SĂLĂGEAN-TYPE ANALYTIC FUNCTIONS ASSOCIATED WITH THE JANOWSKI FUNCTIONS AND q-DIFFERENCE OPERATOR

ASENA ÇETINKAYA ${ }^{1}$, §

Abstract

We introduce three new subclasses of Sălăgean-type analytic functions by using Janowski functions and q-difference operator. We investigate inclusion theorem, sufficient coefficient estimates and distortion bounds for the functions belonging to these subclasses. Moreover, partial sums of these subclasses were obtained.

Keywords: q-calculus, q-difference operator, Sălăgean differential operator, Janowski function.

AMS Subject Classification: 30C50, 30C99, 81Q99.

1. Introduction

Let \mathcal{A} be the class of analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \tag{1}
\end{equation*}
$$

in the open unit disc $\mathbb{D}:=\{z:|z|<1\}$ with the normalization $f(0)=f^{\prime}(0)-1=0$. A function f is said to be subordinate to a function g, written as $f \prec g$ in \mathbb{D}, if there exists a Schwarz function w with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z)), z \in \mathbb{D}$. We denote by \mathcal{S}, the class of univalent functions in \mathbb{D}. Denote by \mathcal{S}^{*}, the subclass of functions f in \mathcal{S} are starlike if satisfy the following condition:

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad(z \in \mathbb{D})
$$

Also, let \mathcal{P} be the class of Carathéodory functions $p: \mathbb{D} \rightarrow \mathbb{C}$ of the form $p(z)=1+c_{1} z+$ $c_{2} z^{2}+\cdots, z \in \mathbb{D}$ such that $\operatorname{Re}(p(z))>0$. For the theory of analytic univalent functions one may refer to [3].

Quantum calculus or q-calculus is the traditional calculus without the use of limits. Quantum calculus dates back to Leonhard Euler (1707-1783) and Carl Gustav Jacobi (1804-1851). But q-calculus became popular after Jackson published his papers on q-derivative and q-integral opeartors (see $[6,7,8]$). The great interest is due to its applications in various branches of mathematics and physics, as for example, in the areas

[^0]of ordinary fractional calculus, orthogonal polynomials, basic hypergeometric functions, combinatorics.

The operator

$$
\left(D_{q} f\right)(z)=\left\{\begin{array}{cc}
\frac{f(z)-f(q z)}{(1-q) z}, & z \neq 0 \\
f^{\prime}(0), & z=0
\end{array}\right.
$$

is called q-derivative (or q-difference operator) of a function f. For a function f of the form (1), we observe that

$$
\left(D_{q} f\right)(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}
$$

where $[n]_{q}=\frac{1-q^{n}}{1-q}, q \in(0,1)$. Clearly, for $q \rightarrow 1^{-},[n]_{q} \rightarrow n$. For definitions and properties of q-calculus, one may refer to $[2,6,7]$.

In 1990, Ismail et al. [5] used quantum calculus in the theory of analytic univalent functions and defined the following class:
Definition 1.1. A function $f \in \mathcal{A}$ defined by (1) is said to belong to the class $P \mathcal{S}_{q}$ if

$$
\left|\frac{z}{f(z)}\left(D_{q} f\right)(z)-\frac{1}{1-q}\right| \leq \frac{1}{1-q}
$$

for all $z \in \mathbb{D}$. As $q \rightarrow 1^{-}, P \mathcal{S}_{q}$ reduces to the class \mathcal{S}^{*} of starlike functions.
The q-analogue of Sălăgean differential operator $R_{q}^{m} f(z): \mathcal{A} \rightarrow \mathcal{A}$ is formed by (see [4]);

$$
\begin{aligned}
R_{q}^{0} f(z) & =f(z) \\
R_{q}^{1} f(z) & =z D_{q}(f(z)) \\
\vdots & \\
R_{q}^{m} f(z) & =z D_{q}^{1}\left(R_{q}^{m-1} f(z)\right)
\end{aligned}
$$

