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SOME FIXED POINT RESULTS FOR j-ADMISSIBLE MULTI-VALUED
F-CONTRACTIONS

ESMAEIL NAZARI', §

ABSTRACT. In the present paper, we prove some fixed point results for - admissible
multi-valued F- contractions on metric spaces. This type of contraction is a general-
ization of some multi-valued contractions including Nedler’s and Berinde’s. Finally, we
obtain a fixed point result for - generalized Suzuki type multivalued F- contraction.
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1. INTRODUCTION

Fixed point theory for multivalued operators was first studied by Nadler in [7] in 1969,
who extended Banach’s fixed point theorem [4] for set-valued functions. Many fixed point
theorems have been proved by various authors as generalizations to Nadler’s theorem
(see[l, 6]).

Recently, D. Wardowski [11] introduced the concept of F-contraction for single-valued
mappings and proved a fixed point theorem which generalizes some well-known results
in the literature. The method was extended by Sgroi and Vetro [8] to the multivalued
F-contractions in metric spaces by using Hausdorff metric.

In this paper, by considering the recent technique of Wardowski [11] and M. A. Miandaragh
et al [6] we present a new generalized F-contraction, and improve the main result in [1, 2, 8]
and [11].

2. PRELIMINARIES

Let (X, d) be a metric space. We denote by 2% the family of all nonempty subsets of X
and by CB(X) the family of all nonempty closed and bounded subsets of X. For A € 2%
and z € X, D(z,A) = inf{d(z,a) : a € A}. For every A, B € CB(X), let

H(A, B) = max{sup D(z, B),sup D(y, A)}.
€A yeB

Such a function H is called generalized Hausdorff metric induced by d.
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Definition 2.1. [6] Let X be a set, T : X — 2% a multivalued mapping and 3 : 2% x
2X — [0,00) a mapping. We say that T is B-admissible whenever (A, B) > 1 implies
B(Txz,Ty) > 1 for all x € A and y € B, where A and B are subsets of X.
We say that T is B-convergent whenever for each convergent sequence {x,} with x, — x,
there exists a natural number N such that f(Tzy,Tx) > 1 for alln > N.

Definition 2.2. [3] Let F : (0,00) = R and 0 : (0,00) — (0,00) be two mappings. Let A

be the set of all pairs (0, F) satisfying the following:

01) 0(t,) - 0 for each strictly decreasing sequence {t,};

02) F is a strictly increasing function;

03) For each sequence {cu, } of positive numbers, lim, o o, = 0 if and only if lim, o0 F () =
—00

64) If t, L 0 and (t,) < F(tn) — F(tny1) for each n € N, then we have y 2 | t, < 00

Example 2.1. [3] Let F(t) = In(t) and 0(t) = —In(a(t)) for each t € (0,00), where
a:(0,00) = (0,1) satisfying limsup,_,,+ a(s) < 1, for allt € [0,00). Then (0, F) € A.
Definition 2.3. Let R denote the class of all continuous functions g : [0,00)°> — [0, 00)
with the following properties:

1) g(la 17 17 27 0) = g(lv 17 17 07 2) =1

2) g is a homogenous function, that is,

g(ax, axy, axs, axy, axs) < ag(xr, x2, T3, T4, Ts5),

for all a > 0 and (1,29, 73,24, 75) € [0,00)3
3) Ifv; <y fori=1,...,4, then g(x1, 2,23, 24,0) < g(y1, Y2, Y3, Y4,0) and g(x1,22,23,0,24) <
9(y17927y3707y4)-

Definition 2.4. [5] Let X be a metric space. A subset C' C X is said to be approzimative
if the set

Po(x) ={y e C :d(x,y) = D(C,z)}, Vo e X,

18 nonempty.
A mapping T : X — 2% is said to be approzimative multivalued mapping , AV for short,
if Tx is approximative for each x € X.

3. FIXED POINT THEORY

Now, we are ready to state and prove our main results.

Theorem 3.1. Let (X, d) be a complete metric space, 3 : 2% x 2% — [0,00) be a mapping
and T : X — CB(X) a B-admissible, 3-convergent and satisfying AV. Assume that there
exists (0, F) € A such that

0(d(z,y)) + F(B(Tz,Ty)H(Tz, Ty)) < F(g(d(z,y), D(z, Tx), D(y, Ty), D(z, Ty), D(y, Tx))),
(1)

for all x,y € X, with f(Tx, Ty)H(Txz,Ty) # 0, where g € R. Suppose that there exist

A C X and xg € A such that B(A,Txg) > 1. Then T has a fized point.

