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STATE ESTIMATION OF A CHAOTIC GALTON BOARD MODEL

A. A. MAT DAUD1, §

Abstract. In this study, the application of the gradient descent of indeterminism (GDI)
shadowing filter to a recently proposed chaotic Galton board model is presented and dis-
cussed. It is found that the original GDI shadowing filter does not provide stability
to the convergence of the indeterminism and the error. The adaptive step-size (AS) is
introduced to address the problem. The advantages of AS over fixed step-size (FS) and
how it can improve the original shadowing filter are investigated in this study. The AS
will guarantee successful implementation of GDI shadowing algorithm and will improve
the performance of the original shadowing filter.
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1. Introduction

Several methods have been developed for finding shadowing trajectories and state esti-
mation of nonlinear dynamical systems. One of the most powerful methods is the gradient
descent filter. One method that has proven very powerful recently is the gradient descent
filter [1]. Gradient descent is an optimisation method which minimises a quantity by mov-
ing continuously in the steepest descent direction [2]. Shadowing trajectories technique is
an important method to determine the quality and the reliability of forecasting models
and trajectories of chaotic systems [3].

In this study, the gradient descent algorithm will be used. Gradient descent noise reduc-
tion is a technique that attempts to recover the true trajectory, from noisy observations
of a non-linear dynamical system for which the dynamics are known [4].

The present study has two main aims. First is to investigate whether the original
GDI shadowing filter can successfully be implemented to a discrete, nonlinear dynamical
system. The results of this study indicate that the original GDI shadowing filter does not
provide stability to the convergence of the error. This requires further investigation on
the why the problem occurs and how to overcome it. Therefore, the second aim of this
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study is to propose a possible solution, namely by proposing the adaptive step-size (AS) in
the algorithm. The implementation of GDI shadowing filter to continuous model, which
requires different modifications, has been presented recently [5].

One may argue the significance of the results presented in the manuscript because the
improved GDI shadowing filter is only applied to one model, namely the Galton board
model.

The issue can be addressed as follows. It is important to note that the original GDI
shadowing filter has been successfully applied to other models [6]. Therefore, although the
improved GDI version will be only applied to Galton board model in this study, it can be
guaranteed to be successfully applied to those models which have been investigated using
the original version. In fact, the performance of the improved GDI filter will be at least as
good as the original GDI filter, if not better. However, the application of the original GDI
filter fails to provide stability in the case of Galton board model, as will be highlighted in
this paper. That is the reason why the Galton board model is selected for this study.

The paper is organised as follows. Section 2 introduces a number of required improve-
ments of the shadowing filter. The results of the application of the original and improved
algorithm on the Galton board model for state estimation are presented, compared and
discussed in Section 3. The conclusion of this study follow in Section 4.

1.1. Galton board. A Galton board (also called a quincunx) is a mechanical device
which consists of two upright, parallel plates, a smooth wooden board and a glass sheet,
with many interleaved horizontal rows of equally spaced pins. The pins are arranged
on a board in a hexagonal array, as shown in Figure 1. At the top of the quincunx
device, there is a funnel into which small lead balls are released. At the bottom of the
device there is a row of narrow rectangular compartments or bins where the balls are
collected. The whole installation is covered with a glass sheet from the front to allow
viewing. Galton claimed that the Galton board is a random system in which each ball
has an equal probability of going to either side of every pin that it strikes, giving rise to
a bell-shaped distribution of lead. That is, the final exit distribution of the balls at the
bottom of the device approximates a Binomial or Gaussian distribution. Nowadays, it
is often a classroom and textbook demonstration of probability theory, Brownian motion
and statistical mechanics. A more detailed discussion on the Galton board can be found in
the literature [7, 8, 9, 10]. The details on the assumptions employed and the formulation
and derivation of the governing equations of the Galton board model are not presented in
this study (refer [11, 12, 13, 14]).

In the Galton board, the pins are equally spaced a distance H apart horizontally, and a
distance V apart vertically. Every other row is offset by H/2, that is, half the pin spacing.
The pins are arranged in a repeated series of ’quincunx’ patterns, that is, a cross pattern
of a dice’s five face. Galton chose V/H = 1, or H = V . Unlike previous quincunx models,
the value V = 1.27 cm will be used throughout this study as it appears that this is the
correct value, based on a photograph of the original Galton board.

The lead ball is assumed to be spherical and the pins are assumed to be cylindrical. It
is assumed that a ball is in contact with a pin when the distance between the centre of the
ball and the centre of the pin is equal to R. That is, R is the combined radius of lead ball
and pin. The impacts between the lead ball and the pin are assumed to be instantaneous
but inelastic. It is assumed that there is no air resistance.

