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SOME NOVEL SCHEMES BY USING MULTIPLICATIVE CALCULUS

FOR NONLINEAR EQUATIONS

F. A. SHAH1∗, E. UL-HAQ2, M. A. NOOR1, M. WASEEM1

Abstract. In this paper, we suggest and analyze a new family of two-step predictor
corrector type iterative schemes for solving nonlinear equations in the framework of mul-
tiplicative calculus. We also discuss the convergence criteria of these newly developed
iterative methods. Some numerical examples will be given to illustrate the efficiency and
performance of derived methods.
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1. Introduction

Differential and integral calculus were created independently by Sir Isaac Newton and
Gottfried Wilhelm Leibnitz. Differentiation and integration are the basic operation in
calculus and analysis. From 1967 to 1970 Michael Grossman and Robert Katz introduced
the so called Bi-geometric calculus , where they defined a new kind of derivative and inte-
gral, moving the roles of subtraction and addition to division and multiplication, and thus
established a new calculus, called Multiplicative Calculus. The theoretical background of
multiplicative was given by A.E. Bashirov [2,3] . Sometimes, it is called an alternative or
non-Newtonian calculus as well. As multiplicative calculus is the Taylor-made calculus for
growth related problem, that are modeled in science and engineering using the exponen-
tial function. In recent years multiplicative calculus is applying in various fields see detail
[1− 16]. It is more than self-evident to use multiplicative calculus also for numerical ap-
proximations The nonlinear equation f(x) = 0 have important and significant applications
in various field of science. Various techniques have been developed in simple calculus to
solving this problem. In this work, we will develop Householder-type iterative methods for
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solving nonlinear equation in the framework of multiplicative calculus. To construct these
methods we will use auxiliary function, which will help to implement properly the iterative
schemes. At the end of the article, some examples are given to clarify the application of
this work and also to check the performance of these new methods and their comparison
with other existing methods.

Derivation of Multiplicative Iterative Methods

In this section, we describe some basics results in the field of multiplicative calculus.
Using the idea of multiplicative calculus, we construct the iterative schemes for nonlinear
equation in this framework.

Multiplicative derivative.

The function f : D ⊂ R→ R is said to be ∗ differentiable at x or on D if it is positive
and differentiable, respectively, at x or on D, and the multiplicative derivative satisfies
the following limit:

f∗(x) =
d∗f

dx
= lim

h→0

[
f(x+ h)

f(x)

] 1
h

(1)

Using (1), we can calculate the multiplicative derivative of function as:

f∗(x) = e
f ′(x)
f(x) = e(ln of)

′x. (2)

Where (ln of)(x) = ln f(x)

f∗∗(x) = e(ln of
∗)′x = e(ln of)

′′x. (3)

In general, it can be described as:

f∗(n)(x) = e(ln of)
nx, n = 1, 2, 3, ... (4)

Note that in formula (4), the case n = 0, means no multiplicative derivative and it repre-
sents the original function.

Some rules of * differentiation.

Let c be a positive constant, f, g are ∗ differentiation and h is differentiable, then the
following results hold:

(1) (a) (c)∗ = 1,
(b) (cf)∗(x) = f∗(x),
(c) (fg)∗(x) = f∗(x)g∗(x),

(d)
(
f
g

)∗
(x) = f∗(x)

g∗(x) ,

(e) (fh)∗(x) = f∗(x)h.f(x)h
′(x),

(f) (foh)∗(x) = f∗(h(x))h
′(x), where foh is defined

Now, we develop the iterative methods using above results

A function g : D ⊂ R→ R+ be a positive nonlinear function.

g(x) = 1 (5)

We remark that equation (5) is a nonlinear equation in the framework of multiplicative
calculus.
we can use the following multiplicative fixed point relation for (5), we have

eψ(x)e[lng(x)]
pλφ(x) = ex, (6)
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where p ≥ 1 is order of convergence of iteration function ψ(x). φ(x) be an auxiliary
arbitrary function. We consider the following relation

ex = G(x) (7)

