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APPLYING MULTIQUADRIC QUASI-INTERPOLATION TO SOLVE

FOKKER-PLANCK EQUATION

M. RAHIMI1, H. ADIBI1∗, M. AMIRFAKHRIAN1,2, §

Abstract. The Fokker-Planck equation (FPE) arises in various fields in physics, chem-
istry, natural science. It is difficult to obtain analytical solutions, accordingly we resort
to numerical methods. In this study, we present a meshfree method to solve FPE. It
is based on the multiquadric quasi-interpolation (MQQI) operator LW2 and collocation
technique. Here, θ-weighted finite difference scheme is used to discretize the temporal
derivative. Then, the unknown function and its spatial derivatives are approximated by
the multiquadric quasi-interpolation (MQQI) operator LW2 . Furthermore, the stabil-
ity of the technique is investigated. This method is applied to some examples and the
numerical results have been compared with the exact solutions and results of another
method.

Keywords: Fokker-Planck equation, multiquadric quasi-interpolation, θ-weighted finite
difference method, collocation method, meshless method.
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1. Introduction

The Fokker-Planck equation (FPE) is a partial differential equation is derived from the
Stochastic Differential Equation (SDE) With the help of Itô calculus. FPE is used in a
wide variety of physics, biology and chemistry such as solid-state physics, circuit theory
and theoretical biology [9, 22].

This differential equation is mainly applicable in probability density. For some applica-
tion of this equation, we refer the interested reader to [15, 16, 32].

Fokker and Planck utilized the FPE to investigate the Browninan motion of particles
[22]. The general representation of the FPE for the variable x is given [5, 22, 24]:

∂u

∂t
=

[
− ∂

∂x
A(x) +

∂2

∂x2
B(x)

]
u, (x ∈ [a, b], t > 0), (1)
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with initial and boundary conditions:

u(x, 0) = f(x), u(a, t) = ga(t), u(b, t) = gb(t) (2)

where f(x), ga(t) and gb(t) are all known functions. In Eq. (1), B(x) > 0 is called the
diffusion coefficient and A(x) is the drift coefficient. These coefficients could be in terms
of x and t, i.e.:

∂u

∂t
=
[
− ∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)

]
u. (3)

The Eq. (3) describes the motion of the concentration field u, which is a linear parabolic
partial differential equation. This is exactly a diffusion equation which also involves first
order derivative with respect to x. This equation is also known as forward Kolmogorov
equation.

It is notable that the backward Kolmogorov equation is as follows [22, 24]:

∂u

∂t
= −

[
A(x, t)

∂

∂x
+B(x, t)

∂2

∂x2

]
u. (4)

The most general form of Eq. (1) appears as:

∂u

∂t
=
[
−

J∑
i=1

∂

∂xi
Ai(x) +

J∑
j,i=1

∂2

∂xi∂xj
Bi,j(x)

]
u, (5)

u(x, 0) = f(x),
(
x = (x1, x2, . . . , xJ) ∈ RJ

)
, (6)

which involves J variables. Note that the non-linear form of the FPE, is as follows:

∂u

∂t
=
[
− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)

]
u. (7)

This equation has significant applications in biophysics, plasma, surface physics, neuro-
science, nonlinear hydrodynamics, marketing and psychology [22, 24]. Various numerical
methods for solving FPEs have been proposed. In [18] a fast algorithm with high accuracy
has been proposed. Reif and Barakat [21] used Chebyshev technique for solving 1-D time
independent FPE. However, the numerical methods for solving FPEs are mainly Finite
difference method (FDM) for 2D-case [33], Variational iteration method (VIM) [7], mov-
ing Finite element method (FEM) [11], Homotopy perturbation method (HPM) [13] and
Adomian decomposition method [24]. The Radial basis function (RBF) method was first
studied by Hardy [10], which reveals excellent interpolant, especifically for scattered data
in high dimensions. Various applications of RBF method have been extensively investi-
gated in [6, 8, 28, 29]. Also, RBF techniques have been studied by Ballestra and Pacelli
[3].
Unfortunately, these meshless methods require solving an ill-conditioned linear system
[1, 27]. So modified meshless schemes have been developed.

