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OPTIMAL CONTROL OF FIRST-ORDER UNDIVIDED INCLUSIONS

E. N. MAHMUDOV1,2∗, D. M. MASTALIYEVA2, §

Abstract. The article is devoted to the optimization of first-order evolution inclusions
(DFI) with undivided conditions. Optimality conditions are formulated in terms of
locally adjoint mappings (LAMs). The construction of “duality relations” is an indis-
pensable approach for the differential inclusions. In this case, the presence of discrete-
approximate problems is a bridge between discrete and continuous problems. At the end
of the article, as an example, we consider duality in optimization problems with linear
discrete and first-order polyhedral DFIs.
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1. Introduction

We consider the following problem with undivided constraints:

minimize f(x(0), x(T )), (1)

(PC) x′(t) ∈F (x(t), t), a.e. t ∈ [0, T ], (2)

(x(0), x(T )) ∈ S. (3)

x(t) ∈D(t),∀t ∈ [0, T ]. (4)

Here F (·, t) : Rn ⇒ Rn is a set-valued mapping, f is continuous cost functional f :
R2n,→ R1, S ⊆ R2n and D(t) ⊆ Rn, ∀t ∈ [0, T ] are nonempty subsets. It is required to
find an absolutely-continuous solution of the first-order DFIs (2)-(4) minimizing (1).

The qualitative theory of set-valued mappings and DFIs and their optimization, are
studied in papers [1–9, 11, 13–18, 20, 21]. In [9] on the basis of the apparatus of LAMs, a
sufficient condition of optimality is derived for the non-convex problem with a first-order
partial DFIs are proved. A sufficient condition for an extremum is an extremal relation
for the primal and dual problem. In the paper of Mahmudov [14], an approximation of the
Bolza problem of optimal control theory with a fixed time interval given by convex and
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nonconvex DFