EDGE PRODUCT CORDIAL LABELING OF SWITCHING OPERATION ON SOME GRAPHS

U. M. PRAJAPATI ${ }^{1}$, N. B. PATEL ${ }^{2}$, §

Abstract

Here we discuss and prove that the graphs attained by switching of any vertex with degree two which is adjacent to a vertex with degree two in triangular snake T_{m}, switching of any vertex with degree one in path P_{m} for $m \geq 3$ and m odd, Switching of vertex with degree two in P_{m} except vertices u_{2} or u_{m-1} with $m>4$ and switching of any vertex in cycle C_{m} are an edge product cordial graphs.

Keywords: Graph labeling, Product cordial labeling, Switching Operation, Edge Product Cordial Labeling.

AMS Subject Classification: 05C78.

1. Introduction

The graph labeling is an important area in graph theory which have many applications in the communication networks, coding theory, X-Ray Crystallography, chemistry, social sciences etc. there are several types of graph labelings available. For a study of various type of graph labeling we refer to Gallian [2].
Consider G as finite, simple and undirected graph with $U(G)$ as vertex set and and $F(G)$ as edge set, having no any vertex of degree zero. Let $|F(G)|$ and $|U(G)|$ be the number of edges and vertices of G respectively. We follow Gross and Yellen [1] for all other terminology. Cahit [3] in 1987, first established cordial labeling. Then after Sundaram et al. [4] presented Product cordial labeling. Barasara and Vaidya [5] have presented edge product cordial labeling in 2012. In 2013, Vaidya and Barasara [6] have discussed edge product cordial labeling in the context of some graph operation. In 2015, Thamizharasi and Rajeswari [10] have shown the existence of edge product cordial labeling for regular diagraph. In 2016, Prajapati and Patel [7] have discussed some results on edge product cordial labeling. in 2019, Prajapati and Patel [9] have discussed edge product cordial labeling of $W_{n}^{(t)}, P S_{n}$ and $D P S_{n}$.

[^0]Definition 1.1. Let G be a graph with $U(G)$ as the vertex set and $F(G)$ as the edge set. Let $h: F(G) \rightarrow\{0,1\}$ be a function such that $\left|f_{h}(1)-f_{h}(0)\right| \leq 1$, where $f_{h}(k)=\mid\{f \in$ $F(G) \mid h(f)=k\} \mid$ for $k \in\{0,1\}$. Define the induced vertex labeling as

$$
h^{*}(u)=\prod_{j=1}^{m} h\left(f_{j}\right) \text { for }\left\{u \in U(G), f_{j} \in F(G), f_{j} \text { incident to } u\right\} .
$$

If $\left|u_{h}(1)-u_{h}(0)\right| \leq 1$, where $u_{h}(k)=\left|\left\{u \in U(G) \mid h^{*}(u)=k\right\}\right|$, for $k \in\{0,1\}$ then h is called an edge product cordial labeling.
A graph G which has an edge product cordial labeling is said to be an edge product cordial graph.

Definition 1.2. [8] Graph derived by fetching a vertex u of G, eliminating all edges joining u to their adjacent vertices and by adding new edges joining u to their non-adjacent vertices in G is called vertex switching G_{u} of G.

Definition 1.3. Graph derived from path P_{m} by substituting every edge of P_{m} by C_{3} is called Triangular Snake T_{m}.

2. Main Results

Theorem 2.1. The Graph derived from switching of any vertex in $C_{m}(m \geq 4)$ is an edge product cordial graph.

