SOME FIXED POINT RESULTS FOR β-ADMISSIBLE MULTI-VALUED F-CONTRACTIONS

ESMAEIL NAZARI ${ }^{1}$, §

Abstract

In the present paper, we prove some fixed point results for β - admissible multi-valued F - contractions on metric spaces. This type of contraction is a generalization of some multi-valued contractions including Nedler's and Berinde's. Finally, we obtain a fixed point result for β - generalized Suzuki type multivalued F - contraction.

Keywords: Fixed point, Multi-valued F-contraction, Complete metric space.
AMS Subject Classification: 47H10, 47 H 04.

1. Introduction

Fixed point theory for multivalued operators was first studied by Nadler in [7] in 1969, who extended Banach's fixed point theorem [4] for set-valued functions. Many fixed point theorems have been proved by various authors as generalizations to Nadler's theorem (see[1, 6]).
Recently, D. Wardowski [11] introduced the concept of F-contraction for single-valued mappings and proved a fixed point theorem which generalizes some well-known results in the literature. The method was extended by Sgroi and Vetro [8] to the multivalued F-contractions in metric spaces by using Hausdorff metric.
In this paper, by considering the recent technique of Wardowski [11] and M. A. Miandaragh et al [6] we present a new generalized F-contraction, and improve the main result in $[1,2,8]$ and [11].

2. Preliminaries

Let (X, d) be a metric space. We denote by 2^{X} the family of all nonempty subsets of X and by $C B(X)$ the family of all nonempty closed and bounded subsets of X. For $A \in 2^{X}$ and $x \in X, D(x, A)=\inf \{d(x, a): a \in A\}$. For every $A, B \in C B(X)$, let

$$
H(A, B)=\max \left\{\sup _{x \in A} D(x, B), \sup _{y \in B} D(y, A)\right\}
$$

Such a function H is called generalized Hausdorff metric induced by d.

[^0]Definition 2.1. [6] Let X be a set, $T: X \rightarrow 2^{X}$ a multivalued mapping and $\beta: 2^{X} \times$ $2^{X} \rightarrow[0, \infty)$ a mapping. We say that T is β-admissible whenever $\beta(A, B) \geq 1$ implies $\beta(T x, T y) \geq 1$ for all $x \in A$ and $y \in B$, where A and B are subsets of X.
We say that T is β-convergent whenever for each convergent sequence $\left\{x_{n}\right\}$ with $x_{n} \rightarrow x$, there exists a natural number N such that $\beta\left(T x_{n}, T x\right) \geq 1$ for all $n \geq N$.

Definition 2.2. [3] Let $F:(0, \infty) \rightarrow R$ and $\theta:(0, \infty) \rightarrow(0, \infty)$ be two mappings. Let Δ be the set of all pairs (θ, F) satisfying the following:
$\delta 1) \theta\left(t_{n}\right) \nrightarrow 0$ for each strictly decreasing sequence $\left\{t_{n}\right\}$;
82) F is a strictly increasing function;
$\delta 3$) For each sequence $\left\{\alpha_{n}\right\}$ of positive numbers, $\lim _{n \rightarrow \infty} \alpha_{n}=0$ if and only if $\lim _{n \rightarrow \infty} F\left(\alpha_{n}\right)=$ $-\infty$
84) If $t_{n} \downarrow 0$ and $\theta\left(t_{n}\right) \leq F\left(t_{n}\right)-F\left(t_{n+1}\right)$ for each $n \in \mathbb{N}$, then we have $\sum_{n=1}^{\infty} t_{n}<\infty$

Example 2.1. [3] Let $F(t)=\ln (t)$ and $\theta(t)=-\ln (\alpha(t))$ for each $t \in(0, \infty)$, where $\alpha:(0, \infty) \rightarrow(0,1)$ satisfying $\lim \sup _{s \rightarrow t^{+}} \alpha(s)<1$, for all $t \in[0, \infty)$. Then $(\theta, F) \in \Delta$.
Definition 2.3. Let \mathcal{R} denote the class of all continuous functions $g:[0, \infty)^{5} \rightarrow[0, \infty)$ with the following properties:

