. (1).

The optimal perturbation iteration method has been developed by using the idea of pertur-
bation iteration method (PIM) [5, 9]. Many studies show that approximate PIM solutions can
be healed by inserting the convergence control-parameter p to PIM algorithms. One can easily
adjust the convergence with the aid of the parameter p. OPIM has been applied to many kinds
of differential equations [10, 8, 3, 7, 4, 6].

This study is organized as follows: In the following part, section 2, the optimal perturbation-
iteration algorithm is described and also improved for the solution of systems of differential
equations for the first time. In section 3, OPIM is implemented to a test problem to get the
approximate solutions. Finally, in Section 4, the conclusion of this research paper is given.

2. Optimal Perturbation-Iteration Algorithm

In this part, a perturbation-iteration algorithm is presented by using only one correction term
in the straightforward perturbation expansion and a correction term of nth-order derivatives
from the Taylor expansion of a function.



S.DENIZ: SEMI-ANALYTICAL APPROACH FOR SOLVING A MODEL FOR HIV ... 275

Figure 1. Flow diagram for HIV model

Let us look at the following non-linear (or linear) system of differential equations

Ak(ẋk, xj , ε, t) = 0; k = 1, 2, ...,K; j = 1, 2, ...,K (2)

where k denotes the number of differential equations in the system. Obviously, the system of
equations can be written as

A1 = A1(ẋ1, x1, x2, x3, ..., xK , ε, t) = 0
A2 = A2(ẋ2, x1, x2, x3, ..., xK , ε, t) = 0

...
Ak = Ak(ẋk, x1, x2, x3, ..., xK , ε, t) = 0.

(3)

Let us consider an approximate solution of the system

xk,n+1 = xk,n + εxck,n (4)

with one correction term in the perturbation expansion. The subscript letter n symbolizes the
nth order iteration over the obtained approximate solution. One can approximate to the system
with a Taylor series expansion as

Ak =
M∑

m=0

1

m!

[
(
d

dε
)mAk

]
ε=0

εm; k = 1, 2, ...,K (5)

in the neighborhood of ε = 0 where

d

dε
=
∂ẋk,n+1

∂ε

∂

∂ẋk,n+1
+

K∑
j=1

(
∂ẋk,n+1

∂ε

∂

∂ẋk,n+1

)
+

∂

∂ε
(6)

is defined for the (n+ 1)th iterative equations

Ak(ẋk,n+1, xj,n+1, ε, t) = 0 (7)

substituting equation (6) into (5), an iteration algorithm is attained;

Ak =

M∑
m=0

1

m!

ẋck,n ∂

∂ẋk,n+1
+

K∑
j=1

(
ẋcj,n

∂

∂ẋj,n+1

)
+

∂

∂ε

m

Hk


ε=0

εm = 0 (8)

which is a first-order ordinary differential equation and can be solved for the correction terms
xck,n Then, using Eq.(3), the (n + 1)th iteration solution can be found. Iterations are stopped
after a satisfactory approximate solution is obtained.
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In order to improve the approximate PIM solutions, a new approach to perturbation iteration
algorithms is proposed. Based on the idea of homotopy analysis method (HAM) [1, 21, 23], a
convergence-control parameter p is furnished into Eq. (4) and then establish new components,
described by

xk,1(t; p) = xk,0 + p0x
c
k,0

xk,2(t; p) = xk,1 + p1x
c
k,1

...
xk,m+1(t; p) = xk,n + pmx

c
k,m.

(9)

It is evident that when the convergence parameters pm are all equal to one, (9) is converted
to the classical PIM. As observed in [1, 21], the region of validity of these parameters pm can
be determined by drawing constant level curves for some arbitrary values of the solution. This
can be done by selecting a non-zero value of the mth order approximate solution, mapping it
out against the parameter p and tracking the interval of p for which only a small change in the
value is sought. Although this approach enables us to estimate a value for p, it is not a sufficient
method to find the optimum value. To get a better and optimum value, the similar strategy
mentioned by Marinca et al [14, 2] is used. To achieve this, the approximate solution xm is
inserted into the Eq.(2). Correspondingly, the general problem results in the following residual:

ResA1 = A1(ẋ1,m, x1,m, x2,m, ..., xK,m, p0, ε, t) = 0
ResA2 = A2(ẋ2, x1,m, x2,m, ..., xK,m, p1, ε, t) = 0

...
ResAk

= Ak(ẋk, x1,m, x2,m, ..., xK,m, pm−1ε, t) = 0.