Proof. Consider u_{k} for $1 \leq k \leq m$ are successive vertices of C_{m}. consider $G_{u_{1}}$ is the graph derived from switching of a u_{1} in C_{m}. So in $G_{u_{1}}$ every vertex u_{i} other than u_{2} and u_{n} is adjacent to u_{1}. Thus $\left|U\left(G_{u_{1}}\right)\right|=m$ and $\left|F\left(G_{u_{1}}\right)\right|=2 m-5$. Define $h: F\left(G_{u_{1}}\right) \rightarrow\{0,1\}$ as:

$$
h(f)=\left\{\begin{array}{lll}
1 & \text { if } f=u_{k} u_{k+1} \text { for } 2 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor \\
0 & \text { if } \quad f=u_{k} u_{k+1} \text { for }\left\lfloor\frac{m}{2}\right\rfloor+1 \leq k \leq m-2 \\
1 & \text { if } f=u_{1} u_{k} \text { for } 3 \leq k \leq\left\lceil\frac{m}{2}\right\rceil ; \\
0 & \text { if } f=u_{1} u_{k} \text { for } \quad\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m-1 ; \\
1 & \text { if } f=u_{m} u_{m-1} .
\end{array}\right.
$$

Thus $h^{*}: U\left(G_{u_{1}}\right) \rightarrow\{0,1\}$ is,

$$
\begin{aligned}
h^{*}\left(u_{1}\right) & =\prod_{k=3}^{m-1} h\left(u_{1} u_{k}\right)=0, \\
h^{*}\left(u_{2}\right) & =h\left(u_{2} u_{3}\right)=1, \\
h^{*}\left(u_{m}\right) & =h\left(u_{m} u_{m-1}\right)=1, \\
h^{*}\left(u_{k}\right) & =h\left(u_{k} u_{k-1}\right) h\left(u_{k} u_{k+1}\right) h\left(u_{k} u_{1}\right)=1 \\
h^{*}\left(u_{k}\right) & \text { for } 3 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor, \\
\left.u_{k} u_{k-1}\right) h\left(u_{k} u_{k+1}\right) h\left(u_{k} u_{1}\right)=0 & \text { for }\left\lfloor\frac{m}{2}\right\rfloor+1 \leq k \leq m-1 .
\end{aligned}
$$

Hence, $u_{h}(1)=\left|\left\{u_{2}, u_{3}, \ldots, u_{\left\lfloor\frac{m}{2}\right\rfloor}, u_{m}\right\}\right|$ and $u_{h}(0)=\left|\left\{u_{1}, u_{\left\lfloor\frac{m}{2}\right\rfloor+1}, u_{\left\lfloor\frac{m}{2}\right\rfloor+2}, \ldots, u_{m-1}\right\}\right|$. So $u_{h}(0)=\left\lceil\frac{m}{2}\right\rceil, u_{h}(1)=\left\lfloor\frac{m}{2}\right\rfloor$ and $f_{h}(0)=\left\lfloor\frac{2 m-5}{2}\right\rfloor, f_{h}(1)=\left\lceil\frac{2 m-5}{2}\right\rceil$. Thus $\left|u_{h}(0)-u_{h}(1)\right|=1 \leq 1$ and $\left|f_{h}(0)-f_{h}(1)\right|=1 \leq 1$. Hence $G_{u_{1}}$ is an edge product cordial graph.

Example 2.1. Edge product cordial labeling of $G_{u_{1}}$ derived from C_{9} reveal in the following figure 1.

Figure 1. Graph $G_{u_{1}}$ derived from C_{9}

Theorem 2.2. The graph derived from switching of a vertex with degree one in P_{m} is an edge product cordial graph if and only if $m \geq 3$ and m odd.

Proof. Consider u_{k} for $1 \leq k \leq m$ are successive vertices of path P_{m}. Let $G_{u_{1}}$ be the graph derived by switching of a vertex with degree one say u_{1} of P_{m}. So in $G_{u_{1}}$, every vertex u_{k} for $k=3,4, \ldots, m$ is adjacent to u_{1}. Thus $\left|U\left(G_{u_{1}}\right)\right|=m$ and $\left|F\left(G_{u_{1}}\right)\right|=2 m-4$. Here we cosider two cases:
Case 1 If $m>4$ then define $h: F\left(G_{u_{1}}\right) \rightarrow\{0,1\}$ as:

$$
h(f)=\left\{\begin{array}{lll}
1 & \text { if } & f=u_{k} u_{k+1} \text { for } 2 \leq k \leq\left\lceil\frac{m}{2}\right\rceil \\
0 & \text { if } & f=u_{k} u_{k+1} \text { for }\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m-1 \\
1 & \text { if } f=u_{1} u_{k} \text { for } 3 \leq k \leq\left\lceil\frac{m}{2}\right\rceil \\
0 & \text { if } \quad f=u_{1} u_{k} \text { for }\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m
\end{array}\right.
$$