From definition $R_{q}^{m} f(z)$, we obtain

$$
\begin{equation*}
R_{q}^{m} f(z)=z+\sum_{n=2}^{\infty}[n]_{q}^{m} a_{n} z^{n} \tag{2}
\end{equation*}
$$

where $[n]_{q}^{m}=\left(\frac{1-q^{n}}{1-q}\right)^{m}, q \in(0,1), m \in \mathbb{N}$. Clearly, as $q \rightarrow 1^{-}$, the equation (2) reduces to Sălăgean differential operator (see [10]).
Definition 1.2. [9] A given function f with $f(0)=1$ is said to belong to the class $\mathcal{P}[A, B]$ if and only if

$$
f(z) \prec \frac{1+A z}{1+B z}, \quad(-1 \leq B<A \leq 1 ; z \in \mathbb{D})
$$

where \prec denotes subordination symbol. The analytic function class $\mathcal{P}[A, B]$ was introduced by Janowski [9], who showed that $f \in \mathcal{P}[A, B]$ if and only if there exists a function $p \in \mathcal{P}$ such that

$$
f(z)=\frac{(A+1) p(z)-(A-1)}{(B+1) p(z)-(B-1)}, \quad(-1 \leq B<A \leq 1 ; z \in \mathbb{D})
$$

Making use of Janowski functions and q-difference operator, we introduce three new subclasses of Sălăgean-type analytic functions.

Definition 1.3. For $q \in(0,1),-1 \leq B<A \leq 1$, $m \in \mathbb{N}$ and $z \in \mathbb{D}$, a function f of the form (1) is said to belong to the class $\mathcal{S}_{(q, 1)}(m, A, B)$ if

$$
\begin{equation*}
\operatorname{Re}\left(\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}\right) \geq 0 \tag{3}
\end{equation*}
$$

where $R_{q}^{m} f$ is defined by (2). This class is called q-Sălăgean-type analytic functions type-1 associated with the Janowski functions.

Definition 1.4. For $q \in(0,1),-1 \leq B<A \leq 1, m \in \mathbb{N}$ and $z \in \mathbb{D}$, a function f of the form (1) is said to belong to the class $\mathcal{S}_{(q, 2)}(m, A, B)$ if

$$
\begin{equation*}
\left|\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}-\frac{1}{1-q}\right|<\frac{1}{1-q} \tag{4}
\end{equation*}
$$

where $R_{q}^{m} f$ is defined by (2). This class is called q-Sălăgean-type analytic functions type-2 associated with the Janowski functions.

Definition 1.5. For $q \in(0,1),-1 \leq B<A \leq 1, m \in \mathbb{N}$ and $z \in \mathbb{D}$, a function f of the form (1) is said to belong to the class $\mathcal{S}_{(q, 2)}(m, A, B)$ if

$$
\begin{equation*}
\left|\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}-1\right|<1 \tag{5}
\end{equation*}
$$

where $R_{q}^{m} f$ is defined by (2). This class is called q-Sălăgean-type analytic functions type-3 associated with the Janowski functions.

For special values of $q \in(0,1),-1 \leq B<A \leq 1, m \in \mathbb{N}$, we get the following known subclasses:

1) If we put $m=0$ in Definition $1.3,1.4$ and 1.5 , respectively, we get the classes $\mathcal{S}_{(q, 1)}^{*}(A, B), \mathcal{S}_{(q, 2)}^{*}(A, B)$ and $\mathcal{S}_{(q, 3)}^{*}(A, B)$, which was introduced and studied by Srivastava et al. (see [11]).
2) If we put $A=1-2 \alpha(0 \leq \alpha<1), B=-1$ and $m=0$ in Definition 1.3, 1.4 and 1.5 , respectively, we get the classes $\mathcal{S}_{q, 1}^{*}(\alpha), \mathcal{S}_{q, 2}^{*}(\alpha)$ and $\mathcal{S}_{q, 3}^{*}(\alpha)$, which was introduced and studied by Wongsaijai and Sukantamala (see [12]).
3) If we put $A=1-2 \alpha(0 \leq \alpha<1), B=-1$ and $m=0$ in Definition 1.4, we get the class $\mathcal{S}_{q}^{*}(\alpha)$ which was introduced and studied by Agrawal and Sahoo (see [1]).
4) If we put $A=1, B=-1$ and $m=0$ in Definition 1.4, we get the class $\mathcal{P} \mathcal{S}_{q}$ which was introduced and studied by Ismail et al. (see [5]).

2. Main Results

We first show the inclusion theorem of each classes of q-Sălăgean-type analytic functions associated with the Janowski functions.

