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ON THE CONNECTED DETOUR MONOPHONIC NUMBER OF A

GRAPH

P. TITUS1, K. GANESAMOORTHY2, §

Abstract. For a connected graph G = (V,E) of order at least two, a connected detour
monophonic set S of G is called a minimal connected detour monophonic set if no proper
subset of S is a connected detour monophonic set of G. The upper connected detour
monophonic number of G, denoted by dm+

c (G), is defined as the maximum cardinality
of a minimal connected detour monophonic set of G. We determine bounds for it and
find the same for some special classes of graphs. For any three positive integers a, b and
n with 6 ≤ a ≤ n ≤ b, there is a connected graph G with dmc(G) = a, dm+

c (G) = b and
a minimal connected detour monophonic set of cardinality n.

Keywords: detour monophonic set, connected detour monophonic set, connected detour
monophonic number, minimal connected detour monophonic set, upper connected detour
monophonic number.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without loops or
multiple edges. The order and size of G are denoted by p and q respectively. For basic
graph theoretic terminology we refer to Harary [3]. The neighborhood of a vertex v is the
set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an extreme
vertex if the subgraph induced by its neighbors is complete.

The closed interval I[x, y] consists of all vertices lying on some x − y geodesic of G,
while for S ⊆ V, I[S] =

⋃
x,y∈S

I[x, y]. A set S of vertices of a graph G is a geodetic set

if I[S] = V, and the minimum cardinality of a geodetic set is the geodetic number g(G).
A geodetic set of cardinality g(G) is called a g-set. The geodetic number of a graph was
introduced in [1, 4] and further studied in [2].
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A chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called
a monophonic path if it is a chordless path. A longest x− y monophonic path is called an
x−y detour monophonic path. A set S of vertices of G is a detour monophonic set if each
vertex v of G lies on an x− y detour monophonic path for some x, y ∈ S. The minimum
cardinality of a detour monophonic set of G is the detour monophonic number of G and is
denoted by dm(G). The detour monophonic number of a graph was introduced in [8] and
further studied in [7]. A connected detour monophonic set of G is a detour monophonic
set S such that the subgraph G[S] induced by S is connected. The minimum cardinality
of a connected detour monophonic set of G is the connected detour monophonic number
of G and is denoted by dmc(G). The connected detour monophonic number of a graph G
was introduced and studied in [9].

For any two vertices u and v in a connected graph G, the monophonic distance dm(u, v)
from u to v is defined as the length of a longest u− v monophonic path in G. The mono-
phonic eccentricity em(v) of a vertex v in G is em(v) = max {dm(v, u) : u ∈ V (G)}. The
monophonic radius, radmG of G is radmG = min {em(v) : v ∈ V (G)} and the monophonic
diameter, diammG of G is diammG = max {em(v) : v ∈ V (G)}. The monophonic distance
was introduced and studied in [5, 6]. The following theorems will be used in the sequel.

Theorem 1.1. [9] Each extreme vertex of a connected graph G belongs to every connected
detour monophonic set of G.

Theorem 1.2. [9] Let G be a connected graph with cutvertices and let S be a connected
detour monophonic set of G. If v is a cutvertex of G, then every component of G − v
contains an element of S.

Theorem 1.3. [9] Every cutvertex of a connected graph G belongs to every connected
detour monophonic set of G.

Theorem 1.4. [9] Let G be a connected graph of order p ≥ 2. Then G = K2 if and only
if dmc(G) = 2.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Upper Connected Detour Monophonic Number

Definition 2.1. Let G be a connected graph. A connected detour monophonic set S of
G is called a minimal connected detour monophonic set if no proper subset of S is a
connected detour monophonic set of G. The upper connected detour monophonic number
of G, denoted by dm+

c (G), is defined as the maximum cardinality of a minimal connected
detour monophonic set of G.

Example 2.1. For the graph G given in Figure 2.1, the minimal connected detour mono-
phonic sets are S1 = {x, y, z}, S2 = {x, u, z}, S3 = {x, v, z}, S4 = {x, y, u, v} and
S5 = {z, y, u, v}. Hence the upper connected detour monophonic number of G is 4.
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Note 2.1. Every minimum connected detour monophonic set is a minimal connected
detour monophonic set, and the converse need not true. For the graph G given in Figure
2.1, S4 is a minimal connected detour monophonic set and it is not a minimum connected
detour monophonic set of G.

Since every minimal connected detour monophonic set of G is a connected detour mono-
phonic set of G, we have the following theorems.

