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CODES OVER THE MULTIPLICATIVE HYPERRINGS

SEDA YAMAÇ AKBIYIK1, §

Abstract. Codes over hyperstructures have more codewords than codes over rings(or
fields). It implies that they have higher rate than codes over rings (or fields). So, in this
paper the codes over multiplicative hyperrings are studied. Linear codes and the cyclic
codes over multiplicative hyperrings are constructed.
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1. Introduction

The fundamental work of algebraic coding theory belongs to Claude Shannon [7]. The
paper, pressed in 1948, focused on the problem of how best to encode the information a
sender wants to transmit. In this work, he used tools in probability theory. Shannon devel-
oped information entropy as a measure for the uncertainty in a message while essentially
inventing the field of information theory. The binary Golay code was developed in 1949,
[15]. It is an error-correcting code capable of correcting up to three errors in each 24-bit
word, and detecting a fourth. Richard Hamming won the Turing Award in 1968 for his
work at Bell Labs in numerical methods, automatic coding systems, and error-detecting
and error-correcting codes. He invented the concepts known as Hamming codes, Hamming
windows, Hamming numbers and Hamming distance.

More recently, the researchers on algebraic coding theory focus on linear codes on fields
(especially on the binary fields) because of their many applications in practice. Cyclic
codes are important families of linear codes because of their rich algebraic structures and
practical applications. Hammons et al. is considered to be a major turning point in coding
theory. Because they show an important link between binary (quaternary) linear codes
and some well-known binary nonlinear perfect codes in [8]. In later times, most studies
focus on the codes on rings [1-5]. However, there are optimal codes on non-chain rings.
So, the coding theorists consider construct the codes on different algebraic structures.

The history of popular algebraic hyperstructures that have attracted the interest of
many researchers in recent years is based on Marty’s study of 1934 [6]. Following this
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work, Krasner’s article [9] in 1983 can be regarded as a milestone in this area. In this
work, algebraic structures called Krasner hyperfields are defined. Davvaz and Leoreanu-
Fotea’s book entitled Hyperring and applications sheds light on many researchers working
on this area [10]. In 2003, Ciampi et al. constructed the hyperring over the set of the
polynomials with coefficients in a convenient algebraic structure [12]. In [13], Ameri and
Norouzi introduced some notions and they gave some algebraic properties of commutative
hyperrings.

The idea of constructing algebraic codes on hyperstructures was first proposed by
Davvaz and Musavi [11]. They defined the linear codes and the cyclic codes over a finite
Krasner hyperring in the paper. Also, they gave the structure of l−quasi-cyclic codes. In
2017, Tsafack et al. studied on codes over hyperfields [14].

This article is about codes over multiplicative hyperrings. The linear codes and the
cyclic codes are structured in it. We have a much greater number of code words when we
move the codes on the known rings (or fields) to the hyperrings defined by the hyperoper-
ations. Moreover, the length and the alphabet of the code on this new algebraic structure
do not change. It is known that the rate of a code (is the amount of non-redundant in-
formation per bit in codewords of a code) increases when increasing the number of code
words by keeping the length constant.

R(C) =
log |C|
n log |A|

,

where R(C) is the rate of the code C, |C| is the number of elements in C, and |A| is the
number of elements in alphabet.

2. Preliminaries

A mapping ◦ : H ×H −→ P∗(H) is called a hyperoperation where P∗(H) is the set of
all the nonempty subsets of H. An algebraic system (H, ◦), where ◦ is a hyperoperation
defined on H, is called a hypergroupoid.
For any two nonempty subsets A and B of H and x ∈ H, the operation is defined

A ◦B =
⋃

a∈A,b∈B
a ◦ b, A ◦ x = A ◦ {x}.

If a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ H, which means that⋃
u∈b◦c

a ◦ u =
⋃

v∈a◦b
v ◦ c,

then the hyperoperation ◦ is associative. A hypergroupoid with the associative hyperop-
eration is called a semihypergroup. A hypergoupoid (H, ◦) is a quasihypergroup, whenever
a ◦H = H = H ◦ a for all a ∈ H. If (H, ◦) is a semihypergroup and a quasihypergroup,
then (H, ◦) is called a hypergroup. A nonempty subset K of a semihypergroup (H, ◦) is
called a subhypergroup if we have x ◦K = K = K ◦ x for all x ∈ K.

