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ANALYTIC SOLUTION OF NONLINEAR SINGULAR BVP WITH

MULTI-ORDER FRACTIONAL DERIVATIVES IN

ELECTROHYDRODYNAMIC FLOWS

RAMZI B. ALBADARNEH1, A. K. ALOMARI2, N. TAHAT1, I. BATIHA3, §

Abstract. In this study, a power series formula is proposed in order to introduce a
new innovated numerical method called a newly Power Series Method (NPSM), beside
with a construction of its error bound, to obtain approximate solutions of the standard
fractional counterpart for a Boundary Value Problem (BVP) that appears in ElectroHy-
droDynamic (EHD) flows of the fluid. The solution for numerous fractional derivatives
of both rational and irrational orders are numerically computed. Based on the residual
error computation, the validity of the obtained results is verified. A high accuracy and
a clear efficiency of the proposed method are revealed by discussing several numerical
comparisons between such method and others.

Keywords: ElectroHydroDynamic flow, Caputo’s fractional derivative, power series method,
Residual error.

AMS Subject Classification: 26A33, 34B16, 41A10.

1. Introduction

Several definitions have been proposed to calculate the fractional-order derivative. The
most well-known definitions are the Riemann-Liouville, Caputo [1], Atangana and Baleanu
[2], Caputo-Fabrizio [3], conformable and Grünwald-Letnikov definitions [4]. It is worth
noting that these definitions could provide different fractional-order derivatives for a cer-
tain function. Moreover, Some of the simple fractional initial value problem using Atan-
gana and Baleanu sense does not have nonzero solution [5]. Among of all mentioned
definitions; the most two popular definitions are the Riemann-Liouville and the Caputo
fractional-order derivatives. In fact, the Caputo one is often preferred due to its excellent
results in several simulations that handle many of the real world processes and systems
in a form of fractional-order differential equations. It has an ability to accept the ini-
tial conditions in terms of integer-order values, unlike the Riemann-Liouville definition,
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which does not have this practical advantage, and hence it’s mostly applied for theoretical
considerations [6].

Generally, most researchers exhibit that the fractional-order differential equations have
better nature of complex dynamics than the integer order equations. In fact, most numer-
ical solutions in this area improves many significant problems which were handled before
in the classical case, some of these method are: Predictor Corrector Method (PCM) [7],
Homotopy Method [8, 9], Adomain Decomposition Method (ADM) [10], Homotopy Per-
turbation Method (HPM) [11], Fractional Finite Difference Method (FFDM) [12, 13],
Variational Iteration Method (VIM) [14], and Differential Transform Method (DTM) [13].
However, finding approximate solutions of fractional derivatives using Power Series Method
(PSM) has been investigated in several techniques such as Taylor Method (TM), Differ-
ential Transforms Method (DTM) [15], Residual Power Series Method (RPSM) [16], and
others. The main different point between all of these techniques, is the manner of finding
the unknown coefficients of the resultant series. Most of such methods could provide a
good approximation for the solution in specific intervals near the initial point, but if one
needs that solution lying far from this point, then the results will be not enough accurate
sure. For this reason, constructing a new method that depends upon the time interval of
the solution is, indeed, an urgent need.

In this work, a new approach has been proposed for finding the coefficients of a con-
structed power series which will give, as will be shown later on, an accurate solution for
the considered problem in the general domain, even if the fractional-order γ and β are ir-
rationals or satisfy the property γ−β < 1. As a first step of the NPSM a new power series
formula is derived for the fractional-order derivatives, which will be presented in Section
3. Next, some other derived formulas related to such formula are substituted in the main
problem, and then some collection points are used in order to obtain the coefficients of
the constructed power series. Section 5 discusses the manner of deriving the error bound
for the solution, while Section 6 demonstrates several numerical results which show the
efficiency of the proposed approach, followed by Section 7 that summarizes the conclusion
of this work.

2. Preliminaries

The ElectroHydroDynamic (EHD) flow of a fluid in an ion drag configuration in a
circular cylindrical conduit is governed by the non-linear Boundary Value Problem (BVP):

d2w

dr2
+

1

r

dw

dr
+ Ha2

(
1− w

1− αw

)
= 0, 0 < r < 1, (1)

subject to the boundary conditions:

w
′
(0) = 0, w(1) = 0. (2)

where w(r) is the velocity of the fluid, r is the radial distance from the cylindrical conduit
center, Ha is the Hartmann electric number, and where α is the magnitude of the power
of non-linearity which related to the pressure gradient, the ion mobility, and the current
density at the inlet of the conduit.

