
TWMS J. App. and Eng. Math. V.13, N.1, 2023, pp. 46-52

CERTAIN SUBCLASSES OF ANALYTIC FUNCTION BY SǍLǍGEAN

q-DIFFERENTIAL OPERATOR

DILEEP L.1∗, DIVYA RASHMI S. V.1, §

Abstract. The theory of q-analysis has many applications in various sub-fields of math-
ematics and quantum physics. In the present article, we define the class Tn(α, λ; q) using
the Sǎlǎgean q-differential operator. For functions belonging to this class we obtain co-
efficient estimates, extreme points and integral preserving properties .
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1. Introduction

The class of all analytic univalent functions denoted by A is of the form

f(z) = z +
∞∑
m=2

amz
m (1)

defined in the unit disc U = {z : |z| < 1}.
Let T denote the subclass of A in U, consisting of analytic functions whose non-zero
coefficients from the second onwards are negative. That is, an analytic function f ∈ T if
it has a Taylor expansion of the form

f(z) = z −
∞∑
m=2

amz
m (am ≥ 0) (2)

which are univalent in the open disc U.
For functions f ∈ A of the form ( 1), Govindaraj and S Sivasubramanian [2] introduced
the following operator Snq which is called as Sǎlǎgean q-differential operator.

S0
q f(z) = f(z), S1

q f(z) = z∂qf(z), · · · , Snq f(z) = z∂q(Sn−1
q f(z)).

A simple calculation implies

Snq f(z) = f(z) ∗Gq,n(z),
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of Mathematics, 2023; all rights reserved.

46



DILEEP L. AND DIVYA RASHMI S. V.: SǍLǍGEAN Q-DIFFERENTIAL OPERATOR 47

where

Gq,n(z) = z +

∞∑
m=2

[m]nq z
m, (n ∈ N),

where [m]q =
1− qm

1− q
.

The power series of Snq f(z) for functions f ∈ A of the form ( 1), is given by

Snq f(z) = z +
∞∑
m=2

[m]nq amz
m. (3)

Note that

lim
q→1−

Gq,n(z) = z +
∞∑
m=2

mnzm

and

lim
q→1−

Snq f(z) = f(z) ∗

(
z +

∞∑
m=2

mnzm

)
which is the familiar Sǎlǎgean derivative [5].

Now we define the following subclass of T by using Sǎlǎgean q-differential operator.
Let Tn(α, λ; q) be the subclass of T consisting of functions which satisfy the

conditions

<
{

z(Snq f)′

λz(Snq f)′ + (1− λ)Snq f

}
> α, (4)

for some α, λ (0 ≤ α, λ < 1) and n ∈ N0.
If q → 1, we get the class studied by Dileep L and Latha S [1]. For different parametric
values of n and q → 1 we get the classes studied by Mostafa [3].

2. Main Results

Theorem 2.1. A function f defined by (1.2) is in the class Tn(α, λ; q) if and only if
∞∑
m=2

[m]nq am[m− α+ αλ− αλm] < 1− α, (5)

where α, λ (0 ≤ α, λ < 1) and n ∈ N0.

Proof. Suppose f ∈ Tn(α, λ; q). Then

<
{

z(Snq f)′

λz(Snq f)′ + (1− λ)Snq f

}
> α,

<


z −

∞∑
m=2

m[m]nq amz
m

λ

[
z −

∞∑
m=2

[m]nqmamz
m

]
+ (1− λ)

[
z −

∞∑
m=2

[m]nq amz
m

]
 > α.

<


z −

∞∑
m=2

m[m]nq amz
m

z −
∞∑
m=2

[m]nq amz
m [λ(m− 1) + 1]

 > α.
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Letting z → 1, then we get,

1−
∞∑
m=2

[m]nq amm > α

{
1−

∞∑
m=2

[m]nq am [λ(m− 1) + 1]

}
∞∑
m=2

[m]nq amm− α
∞∑
m=2

[m]nq am [λ(m− 1) + 1] < (1− α)

∞∑
m=2

[m]nq am [m− αλm+ αλ− α] < (1− α).