Definition 2.1. [10] A commutative hypergroup (H, ◦) is canonical if the followings are
hold:

• There exists e ∈ H, such that e ◦ x = {x}, for every x ∈ H;

• For all x ∈ H there exits a unique x−1 ∈ H, such that e ∈ x ◦ x−1;

• x ∈ y ◦ z implies y ∈ x ◦ z−1.
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Definition 2.2. [10] An algebraic structure (R,+, ·) is said to be:

(A) General hyperring, if
(a1) (R,+) is a hypergroup;
(a2) (R, ·) is a semihypergroup;
(a3) · is distributive with respect to +;
(B) Krasner hyperring, if
(b1) (R,+) is a canonical hypergroup;
(b2) (R, ·) is a semigroup having zero element,i.e. for all x ∈ R x · 0 = 0 · x = 0;
(b3) x · (y + z) = x · y + x · z and (y + z) · x = y · x + z · x, for all x, y, z ∈ R;
(C) Multiplicative hyperring, if
(c1) (R,+) is a commutative group;
(c2) (R, ·) is a semihypergroup;
(c3) For all x, y, z ∈ R, x · (y + z) ⊆ x · y + x · z and (y + z) · x ⊆ y · x + z · x;
(c4) For all x, y ∈ R, x · (−y) = (−x) · y = −(x · y).

Example 2.1. Z4 is a commutative multiplicative hyperring with unit element that 0 is a
zero element with the operations as follows:
⊕ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

∗ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 Z4 2
3 0 3 2 Z4

Definition 2.3. [10] A non empty subset I of a multiplicative hyperring R is a left (right)
hyperideal if the followings are hold:

• for every a, b ∈ I implies that a− b ∈ I

• for every a ∈ I, r ∈ R implies that r · a ⊆ I (or a · r ⊆ I).

In 2003, Ciampi and Rota gave the structure of the set of polynomials which are over
the multiplicative hyperring. However, they got a lot of properties of it [12]. Now, let
remember some necessary identities for us from that article.

Definition 2.4. [12] Let (R,+, ◦) be a commutative multiplicative hyperring such that,
for all a ∈ R, a ◦ 0 = {0} and let x be any element out of R. Then a polynomial in x over
A is in the form as; f(x) = f0x

0 + f1x
1 + ... =

∑
fkx

k, where k ∈ N and fk ∈ R.
Denote by R[x] the set of all polynomials in x over R and let the operations over R[x] be ;∑

fkx
k +

∑
gkx

k =
∑

(fk + gk)xk

f(x) ∗ g(x) = {
∑

aix
i, i = 0, ..., n + m|ai ∈

∑
fsgt, s + t = i},

where f(x) =
∑

fix
i, i = 0, 1, ..., n and g(x) =

∑
gix

i, i = 0, 1, ...,m.

Theorem 2.1. [12] The hyperstructure (R[x],+, ∗) is a commutative multiplicative hyper-
ring.

3. Linear Codes over Multiplicative Hyperrings

From now, the operations and some properties of multiplicative hyperrings have re-
called. In this section, we define a code and a linear code over a multiplicative hyperring.
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Defining the codes over a multiplicative hyperring means that the alphabet will be a fi-
nite multiplicative hyperring. Throughout this paper, without loss of generality, the left
multiplication will be used as a second operation. Every result can be obtained for right
one.

Definition 3.1. Let the code alphabet be a finite multiplicative hyperring (R,+, ·) and the
number of elements of R be |R| = r. A commutative hypergroup G with the map

· : R×G −→ G

is called a left hypermodule over R, the following conditions are satisfied;

(i) r(g1 + g2) = rg1 + rg2,

(ii) (r + s)g1 = rg1 + sg1,

(iii) (rs)g1 = r(sg1).

for all r, s ∈ R and g1, g2 ∈ G;

For example, (Z4,⊕, ∗) is a commutative multiplicative hyperring. So, Zn
4 is a hyper-

module over Z4.

Definition 3.2. An arbitrary code S is a subset of Rn which is a left hypermodule of finite
multiplicative hyperring R.

Definition 3.3. A linear code C of length n over R is a left R−subhypermodule of Rn.
Namely, for every c1, c2 ∈ C and a1, a2 ∈ R, we have a1c1 + a2c2 ⊆ C.

Example 3.1. (Z4,⊕, ∗) is a commutative multiplicative hyperring with 4 elements. C =
{0̄0̄, 1̄2̄, 2̄0̄, 2̄1̄, 2̄2̄, 2̄3̄, 3̄2̄} is a linear code over Z2

4 with 7 codewords.

Definition 3.4. Let R be a multiplicative hyperring and x = (x1, x2, ..., xn) and y =
(y1, y2, ..., yn) be n− tuples in Rn. Then, the inner product vectors x and y are defined as
x · yT =

⋃n
i=1 xiyi.

Definition 3.5. Let R be a finite multiplicative hyperring and C be a linear code over
R, namely C is a left hypermodule of Rn. Then, the left dual code of C is defined by
C⊥ = {y ∈ Rn|{0} ⊆ x · yT , ∀x ∈ C}.
Proposition 3.1. Let R be a finite multiplicative hyperring, C be a linear code over R
with n length and C⊥ be the dual code of C. Then, C⊥ is a linear code over R with same
length.

