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SPACE-TIME FRACTIONAL HEAT EQUATION’S SOLUTIONS WITH
FRACTIONAL INNER PRODUCT

S. CETINKAYA'™, A. DEMIR', §

ABSTRACT. The main goal in this study is to determine the analytic solution of one-
dimensional initial boundary value problem including sequential space-time fractional
differential equation with boundary conditions in Neumann sense. The solution of the
space-time fractional diffusion problem is accomplished in series form by employing the
separation of variables method. To obtain coefficients in the Fourier series is utilized a
fractional inner product. The obtained results are supported by an illustrative example.
Moreover, it is observed that the implementation of the method is straightforward and
smooth.
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1. INTRODUCTION

As partial differential equations (PDEs) of fractional order play an essential role in mod-
eling numerous processes and systems in various scientific research areas such as applied
mathematics, physics chemistry, etc., the interest in this topic has become enormous. Since
the fractional derivative is non-local, the model with a fractional derivative for physical
problems turns out to be the best choice to analyze the behaviour of the complex non-
linear processes [1, 20, 21, 22, 25, 14, 16]. That is why this has attracted an increasing
number of researchers. The derivatives in the sense of the Liouville-Caputo is one of the
most common since modeling of physical processes with fractional differential equations,
including the Liouville-Caputo derivative, is much better than other models. This result
is supported by various researches [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Especially there
are various studies on fractional diffusion equations: Exact analytical solutions of heat
equations are obtained by using operational method [27]. The existence, uniqueness, and
regularity of the solution of the impulsive sub-diffusion equation are established utilizing
eigenfunction expansion [19]. The anomalous diffusion models with non-singular power-
law kernel have been investigated, and constructed [26]. Moreover, the Liouville-Caputo
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derivative of constant is zero, which is not held by many fractional derivatives. The so-
lutions of fractional PDEs and ordinary differential equations (ODEs) are determined in
terms of the Mittag-Leffler function. The diffusion problem, including fractional derivative
in the Liouville-Caputo sense, has been studied by Sevindir, and Demir [18]. This study
can be regarded as an extension of it.

2. PRELIMINARY RESULTS

In this part are given some basic descriptions and accomplished results of fractional
derivative in the Liouville-Caputo sense.

Definition 2.1. ¢*" order of the Liouville-Caputo fractional derivative of u(t) is defined
as:3

D% (t) = ! )/t(t—s)"_q_lu(")(s)ds,te[to,to—l—T], (1)

I'(n—aq)J;
where n —1 < ¢ < n and u™ (t) = ng—i‘. If q is an integer, then the Liouville-Caputo
fractional derivative becomes the integer-order derivative.

Definition 2.2. ¢*" order of the Liouville-Caputo fractional derivative of u(t) is defined
as

1 t —q 1
= F(l_Q)/tO (t—s) Tu'(s)ds, t € [to, to + T1, (2)

where 0 < ¢ < 1.

Definition 2.3. The Mittag-Leffier function with the parameters a and [ is given as
follows [24, 15]:

[e.e]

(A (t = to)®
E (t—1t9)") = 0,A € R. 3
a8 (A (t = to) Z_(:)Fak% a,f>0,\¢€ (3)
Ifto =0, = B = q, then we get
2 (AP
Eqq (A7) :ZF aQ>O- (4)
=0

Moreover, substituting ¢ = 1, in the equation (4) we have Ej; (M) = e*. If the reader
wants more information, they should refer to [17, 23]. The following functions are used to
obtain the solution of the problem discussed in this study.

e B i) — By (—ipt?) S (—1)F (o)™
sing (ut?) = 1 2 1 _kZ:OF((Qk‘-i—UQ‘f’l) (5)
and
o Ban (i) + By (—ipt?) S (=1 (ut)™
cosq (ut?) = 2 - z:: m (6)

o

0
When ¢ = 1, equations (5) and (6) are sin (pt) and cos (ut) respectively.
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2.1. Inner Product. For0 < 8 <1, p € R, let V = span{sing (u(ﬁ)ﬂ),cosga (M(ﬁ)ﬂ)}

be the vector space in consideration. This vector space is made up of all linear combina-
tions of functions sing (u(ﬁ)%,cow (u(ﬁ)% defined on J = [a,b]. As a result, the
X

linear transformation T': V' — span{sin ( £= ), cos (2% )} turn out to be onto and one-to-

one. Hence its inverse transformation 7! exists. The inner product < e, @ >: VxV — R
is defined as