By using the multiplicative optimal criteria as d∗G(x)
dx = 1, then we have

eψ
′(x)e[lng(x)]

pλφ′(x)eplng∗(x)[lng(x)]
(p−1)λφ′(x) = 1, (8)

where λ is a parameter which is usually called the Lagrange multiplier. Taking natural
log of (8), we obtain λ as:

λ =
−ψ′(x)

p ln(g∗(x))[ln(g(x))]p−1φ(x) ln(g(x)) + φ′(x) ln(g(x))]
(9)

Taking natural log of (6) and using (9), we can define following new fixed point formulation.

x = ψ(x)− ψ′(x)[ln(g(x))φ(x)]

pφ(x) ln(g∗(x)) + φ′(x) ln(g(x))
(10)

We would like to emphasize the fact that ψ(x) can be selected as a predictor suggesting
the iterative method.
For simplicity, we consider auxiliary function as;

ψ(x) = x− ln(g(x))

ln(g∗(x))
(11)

Then

ψ′(x) =
ln(g(x)) ln(g∗∗(x)

[ln(g∗(x))]2
(12)

By using (11) and (12) in (10), we obtain the following iterative method in the framework
of multiplicative calculus.

Algorithm 2.1. For a given initial value x0, approximate solution xn+1 of g(x) by
the following iterative scheme:

xn+1 = xn −
ln(g(xn))

ln(g∗(xn))
− [ln(g(xn))]2 ln(g∗∗(xn))φ(xn)

[ln(g∗(xn))]2[2φ(xn) ln(g∗(xn)) + φ′(xn) ln(g(xn))]

For different values of the auxiliary function φ(xn), we can obtain several Householder
type iterative methods for solving nonlinear equations. Fotr the implement we consider
have only two cases.
1. Let φ(xn) = eβ(xn) . Then from Algorithm 2.1, we obtain the following iterative method
for solving the nonlinear equation (5).

Algorithm 2.2. For a given initial value x0, approximate solution xn+1 of g(x) by
the following iterative scheme:

xn+1 = xn −
ln(g(xn))

ln(g∗(xn))
− [ln(g(xn))]2 ln(g∗∗(xn))

[ln(g∗(xn))]2[2 ln(g∗(xn)) + β ln(g(xn))]

If β = 0, then Algorithm 2.2 reduces into given Algorithm .

Algorithm 2.3. For a given initial value x0, find the approximate solution xn+1 of
g(x) by the following iterative scheme:

xn+1 = xn −
ln(g(xn))

ln(g∗(xn))
− [ln(g(xn))]2 ln(g∗∗(xn))

2[ln(g∗(xn))]3



726 TWMS J. APP. AND ENG. MATH. V.13, N.2, 2023

2. Let φ(xn) = e
−β

ln(g(xn)) Then from Algorithm 2.1, we obtain the following iterative
method for solving nonlinear equations.

Algorithm 2.4. For a given initial value x0, approximate solution xn+1 of g(x) by
the following iterative scheme:

xn+1 = xn −
ln(g(xn))

ln(g∗(xn))
− [ln(g(xn))]2 ln(g∗∗(xn))

2[ln(g∗(xn))]3 − β ln(g(xn)) ln(g ∗ ∗(xn))

We replace the approximation of second derivative in Algorithms 2.2 and 2.4 by a suitable
substitution involving only the first derivative and obtain predictor-corrector type iterative
methods.
we apply multiplicative Taylor theorem to remove second ∗ derivative, we have

g(y) ≈ (g(x))(g∗(x))(y−x)(g∗∗(x))
(y−x)2

2 (13)

From (13), we have

ln(g(y)) =
1

2

[ln(g(x))]2 ln(g∗∗(x))

[ln(g∗(x))]2
(14)

Using (14) we have the following iterative multiplicative iterative method.

Algorithm 2.5. For a given initial value x0, find the approximate solution xn+1 of
g(x) by the following iterative schemes:

yn = xn −
ln(g(xn))

ln(g∗(xn))

xn+1 = yn −
2 ln(g(yn))

[2 ln(g∗(xn)) + β ln(g(xn))]
, n = 0, 1, 2, ...