The EHD flow of a fluid has been discussed well by McKee et al. [17]. They explained
the fact that the non-dimensional variable α dominates the degree of non-linearity in such
equation. Further, they showed that such equation could be approximated by two different
linear equations for very small values of this variable, or very large too [18]. Afterward,
the existence and uniqueness for this problem were dealt by Paullet et al. [19].
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The problem under investigation, in (1)-(2), was handled using several numerical meth-
ods like Homotopy Analysis Method (HAM) [20], Spectral Method (SM) [21], Chebyshev
Spectral Collocation Method (CSCM) [22], Orthonormal Bernstein Polynomials Method
(OBPM) [23], and many others. Recently, a generalized model of such problem was pro-
posed by Alomari et al. [18]. It has been, indeed, extended in the fractional case as
follows:

Dγw +
1

r
Dβw + Ha2

(
1− w

1− αw

)
= 0, (3)

where Dγ , 1 < γ ≤ 2, and Dβ, 0 < β ≤ 1, are the fractional derivatives in the Caputo’s
sense, with the property that γ−β ≥ 1, and with considering the same boundary conditions
in (2). Obviously, Eq.(1) is, just, a special case of Eq.(3), by setting the fractional orders
γ and β equal to 2 and 1, respectively.

3. Fractional Power Series

In this section, we give a series formula with its error term for the Caputo fractional
derivative [24].

Theorem 3.1. Let y ∈ Cn+1[a, b], 0 < α < 1, and a ≥ 0, then for every t ∈ (a, b] there
exist ξ ∈ (a, b) such that the fractional derivative Dα

a y(t) in Caputo sense can be written
in the form with its reminder term as:

Dα
a y(t) =

1

Γ(1− α)

(
n∑
i=1

y(i)(a)(t− a)i−α

Πi
j=1(j − α)

+
y(n+1)(ξ)(t− a)n+1−α

Πn+1
j=1 (j − α)

)
. (4)

Proof. The fractional derivative Dα
a y(t) in the Caputo sense for 0 < α < 1 is known as

Dα
a y(t) =

1

Γ(1− α)

∫ t

a

y′(x)

(t− x)α
dx, t > a (5)

By applying the integration by parts to Eq. (5) we have

Dα
a y(t) =

1

Γ(1− α)

(
y′(a)(t− a)1−α

1− α
+

∫ t

a

(t− x)1−αy′′(x)

(1− α)
dx

)
. (6)

In the same manner if we apply the integration by parts to the second part of Eq.(6)
(n− 1)-times, we have

Dα
a y(t) =

1

Γ(1− α)

 y′(a)(t−a)1−α

1−α + y′′(a)(t−a)2−α

(1−α)(2−α) + ...

+y(n)(a)(t−a)n−α

Πnj=1(j−α) +
∫ t
a

(t−x)n−αy(n+1)(x)
Πnj=1(j−α) dx)


=

1

Γ(1− α)

(
n∑
i=1

y(i)(a)(t− a)i−α

Πi
j=1(j − α)

+

∫ t

a

(t− x)n−αy(n+1)(x)

Πn
j=1(j − α)

dx

)
.

Since y ∈ Cn+1[a, b] and (t−x)n−α does not change its sign on [a, t], and by the Weighted
Mean-Value Theorem there exist ξ ∈ (a, t) such that∫ t

a

(t− x)n−αy(n+1)(x)

Πn
j=1(j − α)

dx =
y(n+1)(ξ)

Πn
j=1(j − α)

∫ t

a
(t− x)n−αdx

=
y(n+1)(ξ)(t− a)n+1−α

Πn+1
j=1 (j − α)

.

Therefor, equation 4 can be obtained.
�
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Theorem 3.1 can be generalized for any m− 1 < α < m where m is positive integer:

Theorem 3.2. Let y ∈ Cn+m[a, b], m − 1 < α < m, where m is positive integer, and
a ≥ 0, then for every t ∈ (a, b], there exist ξ ∈ (a, b) such that the fractional derivative
Dα
a y(t) in Caputo sense can be written in the form with its reminder term as:

Dα
a y(t) =

1

Γ(m− α)

n∑
i=1

y(m+i−1)(a)(t− a)m−α+i−1

Πi
j=1(m− α+ j − 1)

+
y(m+n)(ξ)(t− a)m+n−α−1

Γ(m− α)Πn+1
j=1 (m− α+ j − 1)

. (7)

Proof. The fractional derivative Dα
a y(t) in the Caputo sense for m− 1 < α < m is known

as

Dα
a y(t) =

1

Γ(m− α)

∫ t

a

y(m)(x)

(t− x)m+α−1
dx, t > a (8)

By applying the integration by parts to (8) we have:

Dα
a y(t) =

1

Γ(m− α)

(
y(m)(a)(t− a)m−α

m− α
+

∫ t

a

(t− x)m−αy(m+1)(x)

(m− α)
dx

)
(9)

In the same manner if we apply the integration by parts to the second part of (9) (n− 1)-
times, we have

Dα
a y(t) =

1

Γ(m− α)

 y(m)(t−a)m−α

m−α + y(m+1)(a)(t−a)m−α+1

(m−α)(m−α+1) + ...