1) $g(1,1,1,2,0)=g(1,1,1,0,2)=1$
2) g is a homogenous function, that is,

$$
g\left(\alpha x_{1}, \alpha x_{2}, \alpha x_{3}, \alpha x_{4}, \alpha x_{5}\right) \leq \alpha g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)
$$

for all $\alpha \geq 0$ and $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \in[0, \infty)^{5}$
3) If $x_{i}<y_{i}$ for $i=1, \ldots, 4$, then $g\left(x_{1}, x_{2}, x_{3}, x_{4}, 0\right)<g\left(y_{1}, y_{2}, y_{3}, y_{4}, 0\right)$ and $g\left(x_{1}, x_{2}, x_{3}, 0, x_{4}\right)<$ $g\left(y_{1}, y_{2}, y_{3}, 0, y_{4}\right)$.
Definition 2.4. [5] Let X be a metric space. A subset $C \subseteq X$ is said to be approximative if the set

$$
P_{C}(x)=\{y \in C: d(x, y)=D(C, x)\}, \quad \forall x \in X
$$

is nonempty.
A mapping $T: X \rightarrow 2^{X}$ is said to be approximative multivalued mapping , AV for short, if $T x$ is approximative for each $x \in X$.

3. Fixed Point Theory

Now, we are ready to state and prove our main results.
Theorem 3.1. Let (X, d) be a complete metric space, $\beta: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ be a mapping and $T: X \rightarrow C B(X)$ a β-admissible, β-convergent and satisfying $A V$. Assume that there exists $(\theta, F) \in \Delta$ such that
$\theta(d(x, y))+F(\beta(T x, T y) H(T x, T y)) \leq F(g(d(x, y), D(x, T x), D(y, T y), D(x, T y), D(y, T x)))$,
for all $x, y \in X$, with $\beta(T x, T y) H(T x, T y) \neq 0$, where $g \in \mathcal{R}$. Suppose that there exist $A \subseteq X$ and $x_{0} \in A$ such that $\beta\left(A, T x_{0}\right) \geq 1$. Then T has a fixed point.

Proof. Let $A \subseteq X$ and $x_{0} \in A$ such that $\beta\left(A, T x_{0}\right) \geq 1$. Since T is AV, we can choose a sequence $\left\{x_{n}\right\}$ such that $x_{n+1} \in T x_{n}$ and $d\left(x_{n}, x_{n+1}\right)=D\left(x_{n}, T x_{n}\right)$ for all $n \geq 0$. Since T
is β-admissible and $\beta\left(A, T x_{0}\right) \geq 1$, it is easy to see that $\beta\left(T x_{n-1}, T x_{n}\right) \geq 1$ for all $n \geq 1$. Since F is a strictly increasing, we have

$$
\begin{align*}
F\left(d\left(x_{n}, x_{n+1}\right)\right) & =F\left(D\left(x_{n}, T x_{n}\right)\right) \leq F\left(H\left(T x_{n-1}, T x_{n}\right)\right) \\
& \leq F\left(\beta\left(T x_{n-1}, T x_{n}\right) H\left(T x_{n-1}, T x_{n}\right)\right), \tag{2}
\end{align*}
$$

for all $n \in \mathbb{N}$. From (1) and (2), we have

$$
\begin{align*}
& \theta\left(d\left(x_{n-1}, x_{n}\right)\right)+F\left(d\left(x_{n}, x_{n+1}\right)\right) \\
& \leq \theta\left(d\left(x_{n-1}, x_{n}\right)\right)+F\left(\beta\left(T x_{n-1}, T x_{n}\right) H\left(T x_{n-1}, T x_{n}\right)\right) \\
& \leq F\left(g\left(d\left(x_{n-1}, x_{n}\right), D\left(x_{n-1}, T x_{n-1}\right), D\left(x_{n}, T x_{n}\right), D\left(x_{n-1}, T x_{n}\right), D\left(x_{n}, T x_{n-1}\right)\right)\right) \\
& \leq F\left(g\left(d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n+1}\right), d\left(x_{n}, x_{n}\right)\right)\right) \\
& \leq F\left(g\left(d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right), 0\right)\right), \tag{3}
\end{align*}
$$

for each $n \in \mathbb{N}$. Since F is strictly increasing, we get

$$
d\left(x_{n}, x_{n+1}\right)<g\left(d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right), 0\right)
$$

for each $n \in \mathbb{N}$. Now we claim that $d\left(x_{n+1}, x_{n}\right)<d\left(x_{n}, x_{n-1}\right)$, otherwise if there exist $n \in \mathbb{N}$ such that $d\left(x_{n}, x_{n-1}\right) \leq d\left(x_{n+1}, x_{n}\right)$, then by the fact that $g \in \mathcal{R}$ we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & <g\left(d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), 2 d\left(x_{n}, x_{n+1}\right), 0\right) \\
& =d\left(x_{n}, x_{n+1}\right) g(1,1,1,2,0)=d\left(x_{n}, x_{n+1}\right),(\text { by using Definition 2.3) }
\end{aligned}
$$

which is a contradiction. Therefore $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is a strictly decreasing sequence, then by using (3) we have

$$
\begin{aligned}
& \theta\left(d\left(x_{n-1}, x_{n}\right)\right)+F\left(d\left(x_{n}, x_{n+1}\right)\right) \\
& \left.\leq F\left(g\left(d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), 2 d\left(x_{n-1}, x_{n}\right), 0\right)\right)\right) \\
& =F\left(d\left(x_{n-1}, x_{n}\right) g(1,1,1,2,0)\right)=F\left(d\left(x_{n-1}, x_{n}\right)\right), \text { (by using Definition 2.3) }
\end{aligned}
$$

for each $n \in \mathbb{N}$. Thus,

$$
\begin{equation*}
\theta\left(d\left(x_{n-1}, x_{n}\right)\right) \leq F\left(d\left(x_{n-1}, x_{n}\right)\right)-F\left(d\left(x_{n}, x_{n+1}\right)\right) . \tag{4}
\end{equation*}
$$

Let $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r$, for some $r \geq 0$. We show that $r=0$. On contrary, suppose that $r>0$. From (4) we obtain

$$
\begin{equation*}
\sum_{i=1}^{n-1} \theta\left(d\left(x_{i-1}, x_{i}\right)\right) \leq F\left(d\left(x_{1}, x_{2}\right)\right)-F\left(d\left(x_{n}, x_{n+1}\right)\right) \tag{5}
\end{equation*}
$$

for each $n \in \mathbb{N}$. Since $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is strictly decreasing, then from ($\delta 1$) we have $\theta\left(d\left(x_{n}, x_{n+1}\right)\right) \nrightarrow 0$. Thus, $\sum_{i=1}^{\infty} \theta\left(d\left(x_{i}, x_{i+1}\right)\right)=+\infty$, and from (5), $\lim _{n \rightarrow \infty} F\left(d\left(x_{n}, x_{n+1}\right)\right)=$ $-\infty$. Then by ($\delta 3$) we have $d\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$. Which is a contradiction. Therefore

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 . \tag{6}
\end{equation*}
$$

From (4), (6) and ($\delta 4$) we have $\sum_{n=1}^{\infty} d\left(x_{n}, x_{n+1}\right)<\infty$. Therefore $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is complete $x_{n} \rightarrow x \in X$. Now, we prove that x is a fixed point of T. If there exits a strictly increasing sequence $\left\{n_{k}\right\}$ such that $x_{n_{k}} \in T x$ for all $k \in \mathbb{N}$. Since $x_{n_{k}} \rightarrow x$, we get $D(x, T x)=0$. Since $T x$ is closed we get $x \in T x$ and the proof is complete.

So, we can assume that there exists $n_{0} \in \mathbb{N}$ such that $x_{n} \notin T x$, for each $n>n_{0}$. This implies that $T x_{n} \neq T x$, for each $n>n_{0}$. Since T is β-convergent we obtain

$$
\begin{align*}
F\left(D\left(x_{n+1}, T x\right)\right) & \leq \theta\left(d\left(x_{n}, x\right)\right)+F\left(H\left(T x_{n}, T x\right)\right) \\
& \leq \theta\left(d\left(x_{n}, x\right)\right)+F\left(\beta\left(T x_{n}, T x\right) H\left(T x_{n}, T x\right)\right) \\
& \leq F\left(g\left(d\left(x_{n}, x\right), D\left(x_{n}, T x_{n}\right), D(x, T x), D\left(x_{n}, T x\right), D\left(x, T x_{n}\right)\right)\right) \\
& \leq F\left(g\left(d\left(x_{n}, x\right), d\left(x_{n}, x_{n+1}\right), D(x, T x), D\left(x_{n}, T x\right), D\left(x, x_{n+1}\right)\right)\right) \tag{7}
\end{align*}
$$

for all $n \geq n_{0}$. Since F is strictly increasing, inequality (7) reduces to

$$
D\left(x_{n+1}, T x\right)<g\left(d\left(x_{n}, x\right), d\left(x_{n}, x_{n+1}\right), D(x, T x), D\left(x_{n}, T x\right), D\left(x, x_{n+1}\right)\right)
$$