Several chaotic Galton board models have been proposed recently [11, 15]. In this
paper, the most complex model in [11] will be used to assess the performance of the GDI
shadowing filter. In the model, the normal and tangential coefficients of restitution (a
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Figure 1. Schematic of a Galton board.

measure of the elasticity of the collision between the ball and the pins) are defined as
constants

eN = −
v′N
vN

, (1)

eT =
v′T
vT
, (2)

where v′N and vN are the normal component of the rebound and incident velocity, respec-
tively. v′T and vT are the tangential components of the rebound and incident velocity,
respectively.

2. Improved GDI shadowing filter

2.1. Shadowing filter. A guideline and analysis of the gradient descent of indeterminism
(GDI) shadowing filter has been published [6]. The original GDI shadowing filter using
gradient descent will not be provided and discussed in this paper (refer [4, 16, 17] for more
details).

For Galton board model, we compute the adjoint product by using a combination of
direct numerical approximation and λI-approximation method. The computation of the
adjoint product requires some truncation because there could be problem in computing
adjoint with grazing collisions. Such collisions will cause problems in computing the adjoint
product using numerical differentiation because it will give a very large value of Jacobian
elements, as the changes of the velocities of the ball (before and after) are very small.

The computation of the adjoint product are as described in the following. Firstly, we
take the adjoint A as 0.5I, where I is the identity matrix. We compute the Jacobian, J by
using numerical differentiation, that is, by adding small perturbations in each coordinate
direction. Then J is transposed. Finally, any element of J ′ which is greater than a
truncation threshold T will be truncated and substituted by the corresponding element in
A. The computation can be expressed in the following equation

Ai,j =

 Ji,j , if |Ji,j | < T
0.5, i = j
0, otherwise

(3)
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T can be any small number less than 1. We have considered some values of T and we found
by experiment that a value of 0.5 generally provides good convergence. A smaller T will
truncate most elements of A, while a greater A may allow some elements that will cause
instabilities. The initial findings are also supported by and in agreement with previous
studies [2, 3].

However, it is important to note that the determination of optimal values for T may
also depend on the nature (discrete or continuous) of system under investigation, which
worth a separate, new study.

2.2. Definitions of measured quantities. In the paper we investigate the quality of
the estimated states Zm based on the four defined quantities [6]; the indeterminism Im,
the final state mismatch magnitude In,m, the root mean square error of states Em and the
last point error En,m.

A fixed step-size ∆ is used in the iteration of the original GDI shadowing filter. The
choice of ∆ will determine the convergence rate and the stability of the algorithm. In
general, a small step-size value will provide stability, with a slow convergence rate. On the
other hand, a large value of step-size will give a fast convergence rate but the stability is not
ensured. The principle criteria of selecting the optimal value of ∆ is that the convergence
of the indeterminism, should be continuously decreasing.

In this study, we introduce AS to address the difficulties. AS is defined as a number of
different step-size values in the iterative GDI shadowing filter, which are varied or adapted
(but must always be decreasing) to avoid the failure of convergence problem. It can reduce
the rate of convergence by decreasing the step-size value.

GDI shadowing filter can fail to converge if the value of the step-size is too large, and the
convergence will be slow if the value of the step-size is too small. Failure here refers to the
non-decreasing indeterminism as the number of iteration increases. Therefore, selecting
the largest step-size value which provide a decrease of indeterminism may not necessarily
be a good idea, but if a certain step-size value does not provide a decrease, when a smaller
step-size does, then the step-size value must be decreased.

2.3. The implementation. The essential idea in this study is to adapt the step-size
value according to the convergence of the indeterminism. The aim is to provide a fast
convergence rate and not compromise the stability. The reduction of the step-size value is
based on the values of current and previous indeterminism. If the indeterminism of current
iteration is larger than or equal to the indeterminism of previous iteration, then the step-
size value is divided by a factor k in the following iteration and the state estimates of the
previous iteration will be filtered again using a new decreased step-size value. However, if
the indeterminism decreases, the step-size value remains unchanged for the next iteration.

However, there are two questions that need to be answered before the AS can be em-
ployed; the appropriate value of k and initial step-size ∆0. Inappropriate choices of the
values will result in very slow convergence and hence increase the amount of iteration.
The questions will be addressed in the following sections.

2.4. The appropriate value for the adaptive factor. The value of k should not be
too large because if k � 1 then the step-size will become very small very quickly and
provide very slow progress to convergence. Furthermore, several values of k were initially
considered for Galton board model, but it is found by experiment that there was no
significant difference. It is found that the filter may work for arbitrary values of k bigger
than 1. Generally, k = 2 provides the fastest convergence rate. The initial findings are
also supported by and in agreement with previous studies [5, 14].
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Figure 2. The average values of (a) Im, (b) Em, (c) In,m and (d) En,m, as
a function of the number of iteration, m with noise level,σ = 0.1, 0.2 and
0.3, k = 0.5, and the initial step-size, 2∆/(n − 1) = 0.1, for Galton board
model, e) The average value of the term 2∆/(n− 1) as a function of m.

However, it is important to note that the determination of optimal values for T may
also depend on the nature (discrete or continuous) of system under investigation, which
worth a separate, new study.