+y(m+n−1)(a)(t−a)m−α+n−1

Πnj=1(m−α+j−1) +
∫ t
a

(t−x)m−α+n−1y(m+n)(x)
Πnj=1(m−α+j−1) dx)


=

1

Γ(m− α)

(
n∑
i=1

y(m+i−1)(a)(t− a)m−α+i−1

Πi
j=1(m− α+ j − 1)

+

∫ t

a

(t− x)m−α+n−1y(m+n)(x)

Πn
j=1(m− α+ j − 1)

dx

)
.

(10)
Since y ∈ Cm+n[a, b] and (t − x)m−α+n−1 does not change its sign on [a, t], and by the
Weighted Mean-Value Theorem there exist ξ ∈ (a, t) such that∫ t

a

(t− x)m−α+n−1y(m+n)(x)

Πn
j=1(m− α+ j − 1)

dx =
y(m+n)(ξ)

Πn
j=1(m− α+ j − 1)

∫ t

a
(t− x)m−α+n−1dx

=
y(m+n)(ξ)(t− a)m−α+n

Πn+1
j=1 (m− α+ j − 1)

.

Therefor, equation 7 can be obtained.
�

4. Solution Procedure

The Weierstrass approximation theorem states that every continuous function f defined
on a closed interval [a, b] can be approximated by a polynomial as closely as desired which
converge uniformly to f . To approximate the solution of the fractional differential equation

Dγy(r) +
1

r
Dβy(r) +Ha2(1− y(r)

1− αy(r)
) = 0, (11)
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with boundary conditions y′(0) = 0, and y(1) = 0, where 0 < r < 1, 0 < β < 1, and
1 ≤ γ ≤ 2, suppose that we can approximate y(r) by the (n + 1)th Taylor polynomial of
y(r) about r = 0, that is

y(r) ≈ w(r) = c0 +

n+1∑
i=1

cir
i, (12)

note that c1 = 0 since y′(0) = 0. Using theorem (3.1), in our case and according to our

assumption of y(r) in (12), we can find the exact value of Dβ
aw(r) by

1

Γ(1− β)

n1∑
i=1

w(i)(a)ri−β

Πi
j=1(j − β)

, (13)

and using theorem (3.2), we can find the exact value of Dγ
aw(r) by

1

Γ(2− γ)

n2∑
i=1

w(i+1)(a)ri−γ+1

Πi
j=1(j − γ + 1)

, (14)

where n1 and n2 are some integer numbers, we can choose n1=n2=n+ 2 since y(k)(0) = 0
for all k ≥ n+ 2. To avoid the singularity of (11) at r = 0, we can multiply equation (11)
by r, then substitute (12), (13) and (14) into (11), that is

rDγw(r) +Dβw(r) + rHa2(1− w(r)

1− αw(r)
) = 0, (15)

To find the (n + 1) unknowns coefficients: c0, c2,...,cn+1, we generate a system of (n + 1)
nonlinear algebraic equations, which can be solved numerically, for that, we can divided
the interval [0, 1] into n sub-intervals, for simplification, we can choose ri = ih, where
h = 1/n, the resulting system is

riD
γw(ri) +Dβw(ri) +Ha2ri(1−

w(ri)

1− αw(ri)
) = 0, i = 0, 2, 3, ..., n, (16)

and since y(1) = 0, the equation w(1) = 0 is added to (16). By substituting c′is into
(12) we obtain the solution w(r) which approximate y(r) with residual error res(r), where
the residual error can be computed using w(r) and the Caputo definition for Dγw(r) and
Dβw(r). The residual error can be written as:

res(r) = rDγw(r) +Dβw(r) + rHa2(1− w(r)

1− αw(r)
).

Note that this process can be generalized to generate a power series of several variables
[25] and to solve problems in fractional differential equations with high accuracy results.

5. Error Estimate

In this section, we provide some error estimate for the NPSM solution. Firstly, we
rewrite the modeled as

f(r, w,Dγw,Dβw) := r(1− αw)Dγw + (1− αw)Dβw + rHa2(1− αw)− rHa2w.