Theorem 2.1. Each extreme vertex of a connected graph G belongs to every minimal
connected detour monophonic set of G.

Proof. This follows from Theorem 1.1. �

Corollary 2.1. For the complete graph Kp, dm+
c (Kp) = p.

Theorem 2.2. Let G be a connected graph with cutvertices and let S be a minimal
connected detour monophonic set of G. If v is a cutvertex of G, then every component of
G− v contains an element of S.

Proof. This follows from Theorem 1.2. �

Theorem 2.3. Every cutvertex of a connected graph G belongs to every minimal con-
nected detour monophonic set of G.

Proof. This follows from Theorem 1.3. �

Corollary 2.2. For any non-trivial tree T of order p, dmc(T ) = dm+
c (T ) = p.

Proof. This follows from Theorems 1.1, 1.3, 2.1 and 2.3. �

Theorem 2.4. For the complete bipartite graph G = Km,n,
(i) dm+

c (G) = 2 if m = n = 1.
(ii) dm+

c (G) = n + 1 if m = 1, n ≥ 2.
(iii) dm+

c (G) = max{m,n}+ 1 if m,n ≥ 2.

Proof. (i) and (ii) follow from Corollary 2.2.
(iii) Let m,n ≥ 2. Assume without loss of generality that m ≤ n. Let X = {x1, x2, . . . , xm}
and Y = {y1, y2, . . . , yn} be the bipartite sets of G. Clearly S = Y is a minimal detour
monophonic set of G. Since G[S] is not connected, and since S′ = S ∪ {xi} is a minimal
connected detour monophonic set of G for any i(1 ≤ i ≤ m), we have dm+

c (G) ≥ n + 1.
Let S1 be any minimal connected detour monophonic set of G such that |S1| ≥ n + 2.

Since any vertex yi(1 ≤ i ≤ n) lies on the detour monophonic path xj , yi, xk for j 6= k, it
follows that X ∪ {yi} for some i, is a connected detour monophonic set of G. Hence S1

cannot contain X ∪ {yi} for some i. Similarly, since Y ∪ {xj} for some j, is a connected
detour monophonic set of G, S1 cannot contain Y ∪ {xj} for some j. Hence S1 ⊂ X ′ ∪ Y ′,
where X ′ ⊂ X and Y ′ ⊂ Y . Hence there exists a vertex xi ∈ X(1 ≤ i ≤ m) and a vertex
yj ∈ Y (1 ≤ j ≤ n) such that xi, yj /∈ S1.

Suppose that S1 contains exactly one vertex from X ′, then the vertex yj (1 ≤ j ≤ n)
is not an internal vertex of any x − y detour monophonic path for some x, y ∈ S1 and
so S1 is not a minimal connected detour monophonic set of G. Suppose that S1 contains
exactly one vertex from Y ′, then the vertex xi (1 ≤ i ≤ m) is not an internal vertex of any
x − y detour monophonic path for some x, y ∈ S1 and so S1 is not a minimal connected
detour monophonic set of G. If S1 contains more than one vertex from both X ′ and Y ′,
then S′ = {xi′ , xj′ , yl, yk} is a connected detour monophonic set of G for some xi′ , xj′ ∈ X ′

and yl, yk ∈ Y ′. It follows that S1 is not a minimal connected detour monophonic set of
G, which is a contradiction. Thus any minimal connected detour monophonic set of G
contains at most n + 1 elements so that dm+

c (G) ≤ n + 1. Hence dm+
c (G) = n + 1. �
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Theorem 2.5. For any connected graph G of order p ≥ 2, 2 ≤ dmc(G) ≤ dm+
c (G) ≤ p.

Proof. Any connected detour monophonic set needs at least two vertices and so dmc(G) ≥
2. Since every minimal connected detour monophonic set of G is also a connected detour
monophonic set of G, it follows that dmc(G) ≤ dm+

c (G). Also, since V (G) induces a
connected detour monophonic set of G, it is clear that dm+

c (G) ≤ p. �

Remark 2.1. The bounds in Theorem 2.5 are sharp. For the complete graph K2, dmc(K2)
= dm+

c (K2) = 2 and if G is a non-trivial tree of order p, then dmc(G) = dm+
c (G) = p. All

the inequalities in Theorem 2.5 are strict. For graph G given in Figure 2.1, dmc(G) = 3,
dm+

c (G) = 4 and p = 5. Thus we have 2 < dmc(G) < dm+
c (G) < p.

Theorem 2.6. Let G be a connected graph of order p ≥ 2. Then G = K2 if and only if
dm+

c (G) = 2.