2.5. The value of initial step-size. Employing AS will ensure the convergence, that is,
the indeterminism will always be decreasing or at least, non-increasing. The only issue
to be considered is the convergence rate. The algorithm with AS works for any values
0 < ∆0 < 1, but it is found that, in most cases, a value around ∆0 = 0.1 provides the
fastest convergence rate.

As has been noted for T , the determination of optimal values for k may depend on the
nature of system under investigation. Further studies are recommended for that purpose.

3. Results and discussions
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3.1. State estimation using FS. To assess the performance of the GDI shadowing
filter for the Galton board model, we applied the filter to the Galton board model when
R = 0.26, eN = 0.49, and eT = 0.2. We computed average values of Im, In,m, Em and
En,m for the observations (our artificial data) where 2∆/(n − 1) = 0.1, m = 50, and
σ = 0.05, 0.1 and 0.2. Small Gaussian errors of observations are used (although the noise
size relative to the pin spacing are quite large) because large errors could be a problem
with the ball bouncing the wrong way. For example, a ball that hit near the top of a pin
and bounces to the right of the pin might bounce to the left if large noise are added to the
point of impact. The results showed and discussed in Fig. 2 are qualitatively similar for
different model parameter values. This robustness to changes in the values of the model
parameters imply that Galton board model is in the dynamical regime that is difficult to
predict.

Fig. 2 shows the average value of Im, In,m, Em and En,m for 50 trajectories plotted as
a function of the number of iteration m. It is found that basic GDI shadowing filter with
selected step-size, does not work for Galton board model. The figure shows that the filter
provides around 10% reduction of In,m and 2.5% reduction of En,m. However, the figure
clearly shows that the GDI shadowing filter does not provide stability, that is, average
value of Im reaches a minimum at around m = 5 and starts to increases beyond that,
for all of the three noise levels. Furthermore, Em increases as the number of iterations
increase. This should not happen and shows that the selection of the step-size value is
not correct. We attempt to address this failure by repeating the experiment using smaller
step-size, that is 2∆/(n − 1) = 0.05. However, we found that it is still unstable and still
fails with this step-size value, that is, Im and Em still increase, although not until m > 5.

3.2. State estimation using AS. To assess the performance of the GDI shadowing filter
with AS, we repeated the experiment using the same initial observation data used in the
previous experiment and computed the average values for Im, Em, In,m and En,m . It is
important to note that the comparison is made between the AS filter and the FS filter
of one stepsize value only as the selected value has been found to be optimal [6]. The
results for Galton board model are plotted in Fig. 2. The Figures clearly show that, using
the AS, the average value of all four quantities decreases or at least does not increase, as
the number of iterations, m increases. Observe in Fig. 2a and 2c that AS works whereas
the FS fails. Note that in Fig. 2b, the FS initially has a faster rate of convergence, it
is eventually surpassed by the AS after less that 10 iterations. Using AS, Im is strictly
decreasing for all noise levels, and Em is not increasing. In Fig. 2b and 2d, (where the FS
has no convergence problem) the AS performs slightly better than the FS. Fig. 2e shows
the average value of the term 2∆/(n − 1) as the number of iteration m increases. Note
that, on average, big step-sizes are used in the first ten iterations, and smaller step-sizes
are used beyond that.

4. Conclusions

The current study provides two main results: the implementation of the GDI shadowing
filter to the most complex and recently developed Galton board model and the improve-
ment of the original GDI shadowing filter with the AS. The results reveal that the original
GDI shadowing filter does not provide stability to the convergence of the indeterminism
and the error. We have also introduced and proposed a new simple way in choosing the
step-size value to address the convergence problem. Our approach is to adapt the step-
size sequence in the a gradient descent algorithm so as to ensure that the indeterminism
is reduced at each iteration. It is designed to eliminate the uncertainty in selection of
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the optimal step-size value, and to improve the convergence rate while maintaining the
stability.

The results of this study show that the performance of the AS is significantly better
than the FS, even for the cases where the FS works. The AS, with arbitrary values of k
greater than 1, will ensure the average value of Im to be strictly decreasing, or at least
non-increasing. Although the FS in some cases may initially provide higher convergence
rate, it is eventually outperformed by the AS. A larger step-size will generally give faster
convergence, but the convergence of the indeterminism may not be strictly decreasing.
Futhermore, it is known that for the cases where a large, fixed step-size does not work, a
smaller step-size will guarantee the convergence of the indeterminism. However, the GDI
shadowing filter with AS will provide better convergence of the indeterminism, after the
same number of iterations. The adaptive step-size will guarantee successful implementa-
tion of the GDI shadowing algorithm and will improve the performance of the original
shadowing filter.

In future, further study is required to quantitatively determine the optimal values of T
and k, and develop a standard statistical test or procedure for that purpose, taking into
consideration the nature (discrete or continuous) of the system under study.
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