Beaston and Powell proposed three types of univariate MQQIs known as LA,LB and
LC [4]. Wu and Schaback [30], presented the MQQI operator LD. Jiang et al. [14]
have recently presented a new multi-level univariate MQQI method based upon inverse
multiquadric (IMQ) radial basis functions and LD operator, namely as LW and LW2 . Also,
researchers in [12, 19, 31] proposed meshless technique for solving PDEs by employing
MQQI, without needing to solve large linear systems.

In this paper we present a numerical meshless method based on MQQI operaor LW2

to approximate the solution of the FPE by using collocation method and employ the
θ-weighted finite difference method to estimate the temporal derivative.
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The layout of this paper is as follows. In Section 2, we describe the MQ quasi-
interpolation scheme. In Section 3, the method is applied on the Fokker–Planck equation.
The stability analysis of the method is investigated in Section 4. In Section 5, numerical
examples are tested to verify the effect of the proposed method. Finally, a brief conclusion
is presented in Section 6.

2. The MQQI scheme

Considering the partition:

a = x0 < x1 < · · · < xn = b, h = max
16i6n

(xi − xi−1), (8)

on Ω = [a, b], the univariate real funtion f usually takes the following quasi-interpolation
form:

L(f) =

n∑
i=0

f(xi)Ψi(x), (xi ∈ [a, b]), (9)

where each function Ψi(x) is a multi-quadric radial basis funtion [10], defined by:

Ψi(x) =
(
c2 + (x− xi)2

) 1
2 , (10)

and c > 0 is a shape parameter. The MQQI operator LD is introduced by Wu and
Schaback as [30].

LD[f(x)] =
n∑

i=0

f(xi)Φ̃i(x), (11)

where

Φ̃0(x) =
1

2

[
1 +

Ψ1(x)− (x− x0)

(x1 − x0)

]
,

Φ̃1(x) =
1

2

[Ψ2(x)−Ψ1(x)

(x2 − x1)
− Ψ1(x)− (x− x0)

(x1 − x0)

]
,

Φ̃i(x) =
1

2

[Ψi+1(x)−Ψi(x)

(xi+1 − xi)
− Ψi(x)−Ψi−1(x)

(xi − xi−1)

]
, (2 6 i 6 n− 2),

Φ̃n−1(x) =
1

2

[(xn − x)−Ψn−1(x)

(xn − xn−1)
− Ψn−1(x)−Ψn−2(x)

(xn−1 − xn−2)

]
,

Φ̃n(x) =
1

2

[
1 +

Ψn−1(x)− (xn − x)

(xn − xn−1)

]
. (12)

Now, we choose a smaller set {xki}Ni=1 from the given points {xi}ni=0, where N is a positive
integer satisfying N < n and 0 = k0 < k1 < . . . < kN+1 = n. Utilizing IMQ-RBF, the
RBF interpolation of Sf ′′ can be represented by:

Sf ′′(x) =

N∑
j=1

λjϕ̃j(x), (13)

where

ϕ̃j(x) =
p2(

p2 + (x− xkj )2
) 3

2

, (14)
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with the shape parameter p ∈ R+. The coefficients {λj}Nj=1 are uniquely determined by
the interpolation condition.

Sf ′′(xki) =

N∑
j=1

λjϕ̃j(xki) = f ′′(xki), (1 6 i 6 N). (15)

Due to the solvability of (15), [17], we get:

λ = A−1
X · F

′′
X , (16)

where X = {xk1 , xk2 , . . . , xkN }, λ = {λ1, λ2, . . . , λN}T , AX =
[
ϕ̃j(xki)

]
and

F
′′
X =

[
f ′′(xk1), f ′′(xk2), . . . , f ′′(xkN )

]T
.

Now, by using relation (16), an error function e(x) is introduced by:

e(x) = f(x)−
N∑
i=1

λi

√
p2 + (x− xki)2. (17)

If so, the operator LW2 by utilizing LD operator in relation (11) and (12) on {
(
xi, e(xi)

)
}ni=0

is defined by [23],

LW2f(x) =
N∑
j=1

λj

√
p2 + (x− xkj )2 + LDe(x), (18)

in which the constants c and p as shape parameters are not the same as in relation (18).
Now, in relation (15), f ′′(xki) can be replaced by [20]

f ′′(xki) =
δ2
x

h2
2(1 + 12δ2

x)
f(xki), (19)

with h2 = b−a
N , where δ2

xf(xki) = f(xki+1
)− 2f(xki) + f(xki−1

).
Which yields:

N∑
j=1

λjϕ̃j(xki) =
δ2
x

h2
2(1 + 12δ2

x)
f(xki), (1 6 i 6 N). (20)

As a result, the coefficients {λj}Nj=1 are determined uniquely via the linear system:

λ = A∗−1
X · F ′′X , (21)

where A∗X =
[
(1 + 12δ2

x)ϕ̃j(xki)
]
. The accuracy and properties of LW and LW2 , have

been discussed in [14]. Now, we use MQQI operator LW2 and equally spaced points. The
compact form of operator LW2 can be represented as [23]:

LW2f(x) =
n∑

i=0

f(xi)Ψ̂i(x). (22)

3. The numerical method

Now, we use MQQI operator LW2 to solve (1) numerically. Here, θ-weighted method
along with collocation scheme are employed for approximating the temporal derivative.
Consider the equation

∂u

∂t
=
[
− ∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)

]
u, (x ∈ [a, b], t > 0), (23)
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with initial and boundary conditions:

u(x, 0) = f(x), u(a, t) = ga(t), u(b, t) = gb(t). (24)

To solve (23), we descretize the problem by virtue of the following θ-weighted scheme,

um+1 − um
∆t

+ θ
[ ∂
∂x

(Au)− ∂2

∂x2
(Bu)

]m+1
+ (1− θ)

[ ∂
∂x

(Au)− ∂2

∂x2
(Bu)

]m
= 0, (25)

where um = u(x, tm), tm = m∆t and θ ∈ [0, 1].
After some algebraic manipulations, the following time discretized form of linear FPE

yields:

um+1 + θ∆t
[∂Am

∂x
um+1 +

∂um+1

∂x
Am − ∂2Bm

∂x2
um+1 − 2

∂Bm

∂x

∂um+1

∂x
−Bm∂

2um+1

∂x2

]
= um + (θ − 1)∆t

[∂Am

∂x
um +

∂um

∂x
Am − ∂2Bm

∂x2
um − 2

∂Bm

∂x

∂um

∂x
−Bm∂

2um

∂x2

]
, (26)

where Am = A(x, tm) and Bm = B(x, tm).
Now, we choose the nodes xi, i = 0, 1, 2, . . . , n that xi, i = 1, 2, . . . , n − 1 are interior

and x0, xn are boundary points in [a, b] and approximate um+1 using (22), by:

um+1(x) = u(x, tm+1) '
n∑

j=0

um+1
j Ψ̂j(x), um+1

x (x) = ux(x, tm+1) '
n∑

j=0

um+1
j Ψ̌j(x),

um+1
xx (x) = uxx(x, tm+1) '

n∑
j=0

um+1
j Ψj(x). (27)

By substituting (27) into (26) and (24), and applying collocations we deduce:

n∑
j=0

um+1
j Ψ̂j(xi) + θ∆t

[∂Am

∂x
(xi)

n∑
j=0

um+1
j Ψ̂j(xi) +Am(xi)

n∑
j=0

um+1
j Ψ̌j(xi)

− ∂2Bm

∂x2
(xi)

n∑
j=0

um+1
j Ψ̂j(xi)− 2

∂Bm

∂x
(xi)

n∑
j=0

umj Ψ̌j(xi)−Bm(xi)

n∑
j=0

um+1
j Ψj(xi)

]
= um(xi) + (θ − 1)∆t

[∂Am

∂x
(xi)u

m(xi) +
∂um

∂x
(xi)A

m(xi)−
∂2Bm

∂x2
(xi)u

m(xi)

− 2
∂Bm

∂x
(xi)

∂um

∂x
(xi)−Bm(xi)

∂2u

∂x2
(xi)

]
. (28)

Also, by using boundary conditions and boundary nodes x0, xn, we have:

n∑
j=0

um+1
j Ψ̂j(x0) = ga(tm+1), (29)

n∑
j=0

um+1
j Ψ̂j(xn) = gb(t

m+1). (30)

Eqs. (28), (29) and (30) form a system of n+1 linear equations with n+1 unknown um+1
i .