Proof. Let A C X and ¢ € A such that 5(A,Tzy) > 1. Since T is AV, we can choose a
sequence {z,} such that z,+1 € Tx, and d(xy, xnt1) = D(xn, Txy,) for all n > 0. Since T
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is S-admissible and B(A, Txg) > 1, it is easy to see that S(Txy—1,Txy,) > 1 for all n > 1.
Since F' is a strictly increasing, we have

F(d(zp,2nt1)) = F(D(xn, Txy)) < F(H(Tzp—1,Txy))

< F(B(Tn-v, Ty H(Tan 1, Ts), @)

for all n € N. From (1) and (2), we have
0 d(xn—h mn)) + F(d(l‘n, xn—&—l))

(d(xn—la xn)) + F(/B(Txn—la Txn)H(Txn—lv Txn))
g(d(xn—lu xn)7 D(xn—la Tﬂ?n_l), D<$’n7 Txn)7 D(.’En_l, Tﬂ?n), D(xru Txn—l)))
g(d(xn—la xn)a d<$n—17 l'n), d(.%'n, $n+1)7 d(wn—b xn+1): d(xna mn)))
g(d(xn—la xn)a d(wn—h xn)v d(.%'n, $n+1)7 d(wn—h xn) + d(.%'n, xn+1)7 0)): (3)

for each n € N. Since F' is strictly increasing, we get

—~
>
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d(xna anrl) < g(d($n71, l‘n)a d(xnfla xn)a d(xm I‘n+1), d(xnfla fEn) + d(fEna l‘n+1)a 0)7

for each n € N. Now we claim that d(zp+1,2,) < d(zpn,Tn—1), otherwise if there exist
n € N such that d(z,,xn—1) < d(zp41, ), then by the fact that g € R we have

d(:En, anrl) < g(d(CEna anrl)a d(.’L’n, lin+1)y d(xn, xn+1)a 2d($n7 anrl)a 0)
= d(Tn, Tn+1)9(1,1,1,2,0) = d(zp, Tn+1), (by using Definition 2.3)

which is a contradiction. Therefore {d(z,,xn+1)} is a strictly decreasing sequence, then
by using (3) we have

O(d(xn—1,7n)) + F(d(2n, Tni1))
S F(g(d(.’ﬂn,l, xn)v d(ﬁnfla CCn), d(l’n, xn+1)7 2d($n71, xn)v O)))
= F(d(xn-1,7n)9(1,1,1,2,0)) = F(d(xn-1,%r)), (by using Definition 2.3)

for each n € N. Thus,
0(d(zn—1,7n)) < F(d(xn-1,2n)) = F(d(2n, Tni1)). (4)

Let limy, o0 d(2p, Xny1) = 7, for some r > 0. We show that » = 0. On contrary, suppose
that 7 > 0. From (4) we obtain

n—1
> 0(d(wio1,2:)) < Fd(w1,22)) = F(d(@n, 2ni1)), (5)
i=1
for each n € N. Since {d(zn,xn+1)} is strictly decreasing, then from (§1) we have
0(d(xp, Tpy1)) - 0. Thus, > 22, 0(d(zs, xi41)) = 400, and from (5), limy, o0 F(d(2n, Tni1)) =
—o00. Then by (03) we have d(x,, xn+1) — 0 as n — oo. Which is a contradiction. There-
fore
lim d(xy,zp+1) = 0. (6)
n—oo
From (4), (6) and (04) we have Y 7, d(xpn,Zn41) < 0o. Therefore {z,} is a Cauchy se-
quence. Since X is complete z,, — = € X. Now, we prove that x is a fixed point of T
If there exits a strictly increasing sequence {n} such that z,, € Tz for all k¥ € N. Since
Ty, — x, we get D(x,T'z) = 0. Since T'z is closed we get z € T'z and the proof is complete.
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So, we can assume that there exists ng € N such that x,, ¢ Tz, for each n > ng. This
implies that T'x,, # Tx, for each n > ng. Since T is S-convergent we obtain

F(D(zp41,Tx)) < 0(d(zpn,z)) + F(H(Txp, Tx))
< O(d(zp,z)) + F(B(Txyn, Tz)H(Txy, TT))
< F(g(d(xn,z), D(xp, Txy), D(x,Tx), D(xy, Tx), D(x,Txy)))
< F(g(d(xn, ), d(xn, 2pt1), D(x, Tx), D(xy, Tx), D(x,2941))), (7)
for all n > ng. Since F' is strictly increasing, inequality (7) reduces to
D(zpt1,Tx) < g(d(zp, x),d(Tn, Tny1), D(x, Tx), D(xp, Tx), D(x, 2nt1)),

for all n > ng. Now if x € Tz, then proof is complete, otherwise, letting n — oo in the
previous inequality, we obtain