for all $n \geq n_{0}$. Now if $x \in T x$, then proof is complete, otherwise, letting $n \rightarrow \infty$ in the previous inequality, we obtain

$$
\begin{aligned}
D(x, T x) & \leq g(0,0, D(x, T x), D(x, T x), 0) \\
& =D(x, T x) g(0,0,1,1,0) \\
& <D(x, T x) g(1,1,1,2,0) \\
& =D(x, T x)
\end{aligned}
$$

which is a contradiction. Hence $x \in T x$ and proof is complete.
Corollary 3.1. Let (X, d) be a complete metric space, $\beta: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ be a mapping and $T: X \rightarrow C B(X)$ a β-admissible, β-convergent and satisfying AV. Assume that there exists $(\theta, F) \in \Delta$ such that

$$
\theta(d(x, y))+F(\beta(T x, T y) H(T x, T y)) \leq F(d(x, y))
$$

for all $x, y \in X$, with $\beta(T x, T y) H(T x, T y) \neq 0$. Suppose that there exist $A \subseteq X$ and $x_{0} \in A$ such that $\beta\left(A, T x_{0}\right) \geq 1$. Then T has a fixed point.

Proof. Define $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{1}$. Then $g \in \mathcal{R}$, by using Theorem 3.1, T has a fixed point in X.
Corollary 3.2. Let (X, d) be a complete metric space, $\beta: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ be a mapping and $T: X \rightarrow C L(X)$ a β-admissible, β-convergent and satisfying AV. Assume that there exists $(\theta, F) \in \Delta$ such that

$$
\begin{aligned}
\theta(d(x, y))+F(\beta(T x, T y) H(T x, T y)) & \leq F(a d(x, y)+b[D(x, T x)+D(y, T y)] \\
& +c[D(x, T y)+D(y, T x)])
\end{aligned}
$$

for all $x, y \in X$, with $\beta(T x, T y) H(T x, T y) \neq 0$, and $a, b, c>0$ with $a+2 b+2 c=1$. Suppose that there exist $A \subseteq X$ and $x_{0} \in A$ such that $\beta\left(A, T x_{0}\right) \geq 1$. Then T has a fixed point.

Proof. Define $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=a x_{1}+b\left(x_{2}+x_{3}\right)+c\left(x_{4}+x_{5}\right)$. Then $g \in \mathcal{R}$, by using Theorem 3.1, T has a fixed point in X.

Corollary 3.3. Let (X, d) be a complete metric space, $\beta: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ be a mapping and $T: X \rightarrow C B(X)$ a β-admissible, β-convergent and satisfying $A V$. Assume that there exists $(\theta, F) \in \Delta$ such that

$$
\theta(d(x, y))+F(\beta(T x, T y) H(T x, T y)) \leq F(a d(x, y)+b D(x, T x)+c D(y, T y))
$$

for all $x, y \in X$, with $\beta(T x, T y) H(T x, T y) \neq 0$, and $a, b, c>0$ with $a+b+c=1$. Suppose that there exist $A \subseteq X$ and $x_{0} \in A$ such that $\beta\left(A, T x_{0}\right) \geq 1$. Then T has a fixed point.

Proof. Define $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=a x_{1}+b x_{2}+c x_{3}$. Then $g \in \mathcal{R}$, by using Theorem 3.1, T has a fixed point in X.

Corollary 3.4. Let (X, d) be a complete metric space, $\beta: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ be a mapping and $T: X \rightarrow C B(X)$ a β-admissible, β-convergent and satisfying AV. Assume that there exists $(\theta, F) \in \Delta$ such that

$$
\theta(d(x, y))+F(\beta(T x, T y) H(T x, T y)) \leq F(\max \{d(x, y), D(x, T x), D(y, T y)\})
$$

for all $x, y \in X$, with $\beta(T x, T y) H(T x, T y) \neq 0$, Suppose that there exist $A \subseteq X$ and $x_{0} \in A$ such that $\beta\left(A, T x_{0}\right) \geq 1$. Then T has a fixed point.

Proof. Define $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\max \left\{x_{1}, x_{2}, x_{3}\right\}$. Then $g \in \mathcal{R}$, by using Theorem 3.1, T has a fixed point in X.