Algorithm 2.6. For a given initial value x0, find the approximate solution xn+1 of
g(x) by the following iterative schemes:

yn = xn −
ln(g(xn))

ln(g∗(xn))

xn+1 = yn −
ln(g(xn)) ln(g(yn))

[ln(g∗(xn)) ln(g(xn)) + β ln(g(yn))]
, n = 0, 1, 2, ...

Convergence analysis

In this section, we study the multiplicative convergence criteria of methods developed
in section 2. For study the convergence we use Multiplicative Taylor’s theorem [2].

Theorem 1.1. Consider g : D ⊂ R → R+ be a positive function. Let g be sufficiently ∗
differentiable and differentiable function at all x ∈ D. Assume that there exists a solution
α ∈ [a, b] of nonlinear equation such that g(α) = 1. Then there exists a δ > 0, such that
the iteration scheme defined by Algorithm 2.5 converges to the solution α for any initial
approximation x0 ∈ [α− δ, α+ δ] and its rate of convergence is three.

Proof. Consider the iteration defined by Algorithm 2.5

xn+1 = yn −
2 ln(g(yn))

[2 ln(g∗(xn)) + β ln(g(xn))]
. (15)
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Where

yn = xn −
ln(g(xn))

ln(g∗(xn))
(16)

From (16) by taking xn − α = en, yn − α = e∗n, we have

e∗n − en = − ln(g(xn))

ln(g∗(xn))
. (17)

From (17) we can define

ln[(g∗(xn))e
∗
n−en(g(xn))] = 0, (18)

By applying natural exponential on both sides of (18)

(g∗(xn))e
∗
n−en(g(xn)) = 1, (19)

From (19) we obtain

(g∗(xn))e
∗
n =

(g∗(xn))en

(g(xn))
(20)

We expand g(xn), using the following Taylor’s series for multiplicative calculus:

g(xn) ≈ g(α)(g∗(α))xn−α(g∗∗(α))
(xn−α)2

2! (g∗∗∗(α))
(xn−α)2

3! (21)

Using g(α) = 1 in (21), we have

g(xn) ≈ (g∗(α))en(g∗∗(α))
e2n
2! (g∗∗∗(α))

e3n
3! . (22)

Similarly, by expanding g∗(xn) about α, we have

g ∗ (xn) ≈ g∗(α)(g∗∗(α))en(g∗∗∗(α))
e2n
2! (g∗∗∗∗(α))

e3n
3! . (23)

Using (22) and (23) in (20), we get

[
g∗(α)(g∗∗(α))en(g∗∗∗(α))

e2n
2!

]e∗n
=

[
g∗(α)(g∗∗(α))en(g∗∗∗(α))

e2n
2!

]e∗n
(g∗(α))en(g∗∗(α))

e2n
2! (g∗∗∗(α))

e3n
3!

(24)

From (24) we obtain

e∗n = e2n

ln

[
(g∗∗(α))(

1
2)(g∗∗∗(α))

e2n
3!

]
ln

[
(g∗(α))en(g∗∗(α))en(g∗∗∗(α))

e2n
2!

] (25)

From (25), we have following results

e∗n = Te2n (26)

Where T > 0, is given by

T =

ln

[
(g∗∗(α))(

1
2)(g∗∗∗(α))

e2n
3!

]
ln

[
(g∗(α))en(g∗∗(α))en(g∗∗∗(α))

e2n
2!