(10)

Apparently, when Res(t; pm) = 0 then the approximation xm(t; p) will be the desired exact
solution.In fact, one cannot encounter with this case for especially nonlinear equations, but one
can perform some calculation for the functional

JResA1(p1) =
∫

Ω(ResA1)2(t; p0)dt
JResA2(p2) =

∫
Ω(ResA2)2(t; p1)dt

...
JResAk

(pK) =
∫

Ω(ResAk
)2(t; pK−1)dt

(11)

where Ω is the domain that one wishes to obtain the solution of the problem. Therefore, the
convergence-control parameters p can be optimally identified from the condition

dJResA1

dp1
= 0,

dJResA2

dp2
= 0, · · · , dJResAK

dpK
= 0. (12)

Both of these techniques have their drawbacks. Therefore, firstly the level curves are used to
determine the valid region of p, then use the residual to find its optimum value around this
region. All of these processes are called the optimal perturbation iteration method (OPIM)
since one can obtain the optimal convergence control parameter in this manner.

3. Test Problem

In this section, the system (1) by using OPIM algorithms is solved. To start the iterations,
the initial conditions will be taken as H(−τ) = H0(t) = H(0) = 900, I0(t) = I(0) = 0,
V (−τ) = V0(t) = V (0) = 0.005. With these values, one can follow the procedure for OPIM
mentioned in Section 2 to solve the following system:
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dH(t)

dt
= 18 − 0.05H(t) + 0.05H(t)

(
1 − H(t) + I(t)

120

)
− 0.0028H(t)V (t)

dI(t)

dt
= 0.0029H(t− τ)V (t− τ) − 0.27I(t) (13)

dV (t)

dt
= 600I(t) − 0.0028H(t)V (t) − 3.5V (t).

Perturbation parameter ε can be embedded to the above system

A1 =
dH(t)

dt
−
(

18 − 0.05H(t) + 0.05εH(t)

(
1 − H(t) + I(t)

120

)
− 0.0028εH(t)V (t)

)

A2 =
dI(t)

dt
− (0.0029εH(t− τ)V (t− τ) − 0.27I(t)) (14)

A3 =
dV (t)

dt
− (600I(t) − 0.0028εH(t)V (t) − 3.5V (t))

Correspondingly, the Eq. (8) turns into

Ḣk + εḢk
c

+ 18 − 0.05Ḣk + 0.05εḢk

(
1 − Ḣk + İk

120

)
−0.0028εḢkV̇k = 0

İk + εİk
c

+ 0.0029εḢk(t− τ)V̇k(t− τ) − 0.27İk = 0 (15)

V̇k + εV̇k
c

+ 600İk − 0.0028εḢkV̇k − 3.5V̇k = 0.

One can continue the process till fifth - order approximation and can obtain the following residual
functions as:

ResH5 = Ḣ5 − 18 + 0.05Ḣ5 − 0.05Ḣ5

(
1 − Ḣ5 + İ5

120

)
+ 0.0028εḢ5V̇5

ResI5 = İ5 −
(

0.0029Ḣ5(t− τ)V̇5(t− τ) − 0.27İ5

)
(16)

ResV5 = V̇5 −
(

600İ5 − 0.0028Ḣ5V̇5 − 3.5V̇5

)
Unknown parameters p0, p1, p2 can be obtained by using the idea described in Section 2 as

dJResH5

dp0
= 0,

dJResI5
dp1

= 0,
dJResV5

dp2
= 0. (17)

Graphics of absolute residual errors obtained by optimal perturbation iteration method for each
group are displayed in Figures 2-7 for fourth and fifth order approximate solutions respectively.
For this problem, the optimal values of p0 = 0.996121, p1 = 0.070589 and p2 = 0.200365 are
obtained by minimizing the residual error for fifth - order approximation. One can easily get
the approximate OPIM results by substituting these parameters in their places.
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Figure 2. Absolute error for fourth order OPIM solution of H(t)

Figure 3. Absolute error for fourth order OPIM solution of I(t)

Figure 4. Absolute error for fourth order OPIM solution of V (t)

4. Conclusions

In this research paper, the approximate solutions of the mathematical model of HIV infections
is analyzed. Newly developed optimal perturbation iteration method has been improved to solve
the system of differential equations. Applying this technique to the model for HIV infection of
CD4+ T-cells reveals that this method is powerful and effective to get the approximate solutions
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Figure 5. Absolute error for fifth order OPIM solution of H(t)

Figure 6. Absolute error for fifth order OPIM solution of I(t)

Figure 7. Absolute error for fifth order OPIM solution of V (t)

of these types of problems. Graphics for absolute residual errors also support this claim. Finally,
one can conclude that OPIM provide a simple and easy way to control and adjust the convergence
region and it is also applicable to the nonlinear biological systems.
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