Proof. This follows from Theorems 1.4 and 2.5. �

Theorem 2.7. Let G be a connected graph of order p with every vertex of G is either a
cutvertex or an extreme vertex. Then dm+

c (G) = p.

Proof. Let G be a connected graph with every vertex of G is either a cutvertex or an
extreme vertex. Then by Theorems 2.1 and 2.3, we have dm+

c (G) = p. �

Remark 2.2. The converse of Theorem 2.7 is not true. For the graph G given in Figure
2.2, dm+

c (G) = p, but the vertex x is neither a cutvertex nor an extreme vertex of G.

Theorem 2.8. For a connected graph G, dm+
c (G) = p if and only if dmc(G) = p.

Proof. Let dm+
c (G) = p. Then S = V (G) is the unique minimal connected detour mono-

phonic set of G. Since no proper subset of S is a connected detour monophonic set of G,
it is clear that S is the unique minimum connected detour monophonic set of G and so
dmc(G) = p. The converse follows from Theorem 2.5. �

Theorem 2.9. If G is a connected graph of order p with dmc(G) = p−1, then dm+
c (G) =

p− 1.

Proof. Let dmc(G) = p − 1. Then by Theorem 2.5, we have dm+
c (G) = p or p − 1.

If dm+
c (G) = p, then by Theorem 2.8, dmc(G) = p, which is a contradiction. Hence

dm+
c (G) = p− 1. �

Remark 2.3. The converse of Theorem 2.9 is not true. For example, consider the graph
G given in Figure 2.1. It is clear that dm+

c (G) = p− 1 and dmc(G) = p− 2.

We leave the following problem as an open question.

Problem 2.1. Characterize graphs G for which dmc(G) = dm+
c (G).
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3. Realization results for dm+
c (G)

In view of Theorem 2.5, we have the following realization theorem.

Theorem 3.1. For every pair a, b of positive integers with 4 ≤ a ≤ b, there is a connected
graph G with dmc(G) = a and dm+

c (G) = b.

Proof. Case 1. a = b. Let G be any tree having a endvertices. Then by Corollary 2.2, G
has the desired property.

Case 2. a < b. Let P3 : x, y, z be a path of order 3. Let G be the graph obtained
by adding b − 2 new vertices v1, v2, . . . , va−3, w1, w2, . . . , wb−a+1 to P3 and joining each
wi(1 ≤ i ≤ b− a+ 1) to both x, z; and also joining each vi(1 ≤ i ≤ a− 3) to x. The graph
G is shown in Figure 3.1. By Theorems 1.1, 1.3, 2.1 and 2.3, S = {v1, v2, . . . , va−3, x} is
contained in every connected detour monophonic set and every minimal connected detour
monophonic set of G. It is clear that S is not a detour monophonic set of G. It is easily
verified that S′ = S ∪ {z} is a detour monophonic set of G. Since the induced subgraph
G[S′] is not connected, S′ is not a connected detour monophonic set of G. Now, for any
vertex v ∈ {y, w1, w2, . . . , wb−a+1}, it is clear that S′∪{v} is a minimum connected detour
monophonic set of G and so dmc(G) = a.

Next we show that dm+
c (G) = b. Clearly, T = S∪{y, w1, w2, . . . , wb−a+1} is a connected

detour monophonic set of G. We claim that T is a minimal connected detour monophonic
set of G. Assume, to the contrary, that T is not a minimal connected detour monophonic
set of G. Then there is a proper subset W of T such that W is a connected detour
monophonic set of G. Hence there exists a vertex, say v, such that v ∈ T and v /∈W . By
Theorems 2.1 and 2.3, v ∈ {y, w1, w2, . . . , wb−a+1}. It is easily verified that v is not an
internal vertex of any x − y detour monophonic path for some x, y ∈ W , and it follows
that W is not a connected detour monophonic set of G, which is a contradiction. Hence
T is a minimal connected detour monophonic set of G and so dm+

c (G) ≥ b.
Now, we prove that dm+

c (G) = b. Suppose that dm+
c (G) > b. Let N be a minimal

connected detour monophonic set of G with |N | > b. Then N = V (G). Since T is a
proper subset of N, N is not a minimal connected detour monophonic set of G. Therefore
dm+

c (G) = b. �

Remark 3.1. The graph G in Figure 3.1 contains exactly b − a + 3 minimal connected
detour monophonic sets, namely S ∪ {y, z}, S ∪ {wi, z}(1 ≤ i ≤ b − a + 1) and S ∪
{y, w1, w2, . . . , wb−a+1}. Therefore dmc(G) = a and dm+

c (G) = b. If b − a ≥ 2, then this
example shows that there is no “Intermediate Value Theorem” for minimal connected
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detour monophonic sets, that is, if n is an integer such that dmc(G) < n < dm+
c (G), then

there need not exist a minimal connected detour monophonic set of cardinality n in G.