]
Now we implies (15)

xn+1 = yn −
2 ln(g(yn))

[2 ln(g∗(xn)) + β ln(g(xn))]
. (27)
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First we expand using multiplicative g(yn) Taylor series as;

g(yn) ≈ g(α)(g∗(α))yn−α(g∗∗(α))
(yn−α)2

2! (g∗∗∗(α))
(yn−α)2

3! (28)

Using g(α) = 1 in (25), we have

g(yn) ≈ (g∗(α))en(g∗∗(α))
e2n
2! (g∗∗∗(α))

e3n
3! . (29)

From (27) by taking xn − α = en, yn − α = e∗n and xn+1 − α = en+1, we have

en+1 − e∗n = − ln(g(y2n)

[ln(g∗(xn))2) + β ln(g(xn))]
, (30)

We can write (30) in the following form;

ln[(g∗(xn))2(g(xn))β)en+1−e∗n(g(yn))2] = 0, (31)

By applying natural exponential on both sides (31), we have

((g∗(xn))2(g(xn))β)en+1−e∗n(g(yn))2 = 1 (32)

Then

((g∗(xn)2)(g(xn))β)en+1 =
((g ∗ (xn))2(g(xn))β)e

∗
n

(g(yn))2
(33)

Using (19), (22),(23) in (30), we get[
(g∗(α))(1+ken)(g∗∗(α))

(
en+

ke2n
2!

)
(g∗∗∗(α))

(
e2n
2!

+
ke3n
3!

)]en+1

(34)

=

[
(g∗(α))(1+ken)(g∗∗(α))

(
en+

ke2n
2!

)
(g∗∗∗(α))

(
e2n
2!

+
ke3n
3!

)]e∗n
(g∗(α))e∗n(g∗∗(α))

(e∗n)2

2! (g∗∗∗(α))
(e∗n)3

3!

Simplifying (34), we can write[
(g∗(α))(1+ken)(g∗∗(α))

(
en+

ke2n
2!

)
(g∗∗∗(α))

(
e2n
2!

+
ke3n
3!

)]en+1

(35)

=

[
(g∗(α))(ken)(g∗∗(α))

(
en+

ke2n
2!
− (e∗n)2

2!

)
(g∗∗∗(α))

(
e2n
2!

+
ke3n
3!

+
(e∗n)3

3!

)]e∗n
Since (k = −β), we use the value of e∗n given in (35). Use these all values in (35). Then
also applying natural log on both sides, we have

en+1 = Te3n

ln

[
(g∗(α))(−β)(g∗∗(α))(1−

βen
2!
−Ten

2! )(g∗∗∗(α))

(
en
2!
−βe

3
n

3!
−T

2e3n
3!

)]

ln

[
(g∗(α))(1−βen)(g∗∗(α))

(
en−βe

2
n

2!

)
(g∗∗∗(α))

(
e2n
2!
−βe

3
n

3!

)] (36)
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where

Q = T

ln

[
(g∗(α))(−β)(g∗∗(α))(1−

βen
2!
−Ten

2! )(g∗∗∗(α))

(
en
2!
−βe

3
n

3!
−T

2e3n
3!

)]

ln

[
(g∗(α))(1−βen)(g∗∗(α))

(
en−βe

2
n

2!

)
(g∗∗∗(α))

(
e2n
2!
−βe

3
n

3!

)]
From (36), final error equation will be

en+1 = Qe3n (37)

Relation (37) show that Algorithm 2.5 is third order convergent iterative method. Simi-
larly, we can observe the convergence criteria for other methods. �

Numerical Results

In this section, we will show the performance of newly derived methods developed in
section 2. To observe the performance these new methods we will compare it with some
already existing methods in literature as following.

(1) Existing method described in [5,7] by using Variational iteration method.

xn+1 = xn −
f(xn)

f ′(xn) + βf(xn)

(2) Classical Newton method[4]:

xn+1 = xn −
f(xn)

f ′(xn)

(3) Halley method[6] :

xn+1 = xn −
2f ′(xn)f(xn)

2(f ′(xn))2 + f(xn)f ′′(xn)

We use Intel core i3 Due CPU 2 GHz computer (window 8.1 pro 64-bit). We use Maple
for all computational work with 150 digits floating point arithmetic (digits: =150). For
the computer programs, we use stopping criteria |g(xn)−1| < ε or multiplicative methods
and |f(xn − 0)| < ε for the ordinary methods, where ε = 10−20, we approximate the
computational order of convergence (COC)