Theorem 2.1. If $q \in(0,1),-1 \leq B<A \leq 1, m \in \mathbb{N}$, then

$$
\begin{equation*}
\mathcal{S}_{(q, 3)}(m, A, B) \subset \mathcal{S}_{(q, 2)}(m, A, B) \subset \mathcal{S}_{(q, 1)}(m, A, B) \tag{6}
\end{equation*}
$$

Proof. Assume that $f \in \mathcal{S}_{(q, 3)}(m, A, B)$, then by Definition 1.5 we have

$$
\left|\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}-1\right|<1
$$

so that

$$
\left|\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}-1\right|+\frac{q}{1-q}<1+\frac{q}{1-q}
$$

By using triangle inequality in the above expression, we obtain

$$
\begin{equation*}
\left|\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}-\frac{1}{1-q}\right|<\frac{1}{1-q} \tag{7}
\end{equation*}
$$

Inequality in (7) shows that $f \in \mathcal{S}_{(q, 2)}(m, A, B)$, and we conclude that

$$
\mathcal{S}_{(q, 3)}(m, A, B) \subset \mathcal{S}_{(q, 2)}(m, A, B)
$$

Next, we let $f \in \mathcal{S}_{(q, 2)}(m, A, B)$, then by Definition 1.4 we have

$$
f \in \mathcal{S}_{(q, 2)}(m, A, B) \Leftrightarrow\left|\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}-\frac{1}{1-q}\right|<\frac{1}{1-q}
$$

Since

$$
\begin{aligned}
\frac{1}{1-q} & >\left|\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}-\frac{1}{1-q}\right| \\
& =\left|\frac{1}{1-q}-\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}\right|
\end{aligned}
$$

then we get

$$
\operatorname{Re}\left(\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}\right)>0
$$

This last expression shows that $f \in \mathcal{S}_{(q, 1)}(m, A, B)$, and we conclude that

$$
\mathcal{S}_{(q, 2)}(m, A, B) \subset \mathcal{S}_{(q, 1)}(m, A, B)
$$

This completes the proof.
Next, we give a sufficient condition of $\mathcal{S}_{(q, 3)}(m, A, B)$ via coefficient inequality which guarantees a sufficient condition for $\mathcal{S}_{(q, 1)}(m, A, B)$ and $\mathcal{S}_{(q, 2)}(m, A, B)$.
Theorem 2.2. For $q \in(0,1),-1 \leq B<A \leq 1, m \in \mathbb{N}$ and $z \in \mathbb{D}$, if a function f of the form (1) satisfies the inequality

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n]_{q}^{m}\left\{2\left([n]_{q}-1\right)+[n]_{q}(B+1)+(A+1)\right\}\left|a_{n}\right|<A-B \tag{8}
\end{equation*}
$$

then f is belong to the class $\mathcal{S}_{(q, 3)}(m, A, B)$.

Proof. Assume that inequality (8) holds. Using Definition 1.5, we obtain

$$
\left|\frac{2\left(R_{q}^{m} f(z)-R_{q}^{m+1} f(z)\right)}{(B+1) R_{q}^{m+1} f(z)-(A+1) R_{q}^{m} f(z)}\right|<1
$$

and in view of (2), we get

$$
\left|\frac{\sum_{n=2}^{\infty} 2[n]_{q}^{m}\left([n]_{q}-1\right) a_{n} z^{n}}{\left.(A-B) z-\sum_{n=2}^{\infty}[n]_{q}^{m+1}(B+1)+\sum_{n=2}^{\infty}[n]_{q}^{m}(A+1)\right) a_{n} z^{n}}\right|<1
$$

which gives

$$
\frac{\sum_{n=2}^{\infty} 2[n]_{q}^{m}\left([n]_{q}-1\right)\left|a_{n}\right|}{A-B-\sum_{n=2}^{\infty}[n]_{q}^{m}\left([n]_{q}(B+1)+(A+1)\right)\left|a_{n}\right|}<1
$$

This last inequality gives (8), it follows that, $f \in \mathcal{S}_{(q, 3)}(m, A, B)$.
We now introduce additional new subclasses of q-Sălăgean-type analytic functions associated with the Janowski functions by using negative coefficients. Let \mathcal{T} be a subset of \mathcal{A} containing negative coefficient functions; that is,

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \tag{9}
\end{equation*}
$$

We also let

$$
\mathcal{T} \mathcal{S}_{(q, i)}(m, A, B):=\mathcal{T} \cap \mathcal{S}_{(q, i)}(m, A, B), \quad i=\{1,2,3\}
$$