Proof. Let x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ C⊥ and a, b ∈ R. Then, for all
c = (c1, c2, ..., cn) ∈ C

{0} ⊆ c · xT = {c1x1} ∪ {c2x2} ∪ ... ∪ {cnxn}
{0} ⊆ c · yT = {c1y1} ∪ {c2y2} ∪ ... ∪ {cnyn}.

So, we get {0} ⊆ c · (ax + by)T = caxT ∪ cbyT . Here,

c · (ax + by)T = {(c1, c2, ..., cn) · (t1, t2, ..., tn)T |{ti} ⊆ axi ∪ byi, 1 ≤ i ≤ n}
⊆ c1(ax1 + by1) ∪ ... ∪ cn(axn + byn)

= {c1ax1} ∪ {c1by1} ∪ ... ∪ {cnaxn} ∪ {cnbyn}
= a({c1x1} ∪ ... ∪ {cnxn}) + b({c1y1} ∪ ... ∪ {cnyn})
= a(c · xT ) ∪ b(c · yT ).

{0} ⊆ a(c · xT )∪ b(c · yT ). Hence, {0} ⊆ c(ax+ by)T and ax+ by ∈ CT . So, CT is a linear
code. �
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Example 3.2. Let C be the linear code in Example 3.1 over Z4. Hence, the dual code of
C is C⊥ = {0̄0̄, 2̄1̄, 0̄2̄, 1̄2̄, 2̄2̄, 3̄2̄, 2̄3̄} with 2 length and 7 codewords.

Proposition 3.2. Let R be a finite multiplicative hyperring, C1 and C2 be linear codes
over R. So, C1 + C2 = {x + y ∈ Rn|every x ∈ C1, y ∈ C2} and C1 ∩ C2 = {x ∈ Rn|x ∈
C1 andx ∈ C2} are linear codes over R.

Proof. Let C1 and C2 be the linear codes over R, where R is a finite multiplicative hyper-
ring. So, they are left R−subhypermodules of Rn. It is clear that, C1 + C2 and C1 ∩ C2

are left R−subhypermodules of Rn. Consequently, C1 + C2 and C1 ∩ C2 are linear codes
over R. �

Definition 3.6. Let R be a multiplicative hyperring. Then, the Hamming distance between
x, y ∈ Rn is defined as;

dH : Rn ×Rn → N
(x, y) → dH(x, y) = |{i ∈ N|xi 6= yi}|.

Example 3.3. The distance between (1̄, 2̄), (2̄, 0̄) which are the codewords of the linear
code in Example 3.1 is 2.

Definition 3.7. Let R be a multiplicative hyperring and C be a linear code over R. Then,
the minimum distance of C is d = dmin(C) = min{dH(x, y)}, for every x, y ∈ C.

Example 3.4. For the linear code C in Example 3.1, dmin(C) = 1 and dmin(C⊥) = 1.

Definition 3.8. Let R be a multiplicative hyperring and C be a linear code Rn.

• A generator matrix for C is a matrix G whose rows form a basis for C.

• A parity-check matrix H for C is a generator matrix for the dual code C⊥.

• The number of linearly independent rows of G is called the dimension of C.

Example 3.5. A generator matrix G for the linear code C in Example 3.1 is G = [1̄2̄].
Also, a parity-check matrix H is H = [2̄1̄] and the dimension of C is 1.

Remark 3.1. The generator matrix G generates a code has 4 elements over ring Z4 and
the rate of the code is 1/2 = 0, 5. But, with hypermultiplication, G generates the code with

7 codewords over multiplicative hyperring Z4 and the rate of C is nearly log 7
2 log 4 = 0, 7.

4. Cyclic Codes over Multiplicative Hyperrings

Let construct the cyclic codes over a finite multiplicative hyperring and give an illus-
trative example.

Definition 4.1. Let c be a vector of length n over R. Then, the cyclic shift T (c) is defined
as;

T (c1, c2, ..., cn) = (cn, c1, ..., cn−1).

Definition 4.2. A linear code C of length n over a finite multiplicative hyperring R is
said to be cyclic if T (c) ∈ C whenever c ∈ C, i.e. T (C) = C.

Example 4.1. Let Z4 as a multiplicative hyperring with hyperoperations in Example 2.1

and assume that the generator matrix of C be G =

[
1̄ 2̄
2̄ 1̄

]
over Z4. Hence, C is a cyclic

code with 2 length, 2 dimensional and 2 minimum distance.
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Proposition 4.1. If C1 and C2 are cyclic codes of length n over a finite multiplicative
hyperring R, then C1 + C2 is cyclic code.