These equations can be represented in matrix form and symbol ∗ stands for component
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by component multiplication:

AdU
m+1 + θ∆t

[
Am

2 ∗ (AdU
m+1) +Am

1 ∗ (EUm+1)−Bm
3 ∗ (AdU

m+1)− 2Bm
2 ∗ (EUm+1)

−Bm
1 ∗ (FUm+1)

]
+AbU

m+1 = Um + (θ − 1)∆t
[
Am

2 U
m +Am

1 U
m
1 −Bm

3 U
m

− 2Bm
2 U

m
1 −Bm

1 U
m
2

]
+Gm+1, (31)

wherein

Am
2 =

[
0,
∂Am

∂x
(x1), . . . ,

∂Am

∂x
(xn−1), 0

]T
, Am

1 =
[
0, Am(x1), . . . , Am(xn−1), 0

]T
,

Bm
3 =

[
0,
∂2Bm

∂x2
(x1), . . . ,

∂2Bm

∂x2
(xn−1), 0

]T
, Bm

2 =
[
0,
∂Bm

∂x
(x1), . . . ,

∂Bm

∂x
(xn−1), 0

]
,

Bm
1 =

[
0, Bm(x1), . . . , Bm(xn−1), 0

]T
,

Ab =


ψ̂00 ψ̂10 · · · ψ̂n0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

ψ̂0n ψ̂1n · · · ψ̂nn

 , Ad =


0 0 · · · 0

ψ̂01 ψ̂11 · · · ψ̂n1
...

...
. . .

...

ψ̂0(n−1) ψ̂1(n−1) · · · ψ̂n(n−1)

0 0 · · · 0

 ,

E =


0 0 · · · 0
ψ̌01 ψ̌11 · · · ψ̌n1

...
...

. . .
...

ψ̌0(n−1) ψ̌1(n−1) · · · ψ̌n(n−1)

0 0 · · · 0

 , F =


0 0 · · · 0

ψ01 ψ11 · · · ψn1
...

...
. . .

...

ψ0(n−1) ψ1(n−1) · · · ψn(n−1)

0 0 · · · 0

 ,

Um+1 =


um+1

0

um+1
1
...

um+1
n

 , Um
1 =

[∂um
∂x

(x0), . . . ,
∂um

∂x
(xn)

]T
, Um

2 =
[∂2um

∂x2
(x0), . . . ,

∂2um

∂x2
(xn)

]T
.

[
Ad +Ab + θ∆t

(
Am

2 ∗Ad +Am
1 ∗ E −Bm

3 ∗Ad − 2Bm
2 ∗ E −Bm

1 ∗ F
)]
Um+1

=
[
I + (θ − 1)∆t

(
Am

2 −Bm
3

)]
Um + (θ − 1)∆t

(
Am

1 U
m
1 − 2Bm

2 U
m
1 −Bm

1 U
m
2

)
+Gm+1,

(32)

wherein

M = Am
2 ∗Ad +Am

1 ∗ E −Bm
3 ∗Ad − 2Bm

2 ∗ E −Bm
1 ∗ F,

Ã = Ab +Ad, Q = Ã+ θ∆tM, R̃ = Am
2 −Bm

3 , (33)

K = (θ − 1)∆t(Am
1 U

m
1 − 2Bm

2 U
m
1 −Bm

1 U
m
2 ) +Gm+1,

R = I + (θ − 1)∆tR̃, QUm+1 = RUm +K,

and

Um+1 = Q−1RUm +Q−1K, (34)
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from (27) we have,

Um = ÃUm,

so

Um+1 = Q−1RÃ−1Um +Q−1K, (35)

Um+1 = ÃQ−1RÃ−1Um + ÃQ−1K. (36)

Despite, the validity of the method for any θ ∈ [0, 1], we take θ = 1
2 , as considered in

Crank-Nicholson scheme.

4. Stability analysis

In order to show the stability, we obtain the amplification matrix first [25, 26]. Let U

and Ũ be the difference and numerical solutions, respectively and εm+1 = Um+1 − Ũm+1

the error vector of Eq. (1), which can be written as

εm+1 = ÃQ−1RÃ−1εm, (37)

QÃ−1εm+1 = RÃ−1εm, (38)

(I + θ∆tMÃ−1)εm+1 = (Ã−1 + (θ − 1)∆tR̃Ã−1)εm, (39)

and

T = MÃ−1, S = R̃Ã−1,

so, we have:

(I + θ∆tT )εm+1 = (Ã−1 + (θ − 1)∆tS)εm, (40)

then

εm+1 = (I + θ∆tT )−1(Ã−1 + (θ − 1)∆tS)εm, (41)

where

Ẽ = (I + θ∆tT )−1(Ã−1 + (θ − 1)∆tS). (42)

For stability issue, it is necessary that εm → 0 as m → ∞, i.e. ρ(Ẽ) 6 1, where ρ(Ẽ)
stands for spectral radius.