In view of negative coefficients given by (9), we get

$$
\begin{equation*}
R_{q}^{m} f(z)=z-\sum_{n=2}^{\infty}[n]_{q}^{m}\left|a_{n}\right| z^{n} \tag{10}
\end{equation*}
$$

Theorem 2.3. If $q \in(0,1),-1 \leq B<A \leq 1$, $m \in \mathbb{N}$, then

$$
\begin{equation*}
\mathcal{T} \mathcal{S}_{(q, 1)}^{*}(m, A, B) \equiv \mathcal{T} \mathcal{S}_{(q, 2)}^{*}(m, A, B) \equiv \mathcal{T} \mathcal{S}_{(q, 3)}^{*}(m, A, B) \tag{11}
\end{equation*}
$$

Proof. By using Theorem 2.1, it is sufficient to show that $\mathcal{T} \mathcal{S}_{(q, 1)}^{*}(m, A, B) \subset \mathcal{T} \mathcal{S}_{(q, 3)}^{*}(m, A, B)$. Assuming that $f \in \mathcal{T S}_{(q, 1)}^{*}(m, A, B)$, we have

$$
\operatorname{Re}\left(\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}\right) \geq 0
$$

Thus we can obtain

$$
\operatorname{Re}\left(\frac{(B-1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A-1)}{(B+1) \frac{R_{q}^{m+1} f(z)}{R_{q}^{m} f(z)}-(A+1)}-1\right) \geq-1
$$

Routine calculations shows that

$$
\frac{2\left(R_{q}^{m} f(z)-R_{q}^{m+1} f(z)\right)}{(B+1) R_{q}^{m+1} f(z)-(A+1) R_{q}^{m} f(z)} \geq-1
$$

By using negative coefficients given by (10), we obtain

$$
\frac{\sum_{n=2}^{\infty} 2[n]_{q}^{m}\left([n]_{q}-1\right)\left|a_{n}\right|}{A-B-\sum_{n=2}^{\infty}[n]_{q}^{m}\left([n]_{q}(B+1)+(A+1)\right)\left|a_{n}\right|}<1
$$

which satisfies (8). Theorem 2.2 implies the proof of this theorem.
By using the result of Theorem 2.3, all types of q-Sălăgean-type analytic functions associated with the Janowski functions are the same. For convenience, we state the following distortion theorem by using the notation $\mathcal{T} \mathcal{S}_{(q, i)}^{*}(m, A, B), i=\{1,2,3\}$.
Theorem 2.4. If $f \in \mathcal{T} \mathcal{S}_{(q, i)}^{*}(m, A, B), i=\{1,2,3\}$, then for $|z|=r<1$ we have

$$
\begin{equation*}
r-\frac{A-B}{\Theta_{q}(2, m, A, B)} r^{2} \leq|f(z)| \leq r+\frac{A-B}{\Theta_{q}(2, m, A, B)} r^{2} \tag{12}
\end{equation*}
$$

where $\Theta_{q}(2, m, A, B)=[2]_{q}^{m}\left(2\left([2]_{q}-1\right)+[2]_{q}(B+1)+(A+1)\right)$.
Proof. Since $f \in \mathcal{T S}_{(q, i)}^{*}(m, A, B)$, in view of Theorem 2.3 we obtain

$$
\begin{aligned}
& {[2]_{q}^{m}\left(2\left([2]_{q}-1\right)+[2]_{q}(B+1)+(A+1)\right)\left|a_{n}\right| \sum_{n=2}^{\infty}} \\
& \leq \sum_{n=2}^{\infty}[n]_{q}^{m}\left(2\left([n]_{q}-1\right)+[n]_{q}(B+1)+(A+1)\right)\left|a_{n}\right| \\
& <A-B
\end{aligned}
$$

which gives

$$
\sum_{n=2}^{\infty}\left|a_{n}\right| \leq \frac{A-B}{[2]_{q}^{m}\left(2\left([2]_{q}-1\right)+[2]_{q}(B+1)+(A+1)\right)}
$$

Therefore, we easily get

$$
\begin{aligned}
|f(z)| & \leq|z|+\sum_{n=2}^{\infty}\left|a_{n}\right||z|^{n} \\
& \leq r+\frac{A-B}{[2]_{q}^{m}\left(2\left([2]_{q}-1\right)+[2]_{q}(B+1)+(A+1)\right)} r^{2}
\end{aligned}
$$