Thus h^{*} is given by,

$$
\begin{aligned}
& h^{*}\left(u_{1}\right)=\prod_{k=3}^{m} h\left(u_{1} u_{k}\right)=0 \\
& h^{*}\left(u_{2}\right)=h\left(u_{2} u_{3}\right)=1 \\
& h^{*}\left(u_{n}\right)=h\left(u_{1} u_{m}\right) h\left(u_{m} u_{m-1}\right)=0 \\
& h^{*}\left(u_{k}\right)=h\left(u_{k} u_{k-1}\right) h\left(u_{k} u_{k+1}\right) h\left(u_{k} u_{1}\right)=1 \quad \text { for } 3 \leq k \leq\left\lceil\frac{m}{2}\right\rceil \\
& h^{*}\left(u_{k}\right)=h\left(u_{k} u_{k-1}\right) h\left(u_{k} u_{k+1}\right) h\left(u_{k} u_{1}\right)=0 \quad \text { for } \quad\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m-1
\end{aligned}
$$

Hence, $u_{h}(1)=\left|\left\{u_{2}, u_{3}, \ldots, u_{\left\lceil\frac{m}{2}\right\rceil}\right\}\right|$ and $u_{h}(0)=\left|\left\{u_{1}, u_{\left\lceil\frac{m}{2}\right\rceil+1}, u_{\left\lceil\frac{m}{2}\right\rceil+2}, \ldots, u_{m-1}, u_{m}\right\}\right|$.
So $u_{h}(0)=\left\lceil\frac{m}{2}\right\rceil, u_{h}(1)=\left\lfloor\frac{m}{2}\right\rfloor$ and $f_{h}(0)=f_{h}(1)=\left\lfloor\frac{2 m-4}{2}\right\rfloor$.
Case 2: For $m=3$, labeling is shown in the figure 2 .
Hence $\left|u_{h}(0)-u_{h}(1)\right|=1 \leq 1$ and $\left|f_{h}(0)-f_{h}(1)\right|=0 \leq 1$. So $G_{u_{1}}$ is an edge product cordial graph.

Figure 2. $G_{u_{1}}$ derived from P_{3}

Example 2.2. Edge product cordial labeling of $G_{u_{1}}$ derived from P_{7} reveal in the following figure 3.

Figure 3. $G_{u_{1}}$ derived from P_{7}
Theorem 2.3. The graph derived from switching of a vertex with degree two in P_{m} except u_{2} or u_{m-1} with $m>4$ is an edge product cordial graph.

Proof. Consider u_{k} for $1 \leq k \leq m$ are successive vertices of path P_{m}. Let $G_{u_{i}}, 3 \leq$ $i \leq m-2$ be the graph derived by switching of a vertex u_{i}. So in $G_{u_{i}}$, every vertex u_{k} for $1 \leq k \leq m$ and $k \neq i-1, i+1, i$ is adjacent to u_{i}. Thus $\left|U\left(G_{u_{i}}\right)\right|=m$ and $\left|F\left(G_{u_{i}}\right)\right|=2 m-6$. To prove this theoram we will cosider the case for switching of vertex $u_{i}, 3 \leq i \leq\left\lceil\frac{m}{2}\right\rceil$. For rest of the vertices $u_{i},\left\lceil\frac{m}{2}\right\rceil+1 \leq i \leq m-3$ proof is similar. Define $h: F\left(G_{u_{i}}\right) \rightarrow\{0,1\}$ as:

$$
h(f)=\left\{\begin{array}{lll}
1 & \text { if } & f=u_{i} u_{k} \text { for } 3 \leq i \leq\left\lceil\frac{m}{2}\right\rceil, k<i-1 \quad \text { and } i+1<k \leq\left\lceil\frac{m}{2}\right\rceil+1 \\
0 & \text { if } & f=u_{i} u_{k} \text { for } 3 \leq i \leq\left\lceil\frac{m}{2}\right\rceil,\left\lceil\frac{m}{2}\right\rceil+1<k \leq m \\
1 & \text { if } f=u_{k} u_{k+1} \text { for } 1 \leq k<i-1, i+1 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor+1 \\
0 & \text { if } f=u_{k} u_{k+1} \text { for }\left\lfloor\frac{m}{2}\right\rfloor+1<k \leq m
\end{array}\right.
$$

Thus h^{*} is given by,

$$
\begin{aligned}
h^{*}\left(u_{i}\right) & =\prod_{\substack{k=1 \\
k \neq i-1, i, i+1}}^{m} h\left(u_{i} u_{k}\right)=0, \\
h^{*}\left(u_{1}\right) & =h\left(u_{1} u_{i}\right) h\left(u_{1} u_{2}\right)=1, \\
h^{*}\left(u_{i-1}\right) & =h\left(u_{i-1} u_{i-2}\right)=1, \\
h^{*}\left(u_{i+1}\right. & =\left\{\begin{array}{l}
h\left(u_{i+1} u_{i+2}\right)=0 \text { for } m \text { odd and } i=\left\lceil\frac{m}{2}\right\rceil \\
h\left(u_{i+1} u_{i+2}\right)=1 ; \text { otherwise, } \\
h^{*}\left(u_{m}\right)
\end{array}\right)=h\left(u_{i} u_{m}\right) h\left(u_{m} u_{m-1}\right)=0, \\
h^{*}\left(u_{k}\right) & =h\left(u_{k} u_{k-1}\right) h\left(u_{k} u_{k+1}\right) h\left(u_{k} u_{i}\right)=1 \quad \text { for } 2 \leq k \leq i-2, \\
h^{*}\left(u_{k}\right) & =h\left(u_{k} u_{k-1}\right) h\left(u_{k} u_{k+1}\right) h\left(u_{k} u_{i}\right)=1 \quad \text { for } i+2 \leq k\left\lfloor\frac{m}{2}\right\rfloor+1, \\
h^{*}\left(u_{k}\right) & =h\left(u_{k} u_{k-1}\right) h\left(u_{k} u_{k+1}\right) h\left(u_{k} u_{i}\right)=0 \quad \text { for }\left\lfloor\frac{m}{2}\right\rfloor+2 \leq k \leq m-1 .
\end{aligned}
$$

Hence,

$$
\begin{gathered}
u_{h}(1)=\left\{\begin{array}{l}
\left\lvert\, \begin{array}{l}
\left\{u_{1}, u_{2}, \ldots, u_{i-1}\right\} \left\lvert\, ; i=\left\lceil\frac{m}{2}\right\rceil\right. \text { and } m \text { odd } \\
\left.\left\{u_{1}, u_{2}, \ldots, u_{i-1}, u_{i+1}, u_{i+2}, \ldots, u_{\left\lfloor\frac{m}{2}\right\rfloor+1}\right\} \right\rvert\, ; \text { otherwise. }
\end{array}\right. \\
u_{h}(0)=\left\{\begin{array}{l}
\left|\left\{u_{i}, u_{i+1}, u_{i+2}, \ldots, u_{m}\right\}\right| ; i=\left\lceil\frac{m}{2}\right\rceil \text { and } m \text { odd } \\
\left.\left\{u_{i}, u_{\left\lfloor\frac{m}{2}\right\rfloor+2}, u_{\left\lceil\frac{m}{2}\right\rceil+3}, \ldots, u_{m}\right\} \right\rvert\, ; \text { otherwise. }
\end{array}\right.
\end{array} .\right.
\end{gathered}
$$