D(z,Tz) < ¢(0,0, D(x,Tz), D(z,Tx),0)
= D(z,Tx)g(0,0,1,1,0)
< D(z,Tx)g(1,1,1,2,0)
= D(z,Tz).
which is a contradiction. Hence x € Tx and proof is complete. O
Corollary 3.1. Let (X, d) be a complete metric space, B : 2% x 2% — [0, 00) be a mapping

and T : X — CB(X) a B-admissible, 3-convergent and satisfying AV. Assume that there
exists (0, F) € A such that

0(d(z,y)) + F(B(Tx, Ty)H(Tx, Ty)) < F(d(z,y))

for all x,y € X, with 8(Tx, Ty)H(Txz,Ty) # 0. Suppose that there exist A C X and
xo € A such that B(A,Txo) > 1. Then T has a fixed point.

Proof. Define g(x1, x2, 23,24, 25) = 1. Then g € R, by using Theorem 3.1, T has a fixed
point in X. 0

Corollary 3.2. Let (X,d) be a complete metric space, B : 2% x 2% — [0,00) be a mapping
and T : X — CL(X) a B-admissible, B-convergent and satisfying AV. Assume that there
exists (0, F) € A such that
0(d(z,y)) + F(B(Tz, Ty)H(Tz, Ty)) < F(ad(z,y) + b[D(z,Tz) + D(y, Ty)]
+c[D(z,Ty) + D(y, Tx))),
for all x,y € X, with B(Tz, Ty)H(Txz,Ty) # 0, and a,b,c > 0 with a + 2b + 2¢ = 1.

Suppose that there exist A C X and xg € A such that f(A,Txzg) > 1. Then T has a fized
point.

Proof. Define g(x1,x2, 3,24, 25) = ax1 + b(xa + x3) + ¢(x4 + x5). Then g € R, by using
Theorem 3.1, T" has a fixed point in X. [l

Corollary 3.3. Let (X,d) be a complete metric space, 3 : 2% x 2% — [0,00) be a mapping
and T : X — CB(X) a f-admissible, 5-convergent and satisfying AV. Assume that there
exists (8, F') € A such that

O(d(z,y)) + F(B(Tz, Ty)H(Tz,Ty)) < F(ad(x,y) + bD(z,Tx) + cD(y, Ty)),

forallx,y € X, with 8(Tx, Ty)H(Tz, Ty) # 0, and a,b,c > 0 with a+b+c = 1. Suppose
that there exist A C X and xg € A such that (A, Txo) > 1. Then T has a fived point.
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Proof. Define g(x1, xo, x3, x4, 25) = axy + bxe + cx3. Then g € R, by using Theorem 3.1,
T has a fixed point in X. O

Corollary 3.4. Let (X,d) be a complete metric space, 3 : 2% x 2% — [0,00) be a mapping
and T : X — CB(X) a B-admissible, 3-convergent and satisfying AV. Assume that there
exists (8, F') € A such that

0(d(x,y)) + F(B(Tz,Ty)H(Tz,Ty)) < F(max{d(z,y), D(z,Tx),D(y,Ty)}),

for all x,y € X, with 8(Tx, Ty)H(Txz,Ty) # 0, Suppose that there exist A C X and
xo € A such that B(A,Txo) > 1. Then T has a fized point.

Proof. Define g(z1,x2, 3, x4, x5) = max{xi, z2,x3}. Then g € R, by using Theorem 3.1,
T has a fixed point in X. O

Corollary 3.5. Let (X,d) be a complete metric space, 3 : 2% x 2% — [0, 00) be a mapping
and T : X — CB(X) a B-admissible, 3-convergent and satisfying AV. Assume that there
exists (8, F) € A such that

0(d(x,y)) + F(B(Tx, Ty)H(Tx, Ty)) < F(d(z,y) + LD(y, Tx)),

for all x,y € X, with f(Tz,Ty)H(Tx,Ty) # 0, and L > 0. Suppose that there exist
A C X and zg € A such that B(A,Txg) > 1. Then T has a fized point.

Proof. Define g(z1,x2,x3,24,25) = x1 + Lxs. Then g € R, by using Theorem 3.1, T" has
a fixed point in X. O

In below we explain a generalization of Theorem 3.2 of [10].