Theorem 3.2. For any three positive integers a, b and n with 6 ≤ a ≤ n ≤ b, there exists
a connected graph G with dmc(G) = a, dm+

c (G) = b and a minimal connected detour
monophonic set of cardinality n.

Proof. We prove this theorem by considering four cases.
Case 1. a = n = b. Let G be any tree with number of endvertices a. Then by Corollary

2.2, G has the desired property.
Case 2. a = n < b. For the graph G given in Figure 3.1 of Theorem 3.1, it is proved

that dmc(G) = a, dm+
c (G) = b and S = {v1, v2, . . . , va−3, x, y, z} is a minimal connected

detour monophonic set of cardinality n.
Case 3. a < n = b. For the graph G given in Figure 3.1 of Theorem 3.1, it is proved that

dmc(G) = a, dm+
c (G) = b and S = {v1, v2, . . . , va−3, x, y, w1, w2, . . . , wb−a+1} is a minimal

connected detour monophonic set of cardinality n.
Case 4. a < n < b. Let l = n− a + 2 and m = b− n + 2. Let F1 = mK1 + K2, where

U1 = V (K2) = {x, u1} and X = V (mK1) = {x1, x2, . . . , xm}. Similarly, F2 = lK1 + K2,
where U2 = V (K2) = {u2, y} and Y = V (lK1) = {y1, y2, . . . , yl}. Let K1,a−5 be the star at
the vertex u and let S = {w1, w2, . . . , wa−5} be the set of endvertices of K1,a−5. Let G be
the graph obtained from F1, F2 and K1,a−5 by identifying the vertices u1 from F1, u2 from
F2 and u from K1,a−5. The graph G is shown in Figure 3.2. It follows from Theorems
1.1, 1.3, 2.1 and 2.3, every connected detour monophonic set and every minimal connected
detour monophonic set of G contains S′ = S ∪ {u}.

First we show that dmc(G) = a. It is clear that S′ is not a detour monophonic set of
G. Also, for any vertex v ∈ V (G) − S′, S′ ∪ {v} is not a detour monophonic set of G.
Let S′′ = S′ ∪ {x, y}. It is easily verified that S′′ is a minimum detour monophonic set of
G, which is not connected. For any vertex w ∈ {x1, x2, . . . , xm} and v ∈ {y1, y2, . . . , yl},
it is clear that S′′ ∪ {v, w} is a minimum connected detour monophonic set of G and so
dmc(G) = a.

Next, we show that dm+
c (G) = b. Let T = S′ ∪X ∪ Y . It is clear that T is a connected

detour monophonic set of G. We claim that T is a minimal connected detour monophonic
set of G. Assume, to the contrary, that T is not a minimal connected detour monophonic
set of G. Then there is a proper subset W of T such that W is a connected detour
monophonic set of G. Hence there exists a vertex, say v ∈ T , such that v /∈ W . Assume
first that v = xi for some i(1 ≤ i ≤ m) or v = yj for some j(1 ≤ j ≤ l). Then the vertex
v is not an internal vertex of any detour monophonic path joining a pair of vertices in W.
If v = wi for some i(1 ≤ i ≤ a−5), then the vertex v is not an internal vertex of any x−y
detour monophonic path for some x, y ∈ W . If v = u, then the vertex v is an internal
vertex of any xi − yj detour monophonic path for some i, j. It is easily verified that W is
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a detour monophonic set of G, which is not connected. Hence T is a minimal connected
detour monophonic set of G so that dm+

c (G) ≥ b.
Now, we prove that dm+

c (G) = b. Suppose that dm+
c (G) > b. Let T ′ be a minimal

connected detour monophonic set of G with |T ′| > b. Then there exists at least one
vertex, say v ∈ T ′ such that v /∈ T . Clearly, v ∈ {x, y}. If v = x, then (T ′ − X) ∪ {x1}
is a connected detour monophonic set of G and it is a proper subset of T ′, which is a
contradiction to T ′ a minimal connected detour monophonic set of G. Similarly, if v = y,
then (T ′ − Y )∪ {y1} is a connected detour monophonic set of G and it is a proper subset
of T ′, which is a contradiction. Hence dm+