$\left.u_{h}(1)=\left\lvert\,\left\{u_{1}, u_{2}, \ldots, u_{i-1}, u_{i+1}, u_{i+2}, \ldots, u_{\left\lfloor\frac{m}{2}\right\rfloor+1} ; i \neq\left\lceil\frac{m}{2}\right\rceil\right.$ and m odd $\}\right. \right\rvert\,$ and
$u_{h}(0)=\left|\left\{u_{i}, u_{\left\lfloor\frac{m}{2}\right\rfloor+2}, u_{\left\lceil\frac{m}{2}\right\rceil+3}, \ldots, u_{m}\right\}\right|$. So $u_{h}(0)=\left\lceil\frac{m}{2}\right\rceil, u_{h}(1)=\left\lfloor\frac{m}{2}\right\rfloor$ and $f_{h}(0)=$
$f_{h}(1)=\left\lfloor\frac{2 m-6}{2}\right\rfloor$. Hence $\left|u_{h}(0)-u_{h}(1)\right|=1 \leq 1$ and $\left|f_{h}(0)-f_{h}(1)\right|=0 \leq 1$. So $G_{u_{1}}$ is an edge product cordial graph.

Example 2.3. Edge product cordial labeling of $G_{u_{5}}$ derived from P_{11} reveal in the following figure 4.

Figure 4. $G_{u_{5}}$ derived from P_{11}

Theorem 2.4. The graph derived from switching of a vertex with degree two which is adjacent to a vertex with degree two in triangular snake T_{m} is an edge product cordial graph.

Proof. Consider u_{k} for $1 \leq k \leq m$ are the successive vertices of P_{m}. Let $w_{1}, w_{2}, \ldots, w_{m-1}$ be the vertices of triangle other than the vertices of P_{m} in T_{m}. Consider G_{w} graph derived by switching of any vertex with degree two which is adjacent to a vertex with degree two in T_{m}. Thus $\left|U\left(G_{w}\right)\right|=2 m-1$ and $\left|F\left(G_{w}\right)\right|=5 m-9$. Then there are four cases arise:
Case 1 If $w=w_{1}$, then in $G_{w_{1}}$, every vertex w_{k} for $k=2,3, \ldots, m-1$ and u_{k} for $k=3,4, \ldots, m$ are adjacent to w_{1}. Define mapping $r: F\left(G_{w_{1}}\right) \rightarrow\{0,1\}$ by,

$$
r(f)=\left\{\begin{array}{lll}
1 & \text { if } & f=u_{k} u_{k+1} \text { for } 1 \leq k \leq\left\lceil\frac{m}{2}\right\rceil ; \\
0 & \text { if } f=u_{k} u_{k+1} \text { for }\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m-1 ; \\
1 & \text { if } f=w_{1} u_{k} \text { for } 3 \leq k \leq\left\lceil\frac{m}{2}\right\rceil ; \\
0 & \text { if } f=w_{1} u_{k} \text { for }\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m ; \\
1 & \text { if } f \in\left\{w_{1} w_{k}, w_{k} u_{k+1}\right\} \text { for } 2 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor ; \\
0 & \text { if } f \in\left\{w_{1} w_{k}, w_{k} u_{k+1}\right\} \text { for }\left\lfloor\frac{m}{2}\right\rfloor+1 \leq k \leq m-1 ; \\
1 & \text { if } f=w_{k} u_{k} \text { for } 2 \leq k \leq\left\lceil\frac{m}{2}\right\rceil ; \\
0 & \text { if } f=w_{k} u_{k} \text { for }\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m-1 .
\end{array}\right.
$$