Corollary 3.5. Let (X, d) be a complete metric space, $\beta: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ be a mapping and $T: X \rightarrow C B(X)$ a β-admissible, β-convergent and satisfying AV. Assume that there exists $(\theta, F) \in \Delta$ such that

$$
\theta(d(x, y))+F(\beta(T x, T y) H(T x, T y)) \leq F(d(x, y)+L D(y, T x))
$$

for all $x, y \in X$, with $\beta(T x, T y) H(T x, T y) \neq 0$, and $L \geq 0$. Suppose that there exist $A \subseteq X$ and $x_{0} \in A$ such that $\beta\left(A, T x_{0}\right) \geq 1$. Then T has a fixed point.

Proof. Define $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{1}+L x_{3}$. Then $g \in \mathcal{R}$, by using Theorem 3.1, T has a fixed point in X.

In below we explain a generalization of Theorem 3.2 of [10].
Corollary 3.6. Let (X, d) be a complete metric space, $\beta: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ be a mapping and $T: X \rightarrow C B(X)$ a β-admissible, β-convergent and satisfying $A V$. Assume that,

$$
\beta(T x, T y) H(T x, T y) \leq \alpha(d(x, y)) d(x, y)
$$

for all $x, y \in X$, with $\beta(T x, T y) H(T x, T y) \neq 0$ where $\alpha:(0, \infty) \rightarrow(0,1)$ is a function such that $\limsup \operatorname{sit}_{s \rightarrow t^{+}} \alpha(s)<1$ for all $t \in[0, \infty)$. Suppose that there exist $A \subseteq X$ and $x_{0} \in A$ such that $\beta\left(A, T x_{0}\right) \geq 1$. Then T has a fixed point.

Proof. Let $F(x)=\ln (x)$ and $\theta(x)=-\ln (\alpha(x))$ for each $x \in(0, \infty)$, and $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=$ x_{1} then $(\theta, F) \in \Delta$ and $g \in \mathcal{R}$. Hence by using Theorem 3.1, T has a fixed point in X.
Example 3.1. Let $X=\left\{\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}, \ldots\right\} \cup\{0,1\}, d(x, y)=|x-y|$, for all $x, y \in X$. Let $T: X \rightarrow C B(X)$ defined by

$$
T x= \begin{cases}\left\{\frac{1}{2^{n}}\right\} & \text { if } x=\frac{1}{2^{n}}, n=1,2,3, \ldots \tag{8}\\ \{0\} & \text { if } x=0 \\ \left\{1, \frac{1}{2}\right\} & \text { if } x=1\end{cases}
$$

Put $x=1, y=\frac{1}{2}$. Then, we have

$$
H\left(T 1, T \frac{1}{2}\right)=\frac{1}{2}=d\left(1, \frac{1}{2}\right)+L D\left(\frac{1}{2},\left\{1, \frac{1}{2}\right\}\right)
$$

Then for all $F \in \mathcal{F}$ and $\tau>0$, we have

$$
\tau+F\left(T 1, T \frac{1}{2}\right)>F\left(d\left(1, \frac{1}{2}\right)+L D\left(\frac{1}{2},\left\{1, \frac{1}{2}\right\}\right)\right)
$$

Therefore, Theorem 2.2 in [2] which is the main result of [2], is not applicable to this example. Now, we define $\beta: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ by

$$
\beta(A, B)= \begin{cases}2 & \text { if } A, B \subseteq\left\{\frac{1}{2^{n}}: n \in \mathbb{N}\right\} \tag{9}\\ 0 & \text { otherwise }\end{cases}
$$

Clearly, if $\beta(T x, T y) H(T x, T y)>0$ for each $x \neq y$, and $T x, T y \subseteq\left\{\frac{1}{2^{n}}: n \in \mathbb{N}\right\}$. Then it is easy to see that

$$
\frac{\beta(T x, T y) H(T x, T y)}{d(x, y)+7 D(y, T x)} \leq e^{-1}
$$

Then

$$
1+\ln (\beta(T x, T y) H(T x, T y)) \leq \ln (d(x, y)+7 D(y, T x))
$$

Therefore by Corollary 3.5, T has a fixed point in X. Note that 0 and 1 are fixed points of T.

In 2008, Suzuki introduced a new type of mappings and a generalization of the Banach contraction principle in which the completeness can be also characterized by the existence of fixed points of these mappings [9]. We give our last result about fixed point of β generalized Suzuki type (θ, F) multivalued contractions. Our result also extend main result of [1].