Conversely, assume that ( 5) be true. We have to show that ( 4) is satisfied or equivalently∣∣∣∣{ z(Snq f)′

λz(Snq f)′ + (1− λ)Snq f

}
− 1

∣∣∣∣ < 1− α.

But ∣∣∣∣∣∣∣∣∣∣


z −

∞∑
m=2

m[m]nq amz
m

z −
∞∑
m=2

[m]nq amz
m [λ(m− 1) + 1]

− 1

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

∞∑
m=2

[m]nq am(m− 1)(λ− 1)zm

z −
∞∑
m=2

[m]nq am[λ(m− 1) + 1]zm

∣∣∣∣∣∣∣∣∣∣
≤

∞∑
m=2

[m]nq am(m− 1)(λ− 1)|zm|

|z| −
∞∑
m=2

[m]nq am[λ(m− 1) + 1]|zm|

≤

∞∑
m=2

[m]nq am(m− 1)(λ− 1)

1−
∞∑
m=2

[m]nq am[λ(m− 1) + 1]

.

The last expression is bounded above by 1− α if
∞∑
m=2

[m]nq am(m− 1)(λ− 1) ≤ (1− α)

(
1−

∞∑
m=2

[m]nq am[λ(m− 1) + 1]

)
,

or
∞∑
m=2

[m]nq am[m− α+ αλ− αλm] < 1− α,

which is true by hypothesis. This completes the assertion of Theorem 2.1.
�

Corollary 2.1. If f ∈ Tn(α, λ; q) then

|am| ≤
1− α

[m]nq [m− αλm+ αλ− α]
.
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Theorem 2.2. Let 0 ≤ α < 1, 0 ≤ λ1 ≤ λ2 < 1, n ∈ N0, then
Tn(α, λ2; q) ⊂ Tn(α, λ1; q).

Proof. From Theorem 2.1,

∞∑
m=2

[m]nq [m− αλ2m+ αλ2 − α] am

≤
∞∑
m=2

[m]nq [m− αλ1m+ αλ1 − α] am

≤ (1− α).

For f(z) ∈ Tn(α, λ2; q). Hence f(z) ∈ Tn(α, λ1; q). �

Theorem 2.3. Let f(z) ∈ Tn(α, λ; q). Define f1(z) = z and

fm(z) = z +
1− α

[m]nq [m− αλm+ αλ− α]
zm, m = 2, 3, · · · ,

for some α, λ (0 ≤ λ < 1), n ∈ N0 and z ∈ U. Then f ∈ Tn(α, λ; q) if and only if f can

be expressed as f(z) =

∞∑
m=1

µmfm(z) where µm ≥ 0 and

∞∑
m=1

µm = 1.

Proof. If f(z) =

∞∑
m=1

µmfm(z) with

∞∑
m=1

µm = 1, µm ≥ 0, then

∞∑
m=2

[m]nq [m− αλm+ αλ− α]µm

[m]nq [m− αλm+ αλ− α]
(1− α)

=

∞∑
m=2

µm(1− α) = (1− µ1)(1− α)

≤ (1− α).

Hence f ∈ Tn(α, λ; q).

Conversely, let f(z) = z −
∞∑
m=2

amz
m ∈ Tn(α, λ; q), define

µm =
[m]nq [m− αλm+ αλ− α] |am|

(1− α)
, m = 2, 3, · · · ,

and define µ1 = 1−
∞∑
m=2

µm. From Theorem 2.1,
∞∑
m=2

µm ≤ 1 and so µ1 ≥ 0.

Since µmfm(z) = µmf + amz
m,

∞∑
m=1

µmfm(z) = z −
∞∑
m=2

amz
m = f(z). �

Theorem 2.4. The class Tn(α, λ; q) is closed under convex linear combination.

Proof. Let f, g ∈ Tn(α, λ; q) and let

f(z) = z −
∞∑
m=2

amz
m, g(z) = z −

∞∑
m=2

bmz
m.
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For η such that 0 ≤ η ≤ 1, it suffices to show that the function defined by h(z) =
(1− η)f(z) + ηg(z), z ∈ U belongs to Tn(α, λ; q). Now

h(z) = z −
∞∑
m=2

[(1− η)am + ηbm]zm.