Thus $r^{*}: U\left(G_{w_{1}}\right) \rightarrow\{0,1\}$ is obtained as follows,

$$
\begin{aligned}
& r^{*}\left(w_{1}\right)=\prod_{k=3}^{m} r\left(w_{1} u_{k}\right) \prod_{k=2}^{m-1} r\left(w_{1} w_{k}\right)=0 \\
& r^{*}\left(w_{k}\right)=r\left(w_{k} u_{k}\right) r\left(w_{k} u_{k+1}\right) r\left(w_{1} w_{k}\right)=1 \quad \text { for } 2 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor \\
& r^{*}\left(w_{k}\right)=r\left(w_{k} u_{k}\right) r\left(w_{k} u_{k+1}\right) r\left(w_{1} w_{k}\right)=0 \text { for }\left\lfloor\frac{m}{2}\right\rfloor+1 \leq k \leq m-1 \\
& r^{*}\left(u_{1}\right)=r\left(u_{1} u_{2}\right)=1 \\
& r^{*}\left(u_{2}\right)=r\left(u_{1} u_{2}\right) r\left(u_{2} u_{3}\right) r\left(w_{2} u_{2}\right)=1, \\
& r^{*}\left(u_{k}\right)=r\left(u_{k} u_{k-1}\right) r\left(u_{k} u_{k+1}\right) r\left(w_{k-1} u_{k}\right) r\left(w_{k} u_{k}\right) r\left(w_{1} u_{k}\right)=1 \quad \text { for } 3 \leq k \leq\left\lceil\frac{m}{2}\right\rceil, \\
& r^{*}\left(u_{k}\right)=r\left(u_{k} u_{k-1}\right) r\left(u_{k} u_{k+1}\right) r\left(u_{k} w_{k-1}\right) r\left(w_{k} u_{k}\right) r\left(w_{1} u_{k}\right)=0 \text { for }\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m-1, \\
& r^{*}\left(u_{m}\right)=r\left(u_{m-1} u_{m}\right) r\left(w_{m-1} u_{m}\right) r\left(w_{1} u_{m}\right)=0 .
\end{aligned}
$$

Hence, $u_{r}(1)=\left|\left\{u_{1}, u_{2}, \ldots, u_{\left\lceil\frac{m}{2}\right\rceil}, w_{2}, w_{3}, \ldots, w_{\left\lfloor\frac{m}{2}\right\rfloor}\right\}\right|$ and
$u_{r}(0)=\left|\left\{u_{\left\lceil\frac{m}{2}\right\rceil+1}, u_{\left\lceil\frac{m}{2}\right\rceil+2}, \ldots, u_{m}, w_{1}, w_{\left\lfloor\frac{m}{2}\right\rfloor}+1, w_{\left\lfloor\frac{m}{2}\right\rfloor}+2, \ldots, w_{m-1}\right\}\right|$.
So $u_{r}(0)=u_{r}(1)+1=m$ and $f_{r}(1)=\left\lfloor\frac{5 m-9}{2}\right\rfloor, f_{r}(0)=\left\lceil\frac{5 m-9}{2}\right\rceil$.
If $w=w_{m}$, then proof is similar.
Case 2 If $w=u_{1}$, then in $G_{u_{1}}$, every vertex u_{k} for $3 \leq k \leq m$ and w_{k} for $2 \leq k \leq m-1$
are adjacent to u_{1}. Define mapping $r: F\left(G_{u_{1}}\right) \rightarrow\{0,1\}$ by,

$$
r(f)=\left\{\begin{array}{lll}
1 & \text { if } & f \in\left\{u_{k} u_{k+1}, w_{k} u_{k}\right\} \quad \text { for } \quad 2 \leq k \leq\left\lceil\frac{m}{2}\right\rceil ; \\
0 & \text { if } & f \in\left\{u_{k} u_{k+1}, w_{k} u_{k}\right\} \quad \text { for }\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m-1 ; \\
1 & \text { if } f=u_{1} w_{k} \text { for } 2 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor ; \\
0 & \text { if } f=u_{1} w_{k} \text { for }\left\lfloor\frac{m}{2}\right\rfloor+1 \leq k \leq m-1 ; \\
1 & \text { if } f=u_{1} u_{k} \text { for } 3 \leq k \leq\left\lceil\frac{m}{2}\right\rceil ; \\
0 & \text { if } f=u_{1} u_{k} \text { for }\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m ; \\
1 & \text { if } f=w_{k} u_{k+1} \text { for } 1 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor ; \\
0 & \text { if } f=w_{k} u_{k+1} \text { for }\left\lfloor\frac{m}{2}\right\rfloor+1 \leq k \leq m-1 .
\end{array}\right.
$$