Corollary 3.6. Let (X,d) be a complete metric space, 3 : 2% x 2% — [0,00) be a mapping
and T : X — CB(X) a B-admissible, 5-convergent and satisfying AV. Assume that,

B(Tz, Ty)H(Tx,Ty) < a(d(z,y))d(z,y),

for all z,y € X, with B(Tz,Ty)H(Tz,Ty) # 0 where a : (0,00) — (0,1) is a function
such that limsup,_,,+ a(s) < 1 for all t € [0,00). Suppose that there exist A C X and
xo € A such that B(A,Txo) > 1. Then T has a fized point.

Proof. Let F(x) = In(x) and 0(x) = —In(a(x)) for each z € (0, 00), and g(z1, z2, 3, T4, 25) =
x1 then (0, F) € A and g € R. Hence by using Theorem 3.1, T has a fixed point in X. O

Example 3.1. Let X = {%, 1o 2%, L U{0,1}, d(z,y) = |z —yl, for all xz,y € X. Let
T:X — CB(X) defined by

{=} fr=3.n=123,.,

Tr={{0} ifz=0 (8)
{1,3} ifa=1
Putz=1,y= % Then, we have
1 1 1 1 1

Then for all ' € F and T > 0, we have

r 4+ F(TLT) > F(d(1, 5) + LD(5, {1, 1))
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Therefore, Theorem 2.2 in [2] which is the main result of [2], is not applicable to this
exzample. Now, we define 3 : 2% x 2% — [0,00) by

2 if A, BC {5 :neN}
0 otherwise.

B(A, B) = { 9)
Clearly, if 8(Tx, Ty)H(Txz,Ty) > 0 for each x # y, and Tz, Ty C {2% :n € N}. Then it
s easy to see that

BTz, Ty)H(Tz,Ty) _

d(x,y) +7D(y, Tx) —

Then
1+ In(8(Tx, Ty)H(Tx,Ty)) < In(d(z,y) + 7TD(y, Tx)).

Therefore by Corollary 3.5, T has a fixed point in X. Note that 0 and 1 are fived points
of T.

In 2008, Suzuki introduced a new type of mappings and a generalization of the Banach
contraction principle in which the completeness can be also characterized by the existence
of fixed points of these mappings [9]. We give our last result about fixed point of -
generalized Suzuki type (0, F)) multivalued contractions. Our result also extend main
result of [1].

Theorem 3.2. Let (X,d) be a complete metric space, 3 : 2% x 2% — [0,00) be a mapping

and T : X — CB(X) a B-admissible, 3-convergent and satisfying AV. Assume that there

exists (0, F) € A such that $D(x,Tz) < d(z,y) implies

0(d(z,y)) + F(B(Tz, Ty)H(Tz,Ty)) < F(g(d(z,y), D(z,Tx), D(y,Ty), D(x, Ty), D(y, Tx))),
(10)

for all x,y € X, with 8(Tz, Ty)H(Tz,Ty) # 0, where g € R. Suppose that there exist

A C X and zg € A such that B(A,Txg) > 1. Then T has a fized point.

Proof. Let A C X and zy € A such that 5(A,Tz¢) > 1. Since T is AV, we can choose a
sequence {z,} such that z,4+1 € Tx,, and d(zp, Tn+1) = D(xy, Txy) for all n > 0. Since T'
is f-admissible and B(A, Txg) > 1, it is easy to see that 5(Txp—1,Tzy,) > 1 for all n > 1.
Since %D(mn_l,Txn_l) < d(xp—1,y) and
F(d(zp,xnt1)) = F(D(xp, Txy)) < F(H(Txp—1,Ty))

< F(B(Txn-1,Try)H(TxH-1,Tx)), (11)

for all n € N. From (10) and (11), we have
0(d(wn—1,2n)) + F(d(zn, Tnt1))

(d(zp—1,2pn)) + F(B(Txp-1,Txn)H(TxH_1,Txy))
g(d(xpn—1,2n), D(xp_1,Txn_1), D(xy, Txy), D(xn_1,Txy), D(Tp, TTH-1)))
9(d(Tn-1,7n), d(Tn-1,7n), d(Tn, Tni1), d(Tn-1, Tnt1), d(Tn, Tn)))
g(d(xn—1,2n),d(Tn-1,%n), d(Tn, Tnt1), d(Tn—1,%n) + d(Tn, Tn+1),0)), (12)
for each n € N. This implies that

