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SOME NEW EXISTENCE RESULTS FOR BOUNDARY VALUE
PROBLEMS INVOLVING ¢-CAPUTO FRACTIONAL DERIVATIVE

H. AFSHARI'™, M. S. ABDO?, M. N. SAHLAN!, §

ABSTRACT. This paper concerns the boundary value problem for a fractional differential
equation involving a generalized Caputo fractional derivative in b—metric spaces. The
used fractional operator is given by the kernel k(t,s) = ¥(t) — ¢ (s) and the derivative
operator ﬁm%A Some existence results are obtained based on fixed point theorem of
a-¢p—Graghty contraction type mapping. In the end, we provide some illustrative exam-
ples to justify the acquired results.
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1. INTRODUCTION

Fractional calculus has been studied extensively due to its practical applications in
science and engineering. A comprehensive study about fractional differential equation
and its applications is provided in [25]. Recently numerous interesting results concerning
the existence, uniqueness and stability of the solution or the positive solution of some
fractional differential equations are given applying some FP results. However most of
these problems have been handled with respect to the standard derivatives of Riemann—
Liouville (RL), Caputo and Hadamard [1, 12, 15, 16, 20, 21, 24, 23].

Almeida et al. in 2017 introduced a generalization of Caputo by some interesting
properties [13, 14]. Some articles that present studies about the theory and analysis of
¢—fractional differential equations can be found in [2, 3, 4, 27, 28] and references therein.

In [5, 6, 7, 8,9, 10, 11], Afshari and coauthors introduced the notion of generalized
a—¢—Geraghty multivalued mappings and their applications in complete b—metric spaces
(b— MSs).
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Following the work of Aydi and Almeida, in this paper, by utilizing FP results of a—
¢—Geraghty contraction type mappings, we present new results on the fractional BVPs
involving a 1)—Caputo fractional derivative operator in complete (b — M Ss). We denote
J =10,1] and ”if and only if” with ”iff”.

Definition 1.1. [22] Let v > 0 and @ be an increasing function, having a continuous
derivative ' on (a,b). The left-sided 1»— RL fractional integral of a function ¢ with respect
to v expressed as

160 = e [ VO (o)~ v (o), >
provided that Igf’ is exists. Note that when ¢ (0) = o, we obtain the known classical RL

fractional integral.

Definition 1.2. [22, 25| Let v > 0, n be the smallest integer greater than or equal to ~y
and ¢ € LP[a,b], p > 1 let ¢ € C™[a,b] an increasing function such that ¥'(0) # 0, for all
0 € [a,b]. The left-sided 1»—RL fractional derivative of ¢ of order « is given by

Do) = () T elo)

Definition 1.3. [13, 14] Let n — 1 < v < n, ¢ € C"[a,b], and let ¢ € C"[a,b] an in-
creasing function such that 1'(9) # 0, for all ¢ € [a,b]. The left-sided 1»— Caputo fractional
derivative of ¢ of order « is given by

“DE(e) = LY Do),
where D™V .= (W ) , and n = [y] + 1.
We consider BVP:

{ ~CDj"¢(e) = f(0,¢(0), 0€ T, (1)
¢'(0) =0, w“DF¢(1) + ((n) =

where 1 < v < 2, ¥ € C*(J), ¥'(0) >0, CDg’w is the y-Caputo fractional derivative
of order 0, 0 € {y,y—1}, 0<n<1, w>0and f:J x R" = R is a continuous.
We consider:

—“ Djc(0) = (o), a<o<b (2)
¢'(0) =0, @“DFIC(b) +(9) =

where 1 <y <2, w>0,a<§<b, and ¢ € C([a,b)).

Lemma 1.1. [18] ¢ € C([a,b]) is a solution to (2) if and only if

L/QQ, §)ds, a < o< b,

where G given by:

G(0.<) = @ + Hj(s) — Hy(s), (3)
and for o € [a,b], H, : [a,b] = R defined as:

(e=9)*~!
Hs(c)={ T » @Ss=sesb
0, a<p<c¢<b
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Lemma 1.2. [18] The function G satisfies the following:
(1) G is continuous on [a,b] X [a,b].
(ii) We have

a—1
max{G(p,s):a < 0,s <b} =w+ (0 F(ny))
and
_ a—1
min{G(o,<) :a < 0,¢ < b} = w — (bl“(?)
Lemma 1.3. [17] ¢ € C?(J) is a solution to (1) if and only if w € C?([a,b]) is a solution
to:
—“DYw(s) = fFW (<), w(s)), a<s<b. (4)

W'(a) =0, @¥DY tw(b) + w(d) =0,

a

where a = (0), b=(1), 6 =9(n), and w = ((P7(<)), $(0) < < < P(1).