Let w̃ be the approximate solution given in section 4 with

w = w̃ +R0, D
γw = Dγw̃ +Rγ , D

βw = Dβw̃ +Rβ, (17)
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and f̃ = f(r, w̃,Dγw̃,Dβw̃). According to theorems 1 and 2, we assume w,Dγw̃, and Dβw̃
are bounded by K0,Kγ ,Kβ respectively. With some simplifications the bound error can
be written as

f − f̃ = r(1− αw)Rγ − rαR0D
γw̃ + (1− αw)Rβ − αR0D

βw̃ − rHa2R0(1 + α),

and hence,

|f − f̃ | ≤ |H1|+ |H2|+ |H3|+ |H4|+ |H5|, (18)

where H1 = Ha2rR0(1 +α), H2 = Rγr(1 +αK0), H3 = Rβ(1 +αK0), H4 = αrR0Kγ and
H5 = αKβR0. Apply the infinite norm for (18) along the interval [0, 1]

||f − f̃ || ≤ ||H1||+ ||H2||+ ||H3||+ ||H4||+ ||H5||, (19)

then the bound for (19) can be computed for each part of the right hand side of (19), for
the first and second parts bound of ||H1|| and ||H2|| we have

||H1|| =
∫ 1

0
Ha2rR0(1 + α)dr ≤

∫ 1

0
Ha2r

Mrn+3

(n+ 2)!
(1 + α)dr

= (1 + α)
MHa2

(n+ 2)!(n+ 4)

≤ MHa2

(n+ 2)!
(1 + α),

||H2|| =
∫ 1

0
rRγ(1 + αK0)dr ≤

∫ 1

0

Mγ(1 + αK0)rn+4−γ

Γ(2− γ)Πn+3
j=1 (j + 1− γ)

dr

=
Mγ(1 + αK0)

Γ(2− γ)(n+ 5− γ)Πn+3
j=1 (j + 1− γ)

≤ Mγ

(n+ 2)!
(1 + αK0),

and the bound for ||H3||,||H4|| and ||H5|| are
Mβ

(n+2)!(1 + αK0),
αKγM
(n+2)! , and

αKβM
(n+2)! respec-

tively, whereM = Maxξ∈(0,1]y
(n+2)(ξ),Mβ = Maxξ∈(0,1]y

(n+3)(ξ),Mγ = Maxξ∈(0,1]y
(n+4)(ξ).

Now, let M = Max{M,Mγ ,Mβ} and K = Max{K0,Kγ ,Kβ}, then

||f − f̃ || ≤ E

(n+ 2)!
, whereE = M(Ha2(1 + α) + 1 + 4αK).

6. Numerical Experiments

In this section, we present the numerical results for the solution of (1) and (2) in the
standard and fractional cases. Firstly, let γ approach to 2 and β approach to 1, α = 0.5
and vary Ha2 = 0.5, 1, 1.5, 2, 4, 10 the numerical results are presented in tables 1 and
2 with its residual error. The present solution has ||Res.||∞ ' 10−14 with 10-order of
approximation while the HAM [20] solution has ||Res.||∞ ' 0.014 and OBCM [23] is
3.37× 10−8 with 20-order of approximation. And for α = 1 the results obtained in tables
3 and 4. The present solution has ||Res.||∞ ' 10−13 with 10-order of approximation
while the HAM [20] solution has ||Res.||∞ ' 0.03 and OBCM [23] is 1.94 × 10−6 with
20-order of approximation. We also plot the solution in figure 1. Secondly, the results for
γ = 1.3, β = 0.3 with α = 0.5 and α = 1 introduce in tables 5-8 for several values of Ha2.
We noted that, for α = Ha2 = 1 DTM [18] gives the solution with ||Res.||∞ ' 10−9 while
the NPSM has 10−12. The obtained solution for this case represent graphically in figure
2.
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Finally, tables 9–12 give the NPSM solution in the case of irrational fractional derivatives
γ = π

2 , β = π
4 which is difficult to obtain by DTM since γ − β < 1. The residual errors

reveal that the solution has accuracy with in 10−11. NPSM solutions for this case is
obtained in figure 2.

Table 1. The numerical solution for α=0.5,γ → 2,β → 1

α=0.5, Ha2 = 0.5 α=0.5, Ha2 = 1 α=0.5, Ha2 = 1.5

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.1137456498 0.000 0.2070081525 0.000 0.2829765323 0.000

0.1 0.1126460196 0.000 0.2050839276 4.163× 10−17 0.2804593832 1.388× 10−17

0.2 0.1093424972 1.388× 10−17 0.1992933225 2.776× 10−17 0.2728695804 2.776× 10−17

0.3 0.1038212011 5.551× 10−17 0.1895826167 2.776× 10−17 0.2600921625 5.551× 10−17

0.4 0.0960590436 5.551× 10−17 0.1758625195 0.000 0.2419359038 1.110× 10−16

0.5 0.0860238038 8.327× 10−17 0.1580085509 5.551× 10−17 0.2181339695 0.000
0.6 0.0736742300 5.551× 10−17 0.1358616035 3.331× 10−16 0.1883450056 3.331× 10−16