—~
et

A A IA IA
334

d(xnv wn-{—l) < g(d(xn—la 1’n), d(xn—la xn)7 d(wrw ‘rn—l—l)v d(xn—la xn) + d(xna xn—l—l)a 0)7
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for each n € N. Now we claim that d(z,+1,2,) < d(zp,Tn—1), otherwise if there exist
n € N such that d(z,,xn-1) < d(zpt1,Tyn), then we have
d(xna $n+1) < g(d(xTw x’n—i—l)a d(.%'n, .’En+1), d(xna xn-l—l)v d(.%'n, xn-i—l)? O)
=d(zp,xnt1)g(1,1,1,2,0) = d(xy, Tpt1), (by using Definition 2.3)

which is a contradiction. Therefore {d(xy,zn+1)} is a strictly decreasing sequence, then
by using (12) we have

0(d(zn-1,7n)) + F(d(Tn, Tni1))
< F(g(d(xp—1,p), d(Xn-1,2p), d(Tn, Tnt1), 2d(Tn-1,%n),0)))
= F(d(xp-1,7,)9(1,1,1,2,0)) = F(d(zpn-1, %)), (13)

for each n € N.
Thus

O(d(zn—1,2n)) < F(d(zn—1,72)) — F(d(Tn, Tny1)).

Now, by a similar argument of Theorem 3.1 we deduce that x, — x € X. We claim
that either %D(wn,Txn) < d(xp,x) or %D(wnH,TwnH) < d(zp41,x) for all n € N. If
%D(mn,Txn) > d(xp,x) and %D($n+1,T$n+1) > d(zp+1,x) for some n > 1, then

d(‘rn—i-ly xn) < d(xn—f—la l‘) + d(xn’ x)

1 1
< 5D(@n+1, T2n41) + 5 D(@n, T2n)

1 1
< id(xn—‘rlv xn+2) + iD(xny xn—l—l)

1 1
< Qd(xnaxn—l-l) + §D(xm$n+1)
= d(x’fl—i-la xn),
which is a contradiction. Thus either
0(d(zpn,x)) + F(B(Tzy, Tx)H (T, Tx))
< F(g(d(xn,x), D(x,Tx), D(xpn, Txy), D(xp, Tx), D(x,T2y))),
or
H(d(xn-‘rl? .’E)) + F(B(T{Bn-ﬁ-h T‘T})H(Txn-‘rlv TJ,'))
< F(g(d(xpt1,z), D(x,Tx), D(xpns1, TTnt1), D(nt1,T2), D(x, Txpi1))).
Since T is B-convergent, in the first case we obtain
F(D(zpy1,Tx)) < F(H(Txp,Tx))
< F(B(T$na Tx)H(Txn, Tm))
< 0(d(xzn,z))+ F(B(Txy, Tx)H(Txy, Tx))
< F(g(d(zn, ), D(z,Tx), D(xy, Txy), D(xn, Tx), D(2, Tp)))
< F(g( (xfh ) (CL‘ T$) (.’En,$n+1),D(xn,Tﬂi),D(£C,:En+1))).

Thus we have

D(xp41,Tx) < g(d(xp,x), D(x,Tx), D(xpn, ni1), D(Tn, Tx), D(x, 2p41)).
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Now if x € Tz, then proof is complete, otherwise, letting n — oo in the previous inequality,
we get
D(z,Tz) < ¢(0,0,D(x,Tz), D(x,Tx),0)
= D(z,Tx)g(0,0,1,1,0)
< D(x,Tx)g(1,1,1,2,0)
= D(z,Tx),
which is a contradiction. Hence x € Tx and proof is complete.

Since T' is [-convergent, in the second case we obtain by a similar argument that z is a
fixed point and so the proof is complete. O

Example 3.2. Let X = [0,00) and d(z,y) = |z — y|, for all xz,y € X. We defined
T:X - CB(X) by
Lo—rgl i
T — [0, ze "] z'fa: € [0,1]
{4z} if x € (1,00)
forr >0, and 3 : 2% x 2% = [0,00) by

/B(AvB) = {

Then B satisfy conditions in Theorem (3.2). We will show that T satisfy the condition
(10) for any z,y € [0,1] with 1D(z,Tz) < d(x,y). Let z,y € [0,1] and without loss of

generality we suppose that x < y. Then we have %D(x,Tx) = %(x — %e"’x). Hence for

i1D(z,Tx) < d(z,y), we must have (3 — 2™ ")z <y. Then it is easy to see that

2 if A,BC[0,1]

0 otherwise

BTz, Ty)H(Tx, Ty) = %e’rd(x, y) < e "d(z,y).
Therefore
r+Wn(B(Tz, Ty)H(Tz,Ty)) < In(d(z,y))

Now, let F(t) = In(t) and g(z1, z2, 3, 24, T5) = 1, then by Theorem (3.2), T has a fizved
point in X. Note that, 0 € TO is a fixed point of T'.
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