Definition 1.4. [19] Let M # @ and s > 1. A mapping d: M x M — R{ is said to be a
b-metric if

(bM1) d(o,<) =0 iff < = o;

(bM3) d(o,<) = d(s, 0);

(bM3) d(e,z) < s[d(o,<) +d(s, 2)].

Let ® be set of all increasing and continuous functions ¢ : RT — RT satisfying the
property: ¢(co) < cop(p) < co for ¢ > 1 and ¢(0) = 0. We denote by F the family of all
nondecreasing functions p : Rt — [0, S%) for some s > 1.

Definition 1.5. [8] Let (M,d) be ab—MS (with constant s > 1) and A : M — M, we say
that A is a generalized o—¢— Geraghty contraction whenever there exist o : M x M — R
such that

a(0,6)p(s’d(Ae, As)) < p(d(d(,5)))d(d(e,5)),
for o,¢ € M, where p € F and ¢ € P.

Definition 1.6. [26] Let M # O, A : M — M and o« : M x M — [0,00). A is
a—admissible if for o, € M, we have

a(p,s) > 1= a(Ap,As) > 1. (5)

Theorem 1.1. [8] Take (M,d) a complete b — MS and A : M — M is a generalized
a—¢p— Geraghty contraction, also

(1) A is a—admissible;

(49) 3 00 € M; (g0, Aoo) > 1;

(#i1) If {on} € M with 0, — 0 and a(on, On+1) > 1, then a(on, 0) > 1.

Then A has a FP.

Let M = C([a,b],R) (0 <a<b<oo)andletd: M x M — [a,00) be given by
d(¢,9) =[| (¢ = 0)? lloo= sup(¢ (o) — V(0))*.

0eJ

Then, (M,d) is a complete b — M S with s = 2.
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Theorem 1.2. Suppose that there exist functions 7 : R? = R and f : J x R — R such
that

(7)
[F7H ), w(s)) = F (<), 2(c))]

T gt VAT € O Tl €~ 97 T

where ¢ € @, p € F and w(o) = C(w’l(g)) and Z( ) ﬁ(w’l(g)).

(17) there exists (o € C(J) such that ( fo (¥1(s), wo(s))ds) >0, foro € T
where wo(e) = Go(¥~"(0));

(t3t) for o€ J and ,9 € C(T), 7(¢(0),9(0)) > 0 implies

(/ G(o. <) f(™Y( d<,/ G(o.9)f(v(s), (c))d<> >0,

where w(o) = (¥~ (0)) and z(0) = I(¥~"(0));

() if {Cn} is a sequence in C(J) such that ¢, — ¢ in C(J) and 7(¢p,Cnt1) = 0, then
we have 7(¢p,¢) > 0.

Then, the problem (1) has at minimum one solution.

Proof. By Lemmas 1 3and 1.1, ¢ € C%(J) is a solution of (1) if and only if it’s a solution

of ¢(0) = J, G ’1(<)7 (s ))d<, where w(o) = ((¥ (o)) for o € J. Define, O :
02(j) — CQ(J) by OC fo ) f(¥71(s), w(s))ds. Now, we show a FP of the
operator O. Let (,0 € CQ(j) be Such that 7(¢(0),9(0)) > 0 . Using (i), we get
2
0(0) / Glo.5)(F(¥ ), wls)) — F((6), =(s)))ds
1 2
< [ 6009176719 w(6) ~ £, (<Dl
: r'(y) ’
< || 90955 mrirt s VAT € I (ol €~ 0 T
1

ol (¢ —v)? H Yu(@(l (€ = 9)? [loo))-
Therefore for ¢,9 € C*(J) with 7(¢(0),9(0)) > 0, we have

I (Ou— 09)? ||oo< écb(ll ¢ =9 I3 ¢ =9 [15))-
Put, a: C*(J) x C*(J) — R* by
a(C,9) :{ 1 7(¢(0).9(0)) 20, 0€J,