<u(@;f), v(w;8)>=T" (/ Tu (x; B) T (z; B) dw> b ; (7)
where Tu (x; 8) = u(z;1) and T (x; 5) = v(z; 1) [18].
The sequential space-time fractional problem discussed in this study is as follows:
D (z,t) = +2D%Pu(x,t), (8)
u(z,0) = flz) (9)
DPu(0,t) = DPu(l,t) =0, (10)

where 0 < a <1, 1<28<2,0<z<,0<t<T,veR.

3. MAIN RESULTS

The generalized solution of the problem (8)-(10) is formed in an analytical form through
the separation of variables method as follows:

u(z,t;o, B) = X(x;8) Tt o, B), (11)

where 0 < x <[,0<t<T.
The functions X and T depend on orders of fractional derivatives with respect to x and
t. Plugging (11) into (8) and adjusting it, we get

Df (T(t0.8) _ ,D¥ (X (a:5)

T (t;a,pB) X ()

With boundary condition (10) and the fractional differential equation acquired from Equa-
tion (12), the following problem is obtained:

— —X%(8). (12)

D (X (;8)) + A (B) X (;8) = 0, (13)
DX (0;8) = DyX (I, 8) = 0. (14)

The solution of problem (13)-(14) is accomplished as follows:
X (23 8) = Ega(ra”). (15)
Therefore, the characteristic equation for equation (13) is calculated in the following form:
r? + 2\ (B) = 0. (16)

Case 1: If A(B) = 0, then the characteristic equation have coincident solutions rj 9 = 0,
then the solution of (13)-(14) becomes

2B
X(an) = klﬁ"‘kQ,
DX (x;8) = %Df:ﬂﬁ + DPky = ]Emtﬁ—ﬁ _ klf(ﬁgrl)
- klm =k (,3) .

B
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By utilizing equation (14), we obtain
DEX(0)=kT(B)=0=k =0. (17)

Hence the solution becomes

X (z;8) = ka. (18)
Likewise, from the last boundary condition, we get
DEX(l) = kT (B) =0= k; =0, (19)
which implies that
Xo (;8) = ka. (20)
Case 2: If A\(B) # 0, then the characteristic equation have the solutions
12 = FiX (B), (21)

which leads to the general solution of the problem (13)-(14) have the following form:
X (z;8) = c1cosg ()\ (8) x5> + casing(A(B)xP),

DPX (x;:8) = —cA(f) sing ()\ (8) m’B) + coA\(B) cosﬁ(/\(ﬂ)xﬁ).
By utilizing equation (14), we obtain
DPX (0)=0=c\(B) = c2 =0. (22)

Hence the solution becomes
X (xz;8) = cicosg ()\ (8) xﬁ>,
DX (z;8) = —c1)(B)sing <)\ (B) .I’B) .
Similarly last boundary condition leads to
DEX (1) = —e1 A (B) sing (A (8) zﬁ) —0, (23)
which implies that
sing (A (8) zﬁ) ~0. (24)

Let wy, (8) = \/A(B)I®. Therefore, with the help of w, (3), the eigenvalues are obtained
as follows.

A (B) = w§2;ﬂ),0<w1 (8) < ws (B) < ws (B) < ... (25)
X, (2 8) = cp coss (wn (8) (”l”)ﬁ) — cosg (wn (8) (’;)ﬁ)n =1,2,3,... (26)

is the solution of the problem (13)-(14).
The following equation is obtained from the left of (12) for each eigenvalue A, (3):

Dy (T (t;a, B))

242
= —~)\ ) 2
T 0) 1A (B) (27)
The solution for equation (20) is as follows:
2
T, (0, B) = k1 By (7222 (B)1%) = By <—y2w72(ﬁmta> n=1,23,... (28