0.7 0.0589601756 0.000 0.1092287140 2.220× 10−16 0.1521548162 0.000
0.8 0.0418227663 0.000 0.0778840714 1.110× 10−16 0.1090787970 2.220× 10−16

0.9 0.0221946029 2.220× 10−16 0.0415702941 5.551× 10−16 0.0585652904 2.220× 10−16

1.0 −7.2078× 10−18 1.110× 10−16 1.1282× 10−17 4.441× 10−16 2.6617× 10−17 6.661× 10−16

Table 2. The numerical solution for α=0.5,γ → 2,β → 1

α=0.5, Ha2 = 2 α=0.5, Ha2 = 4 α=0.5, Ha2 = 10

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.3447273110 0.000 0.4975662164 0.000 0.6289591491 0.000

0.1 0.3418045879 2.776× 10−17 0.4941746835 8.327× 10−17 0.6268697788 1.388× 10−17

0.2 0.3329725255 1.110× 10−16 0.4838197962 5.551× 10−17 0.6202616825 9.437× 10−16

0.3 0.3180394102 2.220× 10−16 0.4659554483 3.331× 10−16 0.6080686531 6.661× 10−16

0.4 0.2966857005 1.110× 10−16 0.4396555471 4.441× 10−16 0.5883338822 1.554× 10−15

0.5 0.2684642930 2.220× 10−16 0.4035930725 3.331× 10−16 0.5579308224 1.332× 10−15

0.6 0.2328014568 4.441× 10−16 0.3560167814 0.000 0.5121650676 3.331× 10−15

0.7 0.1889989421 2.220× 10−16 0.2947317659 1.998× 10−15 0.4442807901 4.885× 10−15

0.8 0.1362378182 4.441× 10−16 0.2170915578 4.441× 10−16 0.3449516050 1.332× 10−14

0.9 0.0735845853 6.661× 10−16 0.1200100085 8.882× 10−16 0.2019178321 3.109× 10−14

1.0 −4.6620× 10−18 4.441× 10−16 2.4286× 10−17 1.776× 10−15 −1.6653× 10−16 7.638× 10−14

Table 3. The numerical solution for α=1,γ → 2,β → 1

α=1, Ha2 = 0.5 α=1, Ha2 = 1 α=1, Ha2 = 1.5

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.1132180551 0.000 0.2034157957 0.000 0.2729539294 0.000
0.1 0.1121272131 1.388× 10−17 0.2015523635 1.388× 10−17 0.2706076365 2.776× 10−17

0.2 0.1088494970 2.776× 10−17 0.1959401295 0.000 0.2635190692 8.327× 10−17

0.3 0.1033693935 2.776× 10−17 0.1865136787 5.551× 10−17 0.2515401417 5.551× 10−17

0.4 0.0956612384 0.000 0.1731653025 1.110× 10−16 0.2344273267 5.551× 10−17

0.5 0.0856894991 8.327× 10−17 0.1557469617 1.110× 10−16 0.2118466959 1.110× 10−16

0.6 0.0734091652 5.551× 10−17 0.1340730012 0.000 0.1833811418 4.441× 10−16

0.7 0.0587662401 5.551× 10−17 0.1079235740 1.110× 10−16 0.1485398095 4.441× 10−16

0.8 0.0416983252 5.551× 10−17 0.0770487015 2.220× 10−16 0.1067696130 4.441× 10−16

0.9 0.0221352877 2.220× 10−16 0.0411728656 2.220× 10−16 0.0574685112 2.220× 10−16

1.0 −1.0638× 10−18 0.000 −1.5476× 10−17 2.220× 10−16 2.4658× 10−17 4.441× 10−16
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Table 4. The numerical solution for α=1,γ → 2,β → 1

α=1, Ha2 = 2 α=1, Ha2 = 4 α=1, Ha2 = 10

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.3254542675 0.000 0.4330995227 0.000 0.4920638661 0.000

0.1 0.3228595625 1.388× 10−17 0.4307207048 1.388× 10−17 0.4912399886 1.249× 10−16

0.2 0.3149903436 2.776× 10−17 0.4233626884 8.327× 10−17 0.4885803749 8.327× 10−17

0.3 0.3015926358 0.000 0.4103494689 3.886× 10−16 0.4832872919 2.776× 10−17

0.4 0.2822477445 2.220× 10−16 0.3905250974 3.331× 10−16 0.4737778868 6.106× 10−16

0.5 0.2563799395 0.000 0.3622216688 2.220× 10−16 0.4572525435 4.885× 10−15

0.6 0.2232685130 1.110× 10−16 0.3232382992 1.110× 10−15 0.4290267299 1.554× 10−14

0.7 0.1820649157 2.220× 10−16 0.2708526765 6.661× 10−16 0.3816909972 3.864× 10−14

0.8 0.1318151686 2.220× 10−16 0.2018850520 8.882× 10−16 0.3043801183 1.048× 10−13

0.9 0.0714869637 6.661× 10−16 0.1128234858 5.773× 10−15 0.1827207841 2.283× 10−13

1.0 2.3256× 10−17 4.441× 10−16 2.7755× 10−17 1.954× 10−14 4.4408× 10−16 5.222× 10−13

Table 5. The numerical solution for α=0.5, γ = 13/10,β = 3/10

α=0.5, Ha2 = 0.5 α=0.5, Ha2 = 1 α=0.5, Ha2 = 1.5

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.1914916664 0.000 0.3394465367 0.000 0.4480371775 0.000

0.1 0.1840565025 6.939× 10−18 0.3282049857 1.388× 10−17 0.4358627492 9.714× 10−17

0.2 0.1711062212 3.469× 10−17 0.3082133607 1.527× 10−16 0.4136474113 4.163× 10−16

0.3 0.1558742920 5.551× 10−17 0.2840237442 1.985× 10−15 0.3858145097 4.940× 10−15

0.4 0.1386790399 1.540× 10−15 0.2558692654 4.052× 10−15 0.3521906383 2.470× 10−14

0.5 0.1197007358 6.800× 10−16 0.2237900399 2.212× 10−14 0.3123819196 6.256× 10−14

0.6 0.0990271481 1.590× 10−14 0.1876968341 7.716× 10−14 0.2658423752 1.075× 10−13

0.7 0.0767091307 3.109× 10−14 0.1474529259 9.542× 10−14 0.2119684553 2.032× 10−13

0.8 0.0527652123 1.023× 10−13 0.1028820866 8.777× 10−13 0.1501200606 3.595× 10−13

0.9 0.0272100903 1.479× 10−13 0.0538128082 3.204× 10−12 0.0796824631 2.399× 10−12

1.0 0.0000000000 4.372× 10−13 −5.684× 10−14 5.931× 10−12 0.0000000000 5.746× 10−12

Table 6. The numerical solution for α=0.5,γ = 13/10,β = 3/10

α=0.5, Ha2 = 2 α=0.5, Ha2 = 4 α=0.5, Ha2 = 10

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.5239383948 0.000 0.6428663622 0.000 0.6663904225 0.000

0.1 0.5126701617 1.596× 10−16 0.6385746562 9.541× 10−17 0.6664759961 1.247× 10−18

0.2 0.4914954885 2.220× 10−16 0.6294205565 8.119× 10−16 0.6661878084 2.806× 10−16

0.3 0.4638910157 2.581× 10−15 0.6152269010 1.818× 10−15 0.6655618484 7.464× 10−16

0.4 0.4290928645 6.023× 10−15 0.5935981653 3.053× 10−15 0.6639719230 1.701× 10−15

0.5 0.3860495414 1.665× 10−14 0.5609486217 8.216× 10−15 0.6598664922 4.515× 10−15

0.6 0.3334885538 3.147× 10−14 0.5121675997 5.329× 10−14 0.6490661002 5.477× 10−14

0.7 0.2700235865 1.354× 10−14 0.4404168989 2.478× 10−13 0.6206372890 9.048× 10−14

0.8 0.1942109497 3.278× 10−13 0.3372618723 1.110× 10−12 0.5473804732 8.755× 10−13

0.9 0.1046544008 2.171× 10−12 0.1934063377 3.252× 10−12 0.3711636371 1.739× 10−12

1.0 2.842× 10−14 6.349× 10−12 0.0000000000 7.162× 10−12 2.842× 10−14 4.953× 10−12

7. Conclusion

The solution of electrohydrodynamic flow in a circular cylindrical Conduit was suc-
cessfully obtained for both integer and non-integer derivatives in terms of power series.
Comparing with previous results the present algorithm has higher accuracy and it is ap-
plicable especially in cases that have not been resolved previously when γ-β≤1 and for the
irrational order fractional derivatives. The results introduced in both tables and figures.



R. B. ALBADARNEH, A. K. ALOMARI, N. TAHAT, I. M. BATIHA: APPROXIMATE SOLUTION ... 1133

Table 7. The numerical solution for α=1, γ = 13/10,β = 3/10

α=1, Ha2 = 0.5 α=1, Ha2 = 1 α=1, Ha2 = 1.5

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.1899546759 0.000 0.3277763009 0.000 0.4139205333 0.000

0.1 0.1827237321 3.816× 10−16 0.3179624214 1.388× 10−17 0.4053067730 2.741× 10−16

0.2 0.1700843760 5.412× 10−16 0.3001937930 6.939× 10−17 0.3888691327 7.910× 10−16

0.3 0.1551503131 2.498× 10−15 0.2781979704 5.967× 10−16 0.3670600400 3.747× 10−16

0.4 0.1382153712 1.024× 10−14 0.2520198732 6.911× 10−15 0.3391782484 4.163× 10−16

0.5 0.1194455904 4.019× 10−14 0.2215733052 3.320× 10−14 0.3043876323 1.288× 10−14

0.6 0.0989226696 1.515× 10−13 0.1866984795 8.665× 10−14 0.2618102129 7.239× 10−14

0.7 0.0766974518 3.896× 10−13 0.1472360154 2.703× 10−13 0.2106449132 1.950× 10−13

0.8 0.0527941062 9.459× 10−13 0.1030364394 5.028× 10−13 0.1502295478 5.540× 10−13

0.9 0.0272374994 3.122× 10−12 0.0539985263 9.909× 10−14 0.0801106273 2.592× 10−12

1.0 0.0000000000 6.922× 10−12 −5.684× 10−14 7.692× 10−13 0.0000000000 5.746× 10−12

Table 8. The numerical solution for α=1, γ =13/10,β =3/10

α=1, Ha2 = 2 α=1, Ha2 = 4 α=1, Ha2 = 10

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.4599147383 0.000 0.4982464112 0.000 0.5004117242 0.000

0.1 0.4539706290 1.735× 10−17 0.4975651132 8.882× 10−17 0.4998914309 1.071× 10−16

0.2 0.4418976701 5.065× 10−16 0.4959784157 1.776× 10−16 0.4999621304 1.323× 10−15

0.3 0.4244838301 3.414× 10−15 0.4928112172 0.000 0.4999578760 4.151× 10−15

0.4 0.4001620370 1.490× 10−14 0.4865203657 3.553× 10−16 0.4999112897 2.784× 10−14

0.5 0.3670021499 4.285× 10−14 0.4740145102 2.665× 10−15 0.4996555216 1.116× 10−13

0.6 0.3228568945 1.628× 10−13 0.4494973693 7.994× 10−15 0.4983983712 5.340× 10−13

0.7 0.2656147972 2.806× 10−13 0.4031722563 1.306× 10−14 0.4922988256 2.749× 10−12

0.8 0.1934655611 4.338× 10−13 0.3213522936 3.553× 10−14 0.4631868887 1.179× 10−11

0.9 0.1051435206 4.259× 10−13 0.1898984354 1.487× 10−13 0.3443605534 3.171× 10−11

1.0 0.0000000000 5.571× 10−13 7.105× 10−15 3.393× 10−13 1.136× 10−13 7.022× 10−11

Table 9. The numerical solution for α=0.5, γ =π/2,β =π/4

α=0.5, Ha2 = 0.5 α=0.5, Ha2 = 1 α=0.5, Ha2 = 1.5

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.1414800191 0.000 0.2557478916 0.000 0.3464052875 0.000

0.1 0.1389522463 3.469× 10−18 0.2515257156 4.857× 10−17 0.3411876461 1.388× 10−17

0.2 0.1329054647 4.163× 10−17 0.2413653530 1.665× 10−16 0.3285423361 2.776× 10−17

0.3 0.1241823766 3.747× 10−16 0.2265642849 1.665× 10−16 0.3099073113 5.551× 10−17

0.4 0.1130499921 1.860× 10−15 0.2074374484 1.665× 10−16 0.2854703783 1.277× 10−15

0.5 0.0996463615 8.771× 10−15 0.1840679077 6.495× 10−15 0.2551017127 7.494× 10−15

0.6 0.0840447257 1.621× 10−14 0.1564169320 1.604× 10−14 0.2184932731 2.104× 10−14

0.7 0.0662798055 6.195× 10−14 0.1243701959 8.649× 10−14 0.1752193058 9.753× 10−14

0.8 0.0463599357 7.019× 10−14 0.0877601902 2.870× 10−14 0.1247683054 6.078× 10−14

0.9 0.0242754699 2.432× 10−13 0.0463824577 9.115× 10−14 0.0665685083 3.718× 10−13

1.0 −1.776× 10−15 4.171× 10−13 −3.552× 10−15 4.902× 10−14 −3.552× 10−15 8.481× 10−13

Error bound of the NPSM solution was constructed and revealed that the solution has
accuracy of O(1/n!). So, we can conclude that the NPSM is a reliable technique for this
kind of problems and it can apply without any linearization of discretization.
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Table 10. The numerical solution for α=0.5, γ =π/2,β =π/4

α=0.5, Ha2 = 2 α=0.5, Ha2 = 4 α=0.5, Ha2 = 10

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.4173866612 0.000 0.5732489905 0.000 0.6594503310 0.000