Theorem 3.2. Let (X, d) be a complete metric space, $\beta: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ be a mapping and $T: X \rightarrow C B(X)$ a β-admissible, β-convergent and satisfying $A V$. Assume that there exists $(\theta, F) \in \Delta$ such that $\frac{1}{2} D(x, T x) \leq d(x, y)$ implies
$\theta(d(x, y))+F(\beta(T x, T y) H(T x, T y)) \leq F(g(d(x, y), D(x, T x), D(y, T y), D(x, T y), D(y, T x)))$,
for all $x, y \in X$, with $\beta(T x, T y) H(T x, T y) \neq 0$, where $g \in \mathcal{R}$. Suppose that there exist $A \subseteq X$ and $x_{0} \in A$ such that $\beta\left(A, T x_{0}\right) \geq 1$. Then T has a fixed point.

Proof. Let $A \subseteq X$ and $x_{0} \in A$ such that $\beta\left(A, T x_{0}\right) \geq 1$. Since T is AV, we can choose a sequence $\left\{x_{n}\right\}$ such that $x_{n+1} \in T x_{n}$ and $d\left(x_{n}, x_{n+1}\right)=D\left(x_{n}, T x_{n}\right)$ for all $n \geq 0$. Since T is β-admissible and $\beta\left(A, T x_{0}\right) \geq 1$, it is easy to see that $\beta\left(T x_{n-1}, T x_{n}\right) \geq 1$ for all $n \geq 1$. Since $\frac{1}{2} D\left(x_{n-1}, T x_{n-1}\right) \leq d\left(x_{n-1}, x_{n}\right)$ and

$$
\begin{align*}
F\left(d\left(x_{n}, x_{n+1}\right)\right) & =F\left(D\left(x_{n}, T x_{n}\right)\right) \leq F\left(H\left(T x_{n-1}, T x_{n}\right)\right) \\
& \leq F\left(\beta\left(T x_{n-1}, T x_{n}\right) H\left(T x_{n-1}, T x_{n}\right)\right), \tag{11}
\end{align*}
$$

for all $n \in \mathbb{N}$. From (10) and (11), we have

$$
\begin{align*}
& \theta\left(d\left(x_{n-1}, x_{n}\right)\right)+F\left(d\left(x_{n}, x_{n+1}\right)\right) \\
& \leq \theta\left(d\left(x_{n-1}, x_{n}\right)\right)+F\left(\beta\left(T x_{n-1}, T x_{n}\right) H\left(T x_{n-1}, T x_{n}\right)\right) \\
& \leq F\left(g\left(d\left(x_{n-1}, x_{n}\right), D\left(x_{n-1}, T x_{n-1}\right), D\left(x_{n}, T x_{n}\right), D\left(x_{n-1}, T x_{n}\right), D\left(x_{n}, T x_{n-1}\right)\right)\right) \\
& \leq F\left(g\left(d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n+1}\right), d\left(x_{n}, x_{n}\right)\right)\right) \\
& \leq F\left(g\left(d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right), 0\right)\right) \tag{12}
\end{align*}
$$

for each $n \in \mathbb{N}$. This implies that

$$
d\left(x_{n}, x_{n+1}\right)<g\left(d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right), 0\right)
$$

for each $n \in \mathbb{N}$. Now we claim that $d\left(x_{n+1}, x_{n}\right)<d\left(x_{n}, x_{n-1}\right)$, otherwise if there exist $n \in \mathbb{N}$ such that $d\left(x_{n}, x_{n-1}\right) \leq d\left(x_{n+1}, x_{n}\right)$, then we have

$$
\begin{aligned}
d\left(x_{n}, x_{n+1}\right) & <g\left(d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), 0\right) \\
& =d\left(x_{n}, x_{n+1}\right) g(1,1,1,2,0)=d\left(x_{n}, x_{n+1}\right),(\text { by using Definition 2.3) }
\end{aligned}
$$

which is a contradiction. Therefore $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is a strictly decreasing sequence, then by using (12) we have

$$
\begin{align*}
& \theta\left(d\left(x_{n-1}, x_{n}\right)\right)+F\left(d\left(x_{n}, x_{n+1}\right)\right) \\
& \left.\leq F\left(g\left(d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), 2 d\left(x_{n-1}, x_{n}\right), 0\right)\right)\right) \\
& =F\left(d\left(x_{n-1}, x_{n}\right) g(1,1,1,2,0)\right)=F\left(d\left(x_{n-1}, x_{n}\right)\right), \tag{13}
\end{align*}
$$

for each $n \in \mathbb{N}$.
Thus

$$
\theta\left(d\left(x_{n-1}, x_{n}\right)\right) \leq F\left(d\left(x_{n-1}, x_{n}\right)\right)-F\left(d\left(x_{n}, x_{n+1}\right)\right) .
$$