2

up (x,t; 0, 8) = Eg (_727”72;@#) cosg (wn (8) (?)B)n =1,2,3,... (29)
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is the solution for each )\, (8) and so we get

u(z, b, B) = do + i dy, coss <wn (8) (‘?)ﬁ> Far (72 w?jggf) ta) , (30)

n=1

that satisfies both equation (8) and equation (10).
Equation (7) is used so as to establish the solution which satisfies equation (9). In (30),
replacing ¢ by 0 and utilizing equation (7), we have

w(z,0) = f(z) = do+ idncosfg <wn (8) (‘7)6>

n=1
< £ 00055 (1 (9) (7)) 5= dvcons (e 9)
+ idn < cosg (wn (B) (7)5),0085 <wk (B) <:;>ﬂ) > .

n=1

<coss (12 90 (5) )ocoms (19 (5)) 5= 770 (froos (M55 cos (M55 )|
o (feos (55 )| =anrt (feos (B55)ar)
2 (o) e ()

By utilizing equation (7) we obtain the coefficients d,, for n = 1,2,3,... in the following
form:

=l

4. ILLUSTRATIVE EXAMPLE

We first take into account the following initial boundary value problem in this part:

ug(z,t) = uge(w,t),
ug (0,t) = 0,u, (1,t) =0,
u(z,0) = cos(mx), (31)
where 0 <z < 1,0 <t <T. Solution to the problem (31) is as follows:
u (z,t) = cos (Trzn)e_”Qt. (32)
Now we take into account the following fractional heat-like problem:
D (x,t) = D¥u(x,t), (33)
u(z,0) = cos(mx), (34)

uy (0,t) = wuy(1,t) =0, (35)
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where 0 < a <1, 1<26<2,0<x<1, 0<¢t<T.
By means of (30), the solution of problem (33)-(35) is represented in the following form:

w(z,tic, ) = do + 3 dy coss (wn (8) gcﬂ)Em1 (—w? (8) ). (36)
n=1

Notice that boundary conditions (35) and the fractional equation (33) is satisfied by equa-
tion (36). Equation (7) is used so as to establish the solution which satisfies equation (34).
In (36), replacing t by 0 and utilizing equation (7), we have

u(z,0;a,8) =do + Z dy, cosg (wn (B) xﬁ>. (37)
n=1
By utilizing equation (7), we obtain the coefficients d,, for n = 1,2,3,... in the following
form:
1 xz=l z=1 1 =1
dy=-T7"! </f(x)dx> =71 (/ cos (7m;)d:c> =71 < sin (Wﬂ:)dm)
l =0 =0 m =0
1 =l
= ~sing <w1 (8) xﬁ) = — [sing(wi (8)) = sins(0)] = 0.
=0

=l z=1

_opt < / cos (nx) cos (m))dx)

dy = % 7! </ cos (’T)f@)@) »

Thus d, = 0 for n # 1. For n =1, we get

dy =2 7! ( / cos? (m))da:>

=0

r=1

v=1 x 1
=271 (2 4+ —sin(2
. <2 + gy sin ( mv))

=0

DY EE SRRSO N Y SRy
—o [T+ s ()59 <17 -0 1

Thus
u(z,t; o, B) = cosg <w1 (8) m’B) Eqq (—wi (B)t%). (38)

When a = = 1, solution (38) is the same as solution (32), which verifies the correctness
of the method we implement.

5. CONCLUSION

This research focuses on constructing the one-dimensional exact solution of sequential
space-time fractional diffusion problem in the Liouville-Caputo sense in series form. Tak-
ing the separation of variables into account, the solution is formed in the form of a Fourier
series concerning the eigenfunctions of a corresponding Sturm-Liouville eigenvalue prob-
lem, including fractional derivative in the Liouville-Caputo sense. Because of the solution’s
structure, the inner product is used to ascertain the coefficients effectively. Based on the
analytic solution, we conclude that diffusion processes decay exponentially until the initial
condition is reached. As « tends to 0, the rate of decay increases. This implies that in the
mathematical model for diffusion of the matter, which has low diffusion rate, the value of
«a must be close to 0. This model can account for various diffusion processes of various
methods.
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