0.1 0.4117152179 4.163× 10−17 0.5684805256 5.551× 10−17 0.6584591853 1.317× 10−15

0.2 0.3978589181 3.886× 10−16 0.5563838305 2.914× 10−16 0.6555739471 7.980× 10−16

0.3 0.3771709785 1.305× 10−15 0.5371921696 8.327× 10−17 0.6500654567 5.551× 10−17

0.4 0.3495917209 2.831× 10−15 0.5095839928 1.638× 10−15 0.6400890312 9.714× 10−17

0.5 0.3146642925 3.331× 10−16 0.4714554646 1.216× 10−14 0.6222030654 1.887× 10−15

0.6 0.2716878169 1.804× 10−14 0.4199692602 4.480× 10−14 0.5902264473 7.216× 10−15

0.7 0.2197866402 7.871× 10−14 0.3515630665 1.076× 10−13 0.5334642377 3.508× 10−14

0.8 0.1579518845 7.372× 10−14 0.2619987130 1.311× 10−13 0.4344878933 3.075× 10−14

0.9 0.0850798971 2.587× 10−13 0.1465022313 3.531× 10−13 0.2675704738 7.150× 10−14

1.0 0.0000000000 1.113× 10−12 −3.552× 10−15 1.018× 10−12 0.0000000000 9.814× 10−14

Table 11. The numerical solution for α=1, γ =π/2,β =π/4

α=1, Ha2 = 0.5 α=1, Ha2 = 1 α=1, Ha2 = 1.5

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.1406934160 0.000 0.2501802379 0.000 0.3304896396 0.000
0.1 0.1381992846 2.082× 10−17 0.2461950390 2.776× 10−17 0.3259298693 5.551× 10−17

0.2 0.1322283409 1.249× 10−16 0.2365698097 1.110× 10−16 0.3147782905 1.527× 10−16

0.3 0.1236040553 2.220× 10−16 0.2224676037 6.384× 10−16 0.2981102773 1.665× 10−16

0.4 0.1125813022 5.274× 10−16 0.2041180599 2.998× 10−15 0.2758816786 1.388× 10−15

0.5 0.0992880226 8.327× 10−16 0.1815322363 5.745× 10−15 0.2477598321 1.227× 10−14

0.6 0.0837892362 6.245× 10−15 0.1546120225 1.973× 10−14 0.2132620840 3.436× 10−14

0.7 0.0661135992 2.248× 10−14 0.1231988270 1.243× 10−14 0.1718266007 1.675× 10−13

0.8 0.0462659242 1.943× 10−14 0.0870994008 1.671× 10−13 0.1228586062 2.669× 10−13

0.9 0.0242359569 2.118× 10−14 0.0461052400 1.779× 10−13 0.0657694078 6.221× 10−13

1.0 0.0000000000 2.519× 10−13 3.552× 10−15 4.796× 10−14 0.0000000000 1.497× 10−12

Table 12. The numerical solution for α=1, γ =π/2,β =π/4

α=1, Ha2 = 2 α=1, Ha2 = 4 α=1, Ha2 = 10

r Num. |Res.| Num. |Res.| Num. |Res.|

0.0 0.3865231919 0.000 0.4766972597 0.000 0.4992711200 0.000

0.1 0.3820604562 4.857× 10−17 0.4744976092 6.592× 10−17 0.4994391668 3.269× 10−16

0.2 0.3709735326 1.665× 10−16 0.4686142087 1.735× 10−16 0.4990344377 5.018× 10−16

0.3 0.3539837881 5.551× 10−16 0.4584559288 4.163× 10−16 0.4981107926 1.457× 10−16

0.4 0.3306243232 1.832× 10−15 0.4422783716 5.551× 10−17 0.4959440139 1.197× 10−14

0.5 0.3000610711 3.109× 10−15 0.4173610230 3.969× 10−15 0.4908146386 1.529× 10−14

0.6 0.2612443994 1.177× 10−14 0.3798923035 3.220× 10−15 0.4785535296 5.003× 10−14

0.7 0.2130059153 3.525× 10−14 0.3249937605 4.347× 10−14 0.4495247744 7.652× 10−13

0.8 0.1541413218 3.919× 10−14 0.2470484452 4.396× 10−14 0.3836203255 6.672× 10−14

0.9 0.0834906484 8.460× 10−14 0.1403684909 3.830× 10−14 0.2470198698 2.954× 10−12

1.0 0.0000000000 5.740× 10−14 0.0000000000 4.263× 10−14 8.526× 10−14 7.501× 10−12
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Figure 1. Power series solution for the standard case γ =2, β =1 with
vary Ha2.
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Figure 2. Power series solution for γ =1.3, β =0.3 with vary Ha2.
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Figure 3. Power series solution for γ =π/2, β =π/4 with vary Ha2.
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