Now, by a similar argument of Theorem 3.1 we deduce that $x_{n} \rightarrow x \in X$. We claim that either $\frac{1}{2} D\left(x_{n}, T x_{n}\right) \leq d\left(x_{n}, x\right)$ or $\frac{1}{2} D\left(x_{n+1}, T x_{n+1}\right) \leq d\left(x_{n+1}, x\right)$ for all $n \in \mathbb{N}$. If $\frac{1}{2} D\left(x_{n}, T x_{n}\right)>d\left(x_{n}, x\right)$ and $\frac{1}{2} D\left(x_{n+1}, T x_{n+1}\right)>d\left(x_{n+1}, x\right)$ for some $n \geq 1$, then

$$
\begin{aligned}
d\left(x_{n+1}, x_{n}\right) & \leq d\left(x_{n+1}, x\right)+d\left(x_{n}, x\right) \\
& <\frac{1}{2} D\left(x_{n+1}, T x_{n+1}\right)+\frac{1}{2} D\left(x_{n}, T x_{n}\right) \\
& \leq \frac{1}{2} d\left(x_{n+1}, x_{n+2}\right)+\frac{1}{2} D\left(x_{n}, x_{n+1}\right) \\
& \leq \frac{1}{2} d\left(x_{n}, x_{n+1}\right)+\frac{1}{2} D\left(x_{n}, x_{n+1}\right) \\
& =d\left(x_{n+1}, x_{n}\right),
\end{aligned}
$$

which is a contradiction. Thus either

$$
\begin{aligned}
\theta\left(d\left(x_{n}, x\right)\right) & +F\left(\beta\left(T x_{n}, T x\right) H\left(T x_{n}, T x\right)\right) \\
& \leq F\left(g\left(d\left(x_{n}, x\right), D(x, T x), D\left(x_{n}, T x_{n}\right), D\left(x_{n}, T x\right), D\left(x, T x_{n}\right)\right)\right)
\end{aligned}
$$

or

$$
\begin{aligned}
\theta\left(d\left(x_{n+1}, x\right)\right) & +F\left(\beta\left(T x_{n+1}, T x\right) H\left(T x_{n+1}, T x\right)\right) \\
& \leq F\left(g\left(d\left(x_{n+1}, x\right), D(x, T x), D\left(x_{n+1}, T x_{n+1}\right), D\left(x_{n+1}, T x\right), D\left(x, T x_{n+1}\right)\right)\right) .
\end{aligned}
$$

Since T is β-convergent, in the first case we obtain

$$
\begin{aligned}
F\left(D\left(x_{n+1}, T x\right)\right) & \leq F\left(H\left(T x_{n}, T x\right)\right) \\
& \leq F\left(\beta\left(T x_{n}, T x\right) H\left(T x_{n}, T x\right)\right) \\
& \leq \theta\left(d\left(x_{n}, x\right)\right)+F\left(\beta\left(T x_{n}, T x\right) H\left(T x_{n}, T x\right)\right) \\
& \leq F\left(g\left(d\left(x_{n}, x\right), D(x, T x), D\left(x_{n}, T x_{n}\right), D\left(x_{n}, T x\right), D\left(x, T x_{n}\right)\right)\right) \\
& \leq F\left(g\left(d\left(x_{n}, x\right), D(x, T x), D\left(x_{n}, x_{n+1}\right), D\left(x_{n}, T x\right), D\left(x, x_{n+1}\right)\right)\right) .
\end{aligned}
$$

Thus we have

$$
D\left(x_{n+1}, T x\right)<g\left(d\left(x_{n}, x\right), D(x, T x), D\left(x_{n}, x_{n+1}\right), D\left(x_{n}, T x\right), D\left(x, x_{n+1}\right)\right)
$$

Now if $x \in T x$, then proof is complete, otherwise, letting $n \rightarrow \infty$ in the previous inequality, we get

$$
\begin{aligned}
D(x, T x) & <g(0,0, D(x, T x), D(x, T x), 0) \\
& =D(x, T x) g(0,0,1,1,0) \\
& <D(x, T x) g(1,1,1,2,0) \\
& =D(x, T x)
\end{aligned}
$$

which is a contradiction. Hence $x \in T x$ and proof is complete.
Since T is β-convergent, in the second case we obtain by a similar argument that x is a fixed point and so the proof is complete.