Similarly, we also get

$$
\begin{aligned}
|f(z)| & \geq|z|-\sum_{n=2}^{\infty}\left|a_{n}\right||z|^{n} \\
& \geq r-\frac{A-B}{[2]_{q}^{m}\left(2\left([2]_{q}-1\right)+[2]_{q}(B+1)+(A+1)\right)} r^{2}
\end{aligned}
$$

This completes the proof.
Theorem 2.5. If $f \in \mathcal{T}_{(q, i)}^{*}(m, A, B), i=\{1,2,3\}$, then for $|z|=r<1$ we have

$$
\begin{equation*}
1-\frac{2(A-B)}{\Theta_{q}(2, m, A, B)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(A-B)}{\Theta_{q}(2, m, A, B)} r \tag{13}
\end{equation*}
$$

where $\Theta_{q}(2, m, A, B)=[2]_{q}^{m}\left(2\left([2]_{q}-1\right)+[2]_{q}(B+1)+(A+1)\right)$.

Proof. From the following expressions given by

$$
\begin{aligned}
& \left|f^{\prime}(z)\right| \leq 1+\sum_{n=2}^{\infty} n\left|a_{n} \| z\right|^{n-1}, \\
& \left|f^{\prime}(z)\right| \geq 1-\sum_{n=2}^{\infty} n\left|a_{n} \| z\right|^{n-1},
\end{aligned}
$$

and

$$
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \frac{2(A-B)}{[2]_{q}^{m}\left(2\left([2]_{q}-1\right)+[2]_{q}(B+1)+(A+1)\right)}
$$

we get (13).

3. Partial Sums

In this section, we examine the ratio of a function of the form (1) to its sequence of partial sums

$$
f_{k}(z)=z+\sum_{n=2}^{k} a_{n} z^{n},(z \in \mathbb{D})
$$

when the coefficients of f are sufficiently small to satisfy condition (8). We will determine partial sums of the functions in the classes $\mathcal{S}_{(q, i)}^{*}(m, A, B), i=1,2,3$, and obtain sharp lower bounds for the ratios of $f(z)$ to $f_{k}(z)$.
Theorem 3.1. If f of the form (1) satisfies the condition (8), then

$$
\begin{equation*}
\text { i) } \quad \operatorname{Re}\left(\frac{f(z)}{f_{k}(z)}\right) \geq 1-\frac{1}{\lambda_{k+1}} \tag{14}
\end{equation*}
$$

and
ii) $\quad \operatorname{Re}\left(\frac{f_{k}(z)}{f(z)}\right) \geq \frac{\lambda_{k+1}}{1+\lambda_{k+1}}$
where $\lambda_{k}=\frac{[n]_{q}^{m}\left(2\left([n]_{q}-1\right)+[n]_{q}(B+1)+(A+1)\right)}{A-B}$.
Proof. i) In order to prove (14), we may write

$$
\begin{aligned}
\psi_{1}(z) & =\lambda_{k+1}\left(\frac{f(z)}{f_{k}(z)}-\left(1-\frac{1}{\lambda_{k+1}}\right)\right) \\
& =1+\frac{\lambda_{k+1} \sum_{n=k+1}^{\infty} a_{n} z^{n}}{z+\sum_{n=2}^{k} a_{n} z^{n}} .
\end{aligned}
$$

It is suffcient to show that $\operatorname{Re} \psi_{1}(z)>0$, or equivalently

$$
\left|\frac{\psi_{1}(z)-1}{\psi_{1}(z)+1}\right| \leq 1,
$$

then we get

$$
\left|\frac{\psi_{1}(z)-1}{\psi_{1}(z)+1}\right| \leq \frac{\lambda_{k+1} \sum_{n=k+1}^{\infty}\left|a_{n}\right|}{2-2 \sum_{n=2}^{k}\left|a_{n}\right|-\lambda_{k+1} \sum_{n=k+1}^{\infty}\left|a_{n}\right|} \leq 1
$$

if and only if

$$
2 \lambda_{k+1} \sum_{n=k+1}^{\infty}\left|a_{n}\right| \leq 2-2 \sum_{n=2}^{k}\left|a_{n}\right|
$$

which implies that

$$
\begin{equation*}
\sum_{n=2}^{k}\left|a_{n}\right|+\lambda_{k+1} \sum_{n=k+1}^{\infty}\left|a_{n}\right| \leq 1 \tag{16}
\end{equation*}
$$