c (G) = b.
Finally, we show that there is a minimal connected detour monophonic set of cardinality

n. Let P = S ∪ Y ∪ {u, x, x1}. It is clear that P is a connected detour monophonic set
of G. We claim that P is a minimal connected detour monophonic set of G. Assume, to
the contrary, that P is not a minimal connected detour monophonic set. Then there is
a proper subset P ′ of P such that P ′ is a connected detour monophonic set of G. Let
v ∈ P and v /∈ P ′. By Theorems 1.1 and 1.3, clearly v = x, v = x1 or v = yi for some
i = 1, 2, . . . , l. If v = x, then the vertex v is not an internal vertex of any s − t detour
monophonic path for some s, t ∈ P ′. If v = yi for some i = 1, 2, . . . l, then the vertex v is
not an internal vertex of any s− t detour monophonic path for some s, t ∈ P ′. If v = x1,
then the vertex v is an internal vertex of any x − wi detour monophonic path for some
i. It is easily verified that P ′ is a detour monophonic set of G, which is not connected.
Thus P is a minimal connected detour monophonic set of G with |P | = n. Hence the
theorem. �

Theorem 3.3. If p, d and n are positive integers such that 2 ≤ d ≤ p− 2, 4 ≤ n ≤ p and
p− d−n+ 1 ≥ 0, then there exists a connected graph G of order p, monophonic diameter
d and dm+

c (G) = n.

Proof. We prove this theorem by considering three cases.
Case 1. d = 2. First, let n = p. Then the star K1,n−1 has the desired property. Now, let
4 ≤ n < p. Let P3 : x, y, z be a path of order 3. Let G be the graph obtained by adding
p−3 new vertices v1, v2, . . . , vp−n, w1, w2, . . . , wn−3 to P3 and joining each wi(1 ≤ i ≤ n−3)
to y ; joining each vi(1 ≤ i ≤ p−n) with x, y and z ; and joining each vi(1 ≤ i ≤ p−n− 1)
with vj(i+ 1 ≤ j ≤ p− n). The graph G is shown in Figure 3.3. Then G has order p and
monophonic diameter d = 2. By Theorems 2.1 and 2.3, every minimal connected detour
monophonic set of G contains S = {w1, w2, w3, . . . , wn−3, x, z, y}. It is easily verified that
S is the unique minimal connected detour monophonic set of G and so dm+

c (G) = n.



P. TITUS, K. GANESAMOORTHY: ON THE CONNECTED DETOUR MONOPHONIC ... 973

Case 2. d = 3. Let C4 : u, v, w, x, u be a cycle of order 4. Now, let H = C4+(p−n−1)K1,
where V ((p− n− 1)K1) = {u1, u2, . . . , up−n−1}. Let G be the graph obtained from H by
adding n−3 new vertices v1, v2, . . . , vn−3 and joining each vi(1 ≤ i ≤ n−3) to x in H. The
graph G is shown in Figure 3.4. Then G has order p and monophonic diameter d = 3.
By Theorems 2.1 and 2.3, every minimal connected detour monophonic set of G contains
S = {v1, v2, v3, . . . , vn−3, x}. Clearly, S is not a connected detour monophonic set of G.
Also, for any vertex y ∈ V (G)− S, S ∪ {y} is not a connected detour monophonic set of
G. It is easily verified that S1 = S ∪ {u,w}, S2 = S ∪ {u, v} and S3 = S ∪ {v, w} are the
minimal connected detour monophonic sets of G and so dm+

c (G) = n.

Case 3. 4 ≤ d ≤ p − 2. Let Cd+1 : v1, v2, ..., vd+1, v1 be the cycle of order d + 1. Add
p− d− 1 new vertices w1, w2, . . . , wn−2, u1, u2, . . . , up−d−n+1 to Cd+1 and join each vertex
wi(1 ≤ i ≤ n − 2) to both v1 and v2; and join each vertex uj(1 ≤ j ≤ p − d − n + 1) to
both v3 and v5, thereby producing the graph G of Figure 3.5. Then G has order p and
monophonic diameter d. Let S = {w1, w2, . . . , wn−2} be the set of all extreme vertices of
G. Then by Theorem 2.1, S is contained in every minimal connected detour monophonic
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set of G. It is clear that S1 = S ∪ {v2, v3} and S2 = S ∪ {v1, vd+1} are the only minimal
connected detour monophonic sets of G and so dm+

c (G) = n. �
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