Thus $r^{*}: U\left(G_{u_{1}}\right) \rightarrow\{0,1\}$ is obtained as follows, $r^{*}\left(w_{1}\right)=r\left(w_{1} u_{2}\right)=1$,
$r^{*}\left(w_{k}\right)=r\left(w_{k} u_{k}\right) r\left(w_{k} u_{k+1}\right) r\left(u_{1} w_{k}\right)=1$ for $2 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor$,
$r^{*}\left(w_{k}\right)=r\left(w_{i} u_{k}\right) r\left(w_{k} u_{k+1}\right) r\left(u_{1} w_{k}\right)=0 \quad$ for $\quad\left\lfloor\frac{m}{2}\right\rfloor+1 \leq k \leq m-1$,
$r^{*}\left(u_{2}\right)=r\left(w_{1} u_{2}\right) r\left(w_{2} u_{2}\right) r\left(u_{2} u_{3}\right)=1$,
$r^{*}\left(u_{1}\right)=\prod_{k=2}^{m-1} r\left(u_{1} w_{k}\right) \prod_{k=3}^{m} r\left(u_{1} u_{k}\right)=0$,
$r^{*}\left(u_{k}\right)=r\left(u_{k} w_{k-1}\right) r\left(u_{k} w_{k}\right) r\left(u_{k-1} u_{k}\right) r\left(u_{k} u_{k+1}\right) r\left(u_{1} u_{k}\right)=1 \quad$ for $3 \leq k \leq\left\lceil\frac{m}{2}\right\rceil$,
$r^{*}\left(u_{k}\right)=r\left(u_{k} w_{k-1}\right) r\left(u_{k} w_{k}\right) r\left(u_{k-1} u_{k}\right) r\left(u_{k} u_{k+1}\right) r\left(u_{1} u_{k}\right)=0 \quad$ for $\quad\left\lceil\frac{m}{2}\right\rceil+1 \leq k \leq m-1$,
$r^{*}\left(u_{m}\right)=r\left(w_{m-1} u_{m}\right) r\left(u_{m-1} u_{m}\right) r\left(u_{1} u_{m}\right)=0$.
Hence, $u_{r}(1)=\left|\left\{u_{1}, u_{2}, \ldots, u_{\left\lceil\frac{m}{2}\right\rceil}, w_{2}, w_{3}, \ldots, w_{\left\lfloor\frac{m}{2}\right\rfloor}\right\}\right|$ and
$u_{r}(0)=\left|\left\{u_{\left\lceil\frac{m}{2}\right\rceil+1}, u_{\left\lceil\frac{m}{2}\right\rceil+2}, \ldots, u_{m}, w_{1}, w_{\left\lfloor\frac{m}{2}\right\rfloor+1}, w_{\left\lfloor\frac{m}{2}\right\rfloor+2}, \ldots, w_{m-1}\right\}\right|$.
So $u_{r}(0)=u_{r}(1)+1=m$ and $f_{r}(1)=\left\lfloor\frac{5 m-9}{2}\right\rfloor, f_{r}(0)=\left\lceil\frac{5 m-9}{2}\right\rceil$.
If $w=u_{m}$, then proof is similar.
Thus from the aboves cases $\left|u_{h}(0)-u_{h}(1)\right|=1 \leq 1$ and $\left|f_{h}(0)-f_{h}(1)\right|=1 \leq 1$. Hence G_{w} is an edge product cordial graph.