Example 3.2. Let $X=[0, \infty)$ and $d(x, y)=|x-y|$, for all $x, y \in X$. We defined $T: X \rightarrow C B(X)$ by

$$
T x= \begin{cases}{\left[0, \frac{1}{4} e^{-r} x\right]} & \text { if } x \in[0,1] \\ \{4 x\} & \text { if } x \in(1, \infty)\end{cases}
$$

for $r \geq 0$, and $\beta: 2^{X} \times 2^{X} \rightarrow[0, \infty)$ by

$$
\beta(A, B)= \begin{cases}2 & \text { if } A, B \subseteq[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Then β satisfy conditions in Theorem (3.2). We will show that T satisfy the condition (10) for any $x, y \in[0,1]$ with $\frac{1}{2} D(x, T x) \leq d(x, y)$. Let $x, y \in[0,1]$ and without loss of generality we suppose that $x \leq y$. Then we have $\frac{1}{2} D(x, T x)=\frac{1}{2}\left(x-\frac{1}{4} e^{-r} x\right)$. Hence for $\frac{1}{2} D(x, T x) \leq d(x, y)$, we must have $\left(\frac{3}{2}-\frac{1}{8} e^{-r}\right) x \leq y$. Then it is easy to see that

$$
\beta(T x, T y) H(T x, T y)=\frac{1}{2} e^{-r} d(x, y) \leq e^{-r} d(x, y)
$$

Therefore

$$
r+\ln (\beta(T x, T y) H(T x, T y)) \leq \ln (d(x, y))
$$

Now, let $F(t)=\ln (t)$ and $g\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=x_{1}$, then by Theorem (3.2), T has a fixed point in X. Note that, $0 \in T 0$ is a fixed point of T.

Acknowledgement. The author would like to thank the editor and the referees for their valuable comments and suggestions which improved greatly the quality of this paper.

References

[1] Alemraninejad, S. M. A., Rezapour, Sh. and Shahzad, N., (2011), On fixed point generalizations of Suzuki's method, Appl. Math. Letter 24, 1037-1040.
[2] Altun, I., Durmaz, G., Minak, G. and Romaguera, S., (2016), Multivalued Almost F-contractions on Complete Metric Spaces, Filomat, 30, 2441-448.
[3] Amini-Harandi, A., (2012) Fixed and coupled fixed points of a new type set-valued contractive mappings in complete metric spaces, Fixed Point Theory and Appl. 2012:215.
[4] Banach, S., (1922), Sur les opérations dans les ensemble abstraits et leur application aux équations intégrales, Fund. Mat. 3, 133-181.
[5] Hong, S. H., (2010), Fixed points o fmultivalued operators in ordered metric spaces with applications, Nonlinear Anal. 72, 3929-3942.
[6] Miadaragh, M. A., pitea A., and Rezapour, Sh., (2015), Some approximate fixed point results for proximinal valued β-contractive multifunctions, Bull. Iranian Math. Soc. 41, 1161-1172.
[7] Nadler S. N., (1969), Multi-valued contraction mappings, Pacific J. Math. 30, 475-488.
[8] Sgroi, M., Vetro, C., (2013), Multi-valued F-contractions and the solution of certain functional and integral equations, Filomat, 27, 1259-1268.
[9] Suzuki, T., (2008), A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136, 1861-1869.
[10] Tiammee, J., Suantai, S., (2014), Fixed point theorems for monotone multi-valued mappings in partially ordered metric spaces, Fixed Point Theory and Appl. 2014:110.
[11] Wardowski, D., (2012), Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Appl. 2012:94.

Esmaeil Nazari for the photography and short autobiography, see TWMS J. App. and Eng. Math. V.12, N.2.

[^0]: ${ }^{1}$ Department of Mathematics, Tafresh University, Tafresh, Iran. e-mail: nazari.esmaeil@gmail.com; ORCID: https://orcid.org/0000-0002-7452-550x.
 § Manuscript received: September 11, 2020; accepted: January 17, 2021. TWMS Journal of Applied and Engineering Mathematics, Vol.13, No. 1 © Işık University, Department of Mathematics, 2023; all rights reserved.