COC ≈ ln(|xn+1 − xn|/|xn − xn−1|)
ln(|xn − xn−1|/|xn−1 − xn−2|)

,

Example 1.1. (Application to population growth model). Consider the nonlinear equation
which arises in mathematical modeling of the growth of population over short periods of
time:

f(x) = 1, 000, 000ex +
435, 000

x
(ex − 1)− 1564, 000 = 0

Where x denotes the constant birth rate of the population and whose value is needed to find.
One can rewrite the nonlinear equation in the following equivalent form of multiplicative
nonlinear equation:

g(x) =
1000

1564
ex +

435

1564
(ex − 1) = 1

We use initial guess is x0 = 1. We also chose β = 0.01 for ordinary VIM, Algorithm 2.3
,Algorithm 2.5 and Algorithm 2.6. Performance of these methods is shown in below table
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Table 4.1

Method IT xn+1 Rel.Err COC
VIM 11 0.10099792 5.32e−77 2.00000
NM 11 0.10099792 2.66e−44 2.00000

Halley 7 0.10099792 2.00e−143 2.99974
Alg2.3 4 0.10099792 3.22e−54 2.99989
Alg2.5 3 0.10099792 6.85e−41 3.00000
Alg2.6 3 0.10099792 5.44e−45 3.00000

Now we check efficiency of these methods graphically. Here we need log of residual for
every iteration. Graphically comparisons is Shown is figure 4.1.

Figure 4.1 Log of Residuals for Example 4.1

Example 1.2. Consider the nonlinear equation:

f(x) =
(
ex

2+7x−30 − 1
)

= 0

One can rewrite the nonlinear equation in the following equivalent as multiplicative
nonlinear equation:

g(x) = ex
2+7x−30 = 1

We use initial guess as 3.5 . We also chose β = 0.01 for ordinary VIM, Algorithm 2.3
,Algorithm 2.5 and Algorithm 2.6. Performance of these methods is shown in below table
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Table 4.2
Method IT xn+1 Rel.Err COC

VIM 13 3.00000 1.47e−49 2.00000
NM 13 3.00000 1.52e−47 2.00000

Halley 7 3.00000 2.56e−44 2.00032
Alg2.3 4 3.00000 1.94e−49 2.99989
Alg2.5 3 3.00000 4.34e−33 2.97315
Alg2.6 3 3.00000 1.94e−114 2.99999

Figure 4.2 Log of Residuals for Example 4.2

Example 1.3. You are working for a start-up computer assembly company and have been
asked to determine the minimum number of computers that the shop will have to sell to
make a profit. The equation that gives the minimum number of computers x to be sold
after considering the costs and the total sales is:

f(x) = 40x1.5 − 875x+ 35000 = 0

One can rewrite the nonlinear equation in the following equivalent as multiplicative non-
linear equation

g(x) =
4

3500
x1.5 − 875

35000
x = 1

We use initial guess is 60. We also chose β = 0.01 for ordinary VIM, Algorithm 2.3
,Algorithm 2.5 and Algorithm 2.6. Performance of these methods is shown in below table
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Table 4.3
Method IT xn+1 Rel.Err COC

VIM 11 62.6916715 5.32e−77 2.00000
NM 9 62.6916715 3.37e−117 2.00000

Halley 7 62.6916715 2.56e−76 2.99999
Alg2.3 4 62.6916715 1.39e−21 2.69174
Alg2.5 3 62.6916715 1.38e−26 2.97690
Alg2.6 3 62.6916715 1.15e−42 2.99650

62.6916715 is the minimum number of computers to be sold

Figure 4.3 Log of Residuals for Example 4.3

Results and discussion

In this article we developed some novel techniques by using multiplicative calculus.
These techniques are much efficient rather then existing methods and much effective for
some problems. Convergence criteria of developed methods is studied. Numerical results
are also calculated and comparison is also exhibited. Graphical and numerical results
shows the performance of methods. All numerical and graphical computation is made by
using MAPLE and MATLAB.
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