Example 2.4. Edge product cordial labeling of $G_{w_{1}}$ derived by T_{6} and $G_{u_{1}}$ obtained by T_{7} shown in the following figure 5 and figure 6 respectively.

3. Conclusions

We examine four results on graph derived by a vertex switching with degree one in P_{m} if and only if $m \geq 3$ and m is odd, Switching of vertex with degree two in P_{m} except u_{2} or u_{m-1} with $m>4$, switching of any vertex in C_{m} and a vertx switching with degree two which is adjacent to a vertex with degree two in T_{m} are edge product cordial graph.

Acknowledgement. The authors would like to extend their gratitude to anonymyous referees for their valuable comments and suggestions.

Figure 5. $G_{w_{1}}$ obtained from T_{6}

Figure 6. $G_{u_{1}}$ obtained from T_{7}

References

[1] Gross, J. L., Yellen, J. (eds.), (CRC, 2004), Handbook of graph theory.
[2] Gallian, J. A., (2018), A dynamic survey of graph labeling, The Electronic journal of combinatorics, \#DS6.
Available online: http://www.combinatorics.org
[3] Cahit, I., (1987), Cordial Graphs: A weaker version of graceful and harmonious Graphs, Ars Combinatoria, 23, pp. 201-207.
[4] Sundaram, M., Ponraj, R., and Somasundaram, S., (2004), Product cordial labeling of graphs, Bulletin of Pure and Applied Science (Mathematics and Statistics), 23E, pp. 155-163.
[5] Vaidya, S. K., and Barasara, C. M., (2012), Edge product cordial labeling of graphs, J. Math. Comput. Science, 2(5), pp. 1436-1450.
[6] Vaidya, S. K., and Barasara, C. M., (2013), Edge product cordial labeling in the context of some graph operations, Internat. J. Math. Scientific Comput, 3(1), pp. 4-7.
[7] Prajapati, U. M., and Patel, N. B., (2016), Edge Product Cordial Labeling of Some Cycle Related Graphs, Open Journal of Discrete Mathematics, 6, pp. 268-278.
[8] Vaidya, S. K., and Prajapati, U. M., (2012), Some switching invariant prime graphs, Open Journal of Discrete Mathematics, 2(01), pp. 17-20.
[9] Prajapati, U. M., and Patel, N. B., (2019), Edge product cordial labeling of some graphs, Journal of Applied Mathematics and Computational Mechanics, 18, pp. 69-76.
[10] Thamizharasi, R and Rajeswari, R, (2015), Edge product Cordial Labeling and Total Magic Cordial Labeling of Regular Digraphs, International Journal on Information Sciences and Computing, 9, pp. 1-4.

Udayan M. Prajapati is working as an associate professor in the Department of Mathematics, St. Xavier's (autonomous) College, Ahmedabad, Gujarat, India. He did his M.Sc. in Pure Mathematics in 1987 from Gujarat University. He received his Ph.D degree from Saurashtra University, Gujarat, India in 2013. His research interests include Graph Labeling and Analysis.

Nittal B. Patel was born in India. She got her M. Sc.degree in mathematics from Vikram University, Ujjain, Madhya Pradesh, India. She completed her M.Phil. at Gujarat University, Ahmedabad, Gujarat, India. She is currently a Ph.D. student at the same university.

[^0]: ${ }^{1}$ St. Xavier's College, Department of Mathematics, Ahmedabad, Gujarat, India. e-mail: udayan64@yahoo.com; ORCID: https://orcid.org/0000-0002-4594-0122.
 ${ }^{2}$ Department of Mathematics, Gujarat University, Ahmedabad, Gujarat, India.
 e-mail: nittalbpatel000@gmail.com; ORCID: https://orcid.org/0000-0002-0394-6569.
 § Manuscript received: December 08, 2019; accepted: March 25, 2020.
 TWMS Journal of Applied and Engineering Mathematics, Vol.12, No. 1 © Işık University, Department of Mathematics, 2022; all rights reserved.