Proof. Assume that t = (t0, t1, ..., tn−1) ∈ C1 + C2 = {a|a = c + d, c ∈ C1, d ∈ C2}. So,
there exist c = (c0, c1, ..., cn−1) ∈ C1 and d = (d0, d1, ..., dn−1) ∈ C2 such that t = c + d.
Hence, we have to show that (t0, t1, ..., tn−1) = T (t) ∈ C1 +C2. Since C1 and C2 are cyclic,
c = (cn−1, c0, ..., cn−2) ∈ C1 and (dn−1, d0, ..., dn−2) ∈ C2. Therefore, (cn−1, c0, ..., cn−2) +
(dn−1, d0, ..., dn−2) ∈ C1, d ∈ C2, i.e.,
{(sn−1, s0, ..., sn−2)|si = ci + di, ci ∈ C1, di ∈ C2, 1 ≤ i ≤ n − 1} in C1 + C2 such that
(tn−1, t0, ..., tn−2) ∈ C1 + C2. Thus, C1 + C2 is cyclic. �

Proposition 4.2. If C1 and C2 are cyclic codes of length n over a finite multiplicative
hyperring R, then C1 ∩ C2 is cyclic code.

Proof. Let we show that C1 ∩C2 is a cyclic code, when C1 and C2 are cyclic. So, take t =
(t0, t1, ..., tn−1) ∈ C1 ∩ C2. Since C1 and C2 are cyclic codes, then (tn−1, t0, ..., tn−2) ∈ C1

and C2. Consequently, (tn−1, t0, ..., tn−2) ∈ C1 ∩ C2 and C1 ∩ C2 is cyclic. �

Let C be a cyclic code of length n over a multiplicative hyperring R, then C is a (left)

ideal of R[x]
〈xn−1〉 . C is called splitting if it is a direct summand of R[x]

〈xn−1〉 . Note that C does

not have to be complemented left ideal of R[x]
〈xn−1〉 . It is obvious that for R being a Krasner

hyperfield all definitions given coincide with [11]. Only the notion of a splitting code is a
specialization to a proper subclass of linear codes over rings.

Theorem 4.1. Let R be a finite multiplicative hyperring, and let gh = xn − 1 for some
g, h ∈ R[x]. The followings are satisfied:

• g and h commute i.e., hg = xn − 1,

• (R[x]h) is a free left module,

• (R[x]g) is a direct summand of R[x].

Proof. Let the constant of g(x) and h(x) be g0 and h0, respectively. We have g0h0 = −1
because hg = gh = xn − 1. It implies that g0 and h0 are units of R, since R is finite.
From this, we get that fh = 0 implies that f = 0 for all f ∈ R[x]. This leads to the
R[x]−isomorphy and hence to the R−isomorphy of R[x] and R[x]h which proves this
module to be free. Computing;

(hg − (xn − 1))h = hgh− (xn − 1)h = 0

⇒ hg − (xn − 1) = 0

⇒ hg = xn − 1.

Let us finally consider the R− linear epimorphism

R[x]→ (R[x]h)

〈xn − 1〉
.

The kernel of the epimorphism above is (R[x]g). (R[x]h)
〈xn−1〉 to be a projective R− module,

because (R[x](xn − 1)) is a direct summand of the free module (R[x]h). This shows that
(R[x]g) is a direct summand of R[x]. �

Corollary 4.1. For a finite multiplicative hyperring R every divisors of xn − 1 in R[x]
generates a cyclic splitting code of length n.
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Proof. Let g be a divisor of xn − 1 in R[x]. Then R[x]g to be a direct summand of

R[x] which contains the submodule R[x](xn − 1). Hence, we obtain R[x]g
〈xn−1〉 to be a direct

summand in R[x]
〈xn−1〉 which proves our claim. �

Corollary 4.2. For a cyclic (left) code of length n over a finite multiplicative hyperring,
the followings are equivalent:

• C is splitting cyclic code,

• There exists a divisor g of xn − 1 in R[x] such that C = (R[x]g)
〈xn−1〉 .

5. Conclusion

In this paper, we introduce the codes over a multiplicative hyperring. Because, com-
pared to the known codes defined on the fields and rings, the codes on the hyperrings have
more codewords with same length. So, the rate of codes increases. Firstly, we define the
linear codes over a multiplicative hyperring. Secondly, we give the structure of the cyclic
codes over a finite multiplicative hyperring. Finally, we show that every divisor of xn − 1
in R[x] corresponds a cyclic code over R, as usual.

In future work, the MDS and perfect code can be searched by examining known bound-
aries for linear codes over a hyperstructure.
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[14] Tsafack S. A., Ndjeya S., Strüngmann L., Lele C., Codes over hyperfields, Discussiones Mathematicae-

General Algebra and Applications, 37, 147−160, 2017.
[15] Golay, M. J. E., Notes on Digital Coding, Proc. IRE 37, 657, 1949.
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