Finally, to prove the inequality in (14), it is suffices to show that the left-hand side of (16) is bounded above by $\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right|$, which is equivalent to

$$
\begin{equation*}
\sum_{n=2}^{k}\left(1-\lambda_{n}\right)\left|a_{n}\right|+\sum_{n=k+1}^{\infty}\left(\lambda_{k+1}-\lambda_{n}\right)\left|a_{n}\right| \geq 0 \tag{17}
\end{equation*}
$$

By taking into account (17), we get (14).
ii) Next, in order to prove (15), we may write

$$
\begin{aligned}
\psi_{2}(z) & =\left(1+\lambda_{k+1}\right)\left(\frac{f_{k}(z)}{f(z)}-\left(1-\frac{1}{1+\lambda_{k+1}}\right)\right) \\
& =1-\frac{\left(1+\lambda_{k+1}\right) \sum_{n=k+1}^{\infty} a_{n} z^{n}}{z+\sum_{n=2}^{\infty} a_{n} z^{n}}
\end{aligned}
$$

Then, we obtain

$$
\left|\frac{\psi_{2}(z)-1}{\psi_{2}(z)+1}\right| \leq \frac{\left(1+\lambda_{k+1}\right) \sum_{n=k+1}^{\infty}\left|a_{n}\right|}{2-2 \sum_{n=2}^{k}\left|a_{n}\right|-\left(\lambda_{k+1}-1\right) \sum_{n=k+1}^{\infty}\left|a_{n}\right|} \leq 1
$$

if and only if

$$
\begin{equation*}
\sum_{n=2}^{k}\left|a_{n}\right|+\lambda_{k+1} \sum_{n=k+1}^{\infty}\left|a_{n}\right| \leq 1 \tag{18}
\end{equation*}
$$

Finally, we can state that the left-hand side of (18) is bounded above by $\sum_{n=2}^{\infty} \lambda_{n}\left|a_{n}\right|$, and therefore we obtain (15). This completes the proof.

References

[1] Agrawal, S., Sahoo, S. K., (2017), A generalization of starlike functions of order alpha, Hokkaido Math. J., 46, no. 1, pp. 15-27.
[2] Gasper, G., Rahman, M., (2004), Basic hypergeometric series, Cambridge University Press, Cambridge.
[3] Goodman, A. W., (1983), Univalent functions, Volume I and II, Polygonal Pub. House, Washington.
[4] Govindaraj, M., Sivasubramanian, S., (2017), On a class of analytic function related to conic domains involving q-calculus, Analysis Math., 43, no. 3, pp. 475-487.
[5] Ismail, M. E. H., Merkes, E., Steyr, D., (1990), A generalization of starlike functions, Complex Variables Theory Appl., 14, no. 1-4, pp. 77-84.
[6] Jackson, F. H., (1909), On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46, no. 2, pp. 253-281.
[7] Jackson, F. H., (1910), q-difference equations, Amer. J. Math., 32, pp. 305-314.
[8] Jackson, F. H., (1910), On q-definite integrals, Quart. J. Pure Appl. Math., 41, pp. 193-203.
[9] Janowski, W., (1973), Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28, pp. 297-326.
[10] Sălăgean, G. S., (1983), Subclasses of univalent functions, In: Complex Analysis, Fifth Romanian Finnish Seminar, Part I (Bucharest, 1981), Lecture Notes in Math., 1013, Springer, Berlin, pp. 362372.
[11] Srivastava, H. M., Tahir, M., Khan, B., Ahmad, Q. Z., Khan, N., (2019), Some general classes of q-Starlike functions associated with the Janowski functions, Symmetry, DOI: 10.3390/sym11020292.
[12] Wongsaijai, B., Sukantamala, N., (2016), Certain properties of some families of generalized Starlike functions with respect to q-calculus, Abstract and Applied Anal., Article ID 6180140, pp. 1-8.

Asena Çetinkaya's research interest includes Geometric Function Theory.

[^0]: ${ }^{1}$ Department of Mathematics and Computer Sciences, Istanbul Kültür University, Istanbul, Turkey. e-mail: asnfigen@hotmail.com; ORCID: https://orcid.org/0000-0002-8815-5642.
 § Manuscript received: June 20, 2019; accepted: September 11, 2019. TWMS Journal of Applied and Engineering Mathematics, Vol.11, No. 2 © Işık University, Department of Mathematics, 2021; all rights reserved.