0 else.
This implies that for ¢, € C?(J) with 7(¢(e),9(0)) > 0,
a(¢,9)8d(0¢, 09) < 8d(0¢, 09) < ¢(u(d(¢,9)))p(d((,9)), e F.
From (iii),
a(C, ) = 1= 7(¢(e),¥(e) =2 0= 7(0((),0(9)) = 0 = a(0((),0(9)) = 1,

for ¢,9 € C%(J). Thus, O is a—admissible. By (ii), 3 ¢y € C*(J); oy, 0) > 1. By
Theorem 1.1, we realize w* with {* = O(*. g
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Example 1.1. Let us consider the fractional BVP:
C et
= Dgi ((o) = f(e:¢(0), 0€J, (6)
1
¢(0) =0, =D ¢(1) + ¢ =0, 0<n <1, >0

By Lemma 1.3 ¢ € C%(J) is a solution to (6) if and only if w € C?%([a, b)) is a solution to
the following problem

_c D1+w( )= f(s,w(s), 1<¢<e, (7)
w'(1) =0, QCDﬁw( )+w(Ee) =0, 0<n<1.

Setting 7(0,2) = 0z, Cul0) =
following condition true:

3 + ORI ¢(0) = 0, plo) = 17, and also assuming that the

3vm (e+3)(¥(e) — ¥(0))
32v2  (¥(1) —(0))°

|f(0,¢(0)) — f(o,9(0))| <

we have;

(e, ¢(0)) = f(e,¥(0))| < Volll (¢ =92 lloo) (oIl (€ = 9)? [loo))-

1 INE))
2V2wl(3) + (6 — 1)
If so(0) = o, then

1
T(<0(Q)’/O G(o,s)f( (<), w(s)))ds > 0.
for o€ J, also,
7(s(0), 2(0)) = <s(0)z(0) > 0 implies that

1
([ 900507 o, [ 60,9070 vl 2 0

by (1.2), (6) has at minimum one solution.

Now, we discuss the fractional differential equation of the form

~CDYY¢(0) = f(t.C(s >>, geJ
¢'(0) =0, ¢(0)+C(1) = fy G( ds.

where 1 < v <2, 0< 9 <1, Dgf is the generalized fractional derivative of order - in the
sense of Caputo introduced by Almeida in [13], and f,¢g:J x R — R.

(8)

Lemma 1.4. Let 1 <y <2,0< ¢ <1, and (,r : J — R are continuous functions. Then
the function ((o) € C(J) is a solution of the following problem

~ODg(0) = (o), ec J o)
(o) =0, ¢(0)+we(1) = fhr(
if and only if ¢ € C(J) is a solution of
R A Hy(o) 1 [
i | s+ g2 8L [ o (10)
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Y
Qz(@x){ Hff(( i
Ry (1;¢

Here Hy(0) := [¢(0) — ¥(0)], Rz(é% ) := [¥(0) — ()7L, and Go(o,<) is called Green
function of BVP (9).

Lemma 1.5. For v € (1,2), Ga satisfies the following:

where

Hy (o) v
(1)R"/)(17§)7 0 S S S Q S ]-a (11)

Hy,
S), 0<p<s¢<l

\_/fb

N

(i): Ga(o,5) is continuous on J x J.
(ii): Ga(0,5) >0, for o,s € (0,1).
(iii): We have

max{Ga(0,¢) : 0 < 0,6 < 1} = Go(1,5),

and

1 Hy(<)
2Hy (1)
Theorem 1.3. Suppose that there exist functions 7 : R? — R and f : J x R — R such

that
(i) 3 peF and ¢ € ® such that

min{Ga(0,5): 0 < o,¢ <1} =

Ga(1,).

\f(g«(g))—f(g,ﬁ(g))rsl;f}w T a0 € — 97 1))
and
9(0:¢(0)) ~ 60900 < YL /3T €0 Toal (6 (€~ 0 o)

(i1 fo ' (6)Ga2(1,¢)ds < 1,
(131) there exists (y € C(j) with

1 1
(a0, [ v arc o+ 485 [ o) o
foroe J,

(iv) for o € J and (,9 € C(T), 7(¢(0),9(0 )) > 0 implies

(/w Ga(0,$) 15, ¢(6) w/g

/w )G2(0,9) (<, 0(c) d+§f§/g )

(v) if {Cn} € C(T) with Gu — ¢ in C(T) and 7(Cn, Gry1) = 0, then 7(Cn, €) = 0.