Applying Theorem 2.1, to f, g ∈ Tn(α, λ; q), we have
∞∑
m=2

[m]nq [m− αλm+ αλ− α] [(1− η)am + ηbm]

= (1− η)
∞∑
m=2

[m]nq [m− αλm+ αλ− α] am + η
∞∑
m=2

[m]nq [m− αλm+ αλ− α] bm

≤ (1− η)(1− α) + η(1− α) = (1− α).

This implies that h ∈ Tn(α, λ). �

Corollary 2.2. If f1(z), f2(z) are in Tn(α, λ; q) then the function defined by

g(z) =
1

2
[f1(z) + f2(z)] is also in Tn(α, λ; q).

Theorem 2.5. Let for j = 1, 2, · · · ,m, fj(z) = z −
∞∑
m=2

am,jz
m ∈ Tn(α, λ; q) and

0 < λj < 1 such that
m∑
j=1

λj = 1, then the function F (z) defined by

F (z) =
m∑
j=1

λjfj(z) is also in Tn(α, λ; q).

Proof. For each j ∈ {1, 2, 3, · · · ,m} we obtain
∞∑
m=2

[m]nq [m− αλm+ αλ− α] |am| < (1− α).

Since

F (z) =

m∑
j=1

λj(z −
∞∑
m=2

am,jz
m)

= z −
∞∑
m=2

(

m∑
j=1

λjam,j)z
m.

∞∑
m=2

[m]nq [m− αλm+ αλ− α]

 m∑
j=1

λjam,j


=

m∑
j=1

λj

[ ∞∑
m=2

[m]nq [m− αλm+ αλ− α]

]

<

m∑
j=1

λj(1− α) < (1− α).

Therefore F (z) ∈ Tn(α, λ; q). �

Theorem 2.6. Let f(z) ∈ Tn(α, λ; q). Komato operator of f is defined by

k(z) =

∫ 1

0

(c+ 1)γ

Γ(γ)
tc
(

log
1

t

)γ−1 f(tz)

t
dt,
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c > −1, γ ≥ 0 then k(z) ∈ Tn(α, λ; q).

Proof. We have ∫ 1

0
tc
(

log
1

t

)γ−1

dt =
Γ(γ)

(c+ 1)γ∫ 1

0
tm+c−1

(
log

1

t

)γ−1

dt =
Γ(γ)

(c+ 1)γ
, m = 2, 3, · · · ,

k(z) =
(c+ 1)γ

Γ(γ)

[∫ 1

0
tc
(

log
1

t

)γ−1

zdt−
∞∑
m=2

zm
∫ 1

0
amt

m+c−1

(
log

1

t

)γ−1

dt

]
= z −

∞∑
m=2

(
c+ 1

c+m

)γ
amz

m.

Since f ∈ Tn(α, λ; q) and since

(
c+ 1

c+m

)γ
< 1, we have

∞∑
m=2

[m]nq [m− αλm+ αλ− α]

(
c+ 1

c+m

)γ
am < (1− α).

�

Theorem 2.7. Let f ∈ Tn(α, λ; q), then for every 0 ≤ δ < 1 the function

Hδ(z) = (1− δ)f(z) + δ

∫ z

0

f(t)

t
dt.

Proof. We have Hδ(z) = z −
∞∑
m=2

(
1 +

δ

m
− δ
)
amz

m.

Since

(
1 +

δ

m
− δ
)
< 1, m ≥ 2, so by Theorem 2.1,

∞∑
m=2

(
1 +

δ

m
− δ
)

[m]nq [m− αλm+ αλ− α] am

<
∞∑
m=2

[m]nq [m− αλm+ αλ− α] am

< (1− α).

Therefore Hδ(z) ∈ Tn(α, λ; q). �

3. Conclusions

Here, in our present investigation, we have successfully introduced a new subclass of
analytic functions Tn(α, λ; q) using the Sǎlǎgean q- differential operator. Many proper-
ties and characteristics of this newly-defined function class such as coefficient estimates,
extreme points, integral theorem have been studied.
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