The stability condition is satisfied if∣∣∣∣ηÃ−1 + (θ − 1)∆tηS

1 + θ∆tηT

∣∣∣∣ 6 1, (43)

if θ = 1
2 we have: ∣∣∣∣∣ηÃ−1 − ∆t

2 ηS

1 + ∆t
2 ηT

∣∣∣∣∣ 6 1, (44)

where ηÃ−1 , ηS and ηT are the eigenvalues of the matrices Ã−1, S and T , respectively.
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5. Numerical examples

In this section, we present some numerical examples to show the robustness and accuracy
of the presented method. The obtained results are compared to analytical results as well
as the results in [2]. The L2 and L∞ error norms which are defined by:

L2 = ‖um − ũm‖2 =
(

∆x

n∑
j=0

|um(xj)− ũm(xj)|2
) 1

2
,

L∞ = ‖um − ũm‖∞ = max
06j6n

|um(xj)− ũm(xj)|,

are used to measure the accuracy of our scheme where um(xj) and ũm(xj) represent
the analytical and obtained numerical solutions, respectively at node j. For the sake of
simplification, we set:

xj = a+
j(b− a)

n
, j = 0, 1, . . . , n.

In all examples we use a = 0, b = 1, c = 10−9, p = 2c, n = 10, n = 2N , ∆t = 0.1,
∆x = 0.1, θ = 1

2 .
The computations have been performed in Maple 17 on a PC with a CPU of 2.2 GHz.

Example 5.1. Consider the FPE (1) with A(x) = −1, B(x) = 1 and u(x, 0) = x, which
has the exact solution u(x, t) = x + t. The L∞ and L2 errors are listed in Table 1, at
different times and our obtained results are compared with [2]. It is observed from Table
1 that the proposed method has better accuracy than [2]. Moreover, we use ∆t = 0.1 but
in [2], ∆t = 0.01 was used. The spatial rate of convergence with ∆t = 0.1 and different
values of n for t = 0.3 are presented in Table 2. It can be seen from Table 2 that the
convergence rate increases with the smaller spatial step size and the error norms increase
slightly by increasing n. The graphs of top view of maximum error and absolute error over
the space time with a color bar are shown in Figure 1. We also plot the graphs of absolute
error and the estimated and analytical function at t = 1, 4, 10 in Figure 2.

Table 1. The comparisons of the L∞, L2 errors of the presented method
with the results of [2] at different times of Example 5.1.

t
MQQI method of [2]

L∞ L2 L∞ L2

1 1.90e-18 8.538e-19 1.900e-12 1.444e-12
2 3.00e-18 1.370e-18 2.900e-12 2.384e-12
3 4.10e-18 2.058e-18 3.900e-12 3.329e-12
5 6.40e-18 3.287e-18 5.899e-12 5.224e-12
7 8.60e-18 4.150e-18 7.899e-12 7.119e-12
10 1.19e-17 5.870e-18 1.090e-12 9.964e-12

Table 2. The spatial rate of convergence at t = 0.3 with ∆t = 0.1 of
Example 5.1

n L∞ Order L2 Order
10 1.12e-18 — 5.35e-19 —
20 2.5e-18 1.15 1.44e-18 1.43
30 2.38e-17 5.55 1.57e-17 5.90
40 5.43e-18 5.13 2.55e-18 6.33
50 3.11e-17 7.83 2.41e-17 10.07
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Figure 1. Top view of the 3D plot of maximum error (a) and absolute
error (b) of Example 5.1
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(b)

Figure 2. Absolute error (a) and exact and numerical solutions (b) at
t=1,4,10 with ∆t = 0.1 and n = 10 of Example 5.1

Example 5.2. Consider the backward Kolmogorov (4) as follows:

∂

∂t
u(x, t) = −

[
A(x, t)

∂

∂x
+B(x, t)