Forthwith, (8) has at minimum one solution.

Proof. By Lemma 1.4, ( € C(J) is a solution of (8 ) iff a solution of;

1 1
0 = 577 || (080016 cleds +
Define the operator O : C(J) — C(J) by O1((e ) C

w/ggc Vs, o€ J.
o).
01¢(0) /w )Ga(0,9)£(5,C(6) Ez(f w/ G(s, C(s))ds, o€ J.
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We find a FP of O;. Now, let (,9 € C(J) be such that 7(¢(g),¥(g)) > 0. By using (i),
we get

0610~ 0wl = |5 [ ¥t 6:¢(6D) - 00N

2

1
Eﬁfi 1&@ /0 (G(5,€(<)) — G(s, 9(s)))ds
<[ / (9)Ga(0,9) 1 £ (6, C(6)) — F(s, 9(<)] de

2
0<g<1 Hw / GG, (g))\dg]

< [w /0 ¢'<g>g2<1,<>mw¢<u (€= 9 Joo)nu(b (I € — D) loo))dls

1 2
L S e |oo>>]

2
< |5v5 VAT €= TP (el € = P 1)
= 001 (€ =92 o)l € = 9 1))

Therefore ,
| (01¢ — 019)? ||0o< gqb(ll C=0 12 ¢ =9 %)
Put, a: C(J) x C(J) — RT by
a(C, V) = { L 7(¢(0),9(0) 20, 0€J,

0 else.

Implies that,

From (iii),

a(C, V) = 1=17(C(e), (o)
= 7(01(¢), 01(9))
= a(01(¢), 01(¥)) =

for ¢,9 € C(J). Thus, Oy is a—admissible. From (iii), 3 {y € C(J); a({o,01¢o) > 1. By

(v) and 1.3, we realize ¢* with (* = F'(*, that is a solution of (8). O
Example 1.2. Presume the ¥-Caputo fractional integral BVP:
3 e
{ D0 = 0t0), ocr 12)
€(0) =0, £0)+9E() = [y G(s.£(<))ds,

where v = % P(o) = %, 0<y<1. Also f satzsﬁes the followmg condition;

r'(2) ’ (
F(e.(0) = Flo.9(0))| < 48\2/§(Q+3>\l €07 - e
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and
Y 2 H(g_ﬁ)QHw
9(0.€0) - Gl 90| < 120 +3) | €~ 07| |
Then;
) H(f_ﬁ) Hoo
£(0.6)~ flo.)] < 8j§<e+3>J<fﬂ>2Hoo [iaG—or]_
re) |6 -7
< v | e
G Je o7
Bt LA N rewrrar

We set ¢(0) = 0, (0) =0 and p(t) = ﬁ. Then

1f(e:€) = f(e, V)] < Z%}\/Qﬁ(ll (€ =9)? lloo) (o (Il (€ = )? [lo0)),

Also,

9(t,€) — 9(t,9)| < \/¢ 1€ =) Tlao)u(o (Il (€ = 0)2 ).
Hence,
/0 0L e < 1.
Case 1: if 0<¢<p<1,
Ga(1,6) = 2R (1,5) = 2[(1) — ()] ~" = 2[e7 — €]z,

Then,

2 Lo sq1 4 /1 3
w $)Ga2(1,¢)d =3 esles —es|2ds = 3 (63 —1) ~ 0.3 < 1.
0

Case 2: if 0 < p<¢<1,

Ga(1,6) = R}(1,6) = [$(1) —9(s)]7 ™" = [e3 — €5]2.
Then,

3

1 1 L
/0 ' (6)(s)Ga(1,¢)ds = ;/0 eiles —ed)2ds = ; (63 — 1) ~ 0.2 < 1.

Hence, suppositions of Theorem 1.3 hold. So, (12) has a solution on J.

253
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2. CONCLUSION

This paper, intend to examine some BVPs for a nonlinear fractional differential equation
involving a general form of Caputo fractional derivative operator with respect to new
function ¥ in b — M Ss. The obtained results in this article are more general and cover
many of the parallel problems that contain special cases of function , because our proposed
method contains investigating of the existence of solutions for some BVPs with the global
fractional derivative that extends many BVP with classic fractional derivatives.
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