∂2

∂x2

]
u(x, t),

with A(x, t) = −(x+ 1), B(x, t) = x2et and u(x, 0) = x+ 1, which has the exact solution
u(x, t) = (x + 1)et. The L∞ and L2 errors are listed in Table 3, at different times, and
compared with the results in [2]. It is observable that the present method is more accurate
in comparison with [2]. In [2], ∆t = 0.01 was used, whereas in MQQI method ∆t = 0.1 is
used. Table 4 presents spatial rate of convergence obtained using our scheme with ∆t = 0.1
and different values of n for t = 0.3. It can be concluded from Table 4 that the convergence
rate decreases with the smaller spatial step size. The graphs of top view of maximum error
and absolute error over the space time with a color bar are shown in Figure 3. We also
plot the graphs of absolute error and the estimated and analytical function at t = 1, 4, 10
in Figure 4.



M. RAHIMI, H. ADIBI, M. AMIRFAKHRIAN: APPLYING MULTIQUADRIC ... 161

Table 3. The comparisons of the L∞, L2 errors of the presented method
with the results of [2] at different times of Example 5.2.

t
MQQI method of [2]

L∞ L2 L∞ L2

1 2.292e-16 1.610e-16 4.421e-10 2.825e-10
2 2.903e-16 1.973e-16 5.511e-10 3.109e-10
3 3.410e-16 2.497e-16 4.032e-9 2.830e-9
5 4.900e-16 3.241e-16 4.984e-8 2.912e-8
7 4.500e-15 2.967e-15 4.019e-7 2.829e-7
10 8.100e-14 5.799e-14 4.967e-6 2.913e-6

Table 4. The spatial rate of convergence at t = 0.3 with ∆t = 0.1 of
Example 5.2.

n L∞ Order L2 Order
10 6.48e-11 — 4.68e-11 —
20 1.66e-10 1.36 1.19e-10 1.35
30 2.82e-10 1.30 2.02e-10 1.30
40 4.08e-10 1.28 2.92e-10 1.27
50 5.42e-10 1.26 3.87e-10 1.25
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Figure 3. Top view of the 3D plot of maximum error (a) and absolute
error (b) of Example 5.2
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Figure 4. Absolute error (a) and exact and numerical solutions (b) at
t=1,4,10 with ∆t = 0.1 and n = 10 of Example 5.2

Example 5.3. Consider the Eq. (7) with A = 7
2u, B = xu and u(x, 0) = x, which has

the exact solution u(x, t) = x
t+1 . The L∞ and L2 errors are listed in Table 5, at different
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times, and compared with the results in [2]. The graph of maximum error is ploted in
Figure 5 and The graphs of top view of maximum error and absolute error are shown in
Figure 6. In [2], time step ∆t = 0.01 was used, whereas in MQQI method ∆t = 0.1 is
used.

Table 5. The comparisons of the L∞, L2 errors of the presented method
with the results of [2] at different times of Example 5.3.

t
MQQI method of [2]

L∞ L2 L∞ L2

1 2.521e-10 1.856e-10 4.500e-13 2.669e-13
2 2.990e-10 2.201e-10 6.007e-11 2.852e-11
3 3.154e-10 2.322e-10 2.250e-13 1.335e-13
5 3.271e-10 2.408e-10 5.997e-11 2.384e-11
7 3.312e-10 2.438e-10 1.125e-13 6.674e-14
10 3.336e-10 2.456e-10 4.955e-12 2.881e-12
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Figure 5. Maximum error of Example 5.3

t
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Maximum error

0

1

2

3

4

5

6

×10−10

x

(a)

t
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Absolute error

0

1

2

3

4

5

6

×10−10

x

(b)

Figure 6. Top view of the 3D plot of maximum error (a) and absolute
error (b) of Example 5.3
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6. Conclusion

We have presented a numerical scheme based on high accuracy multiquadric quasi-
interpolation scheme for solving the FPE. θ-weighted finite difference scheme is employed
for discretization the temporal derivative and then the solution of the Eq. (3) is approxi-
mated using multiquadric quasi-interpolation operator LW2 .
During the calculation, it is obvious that our scheme is simple and easy to implement.
The efficiency and accuracy of the proposed method have been demonstrated through the
three examples. Also, the tables show that this scheme performs better than the method
of [2]. Moreover, we have used a bigger time step ∆t, in comparison with the method
of [2]. The univariate multiquadric quasi-interpolation scheme is only used to solve one
dimensional FPEs. In future, we will focus on the higher dimensions of FPEs.
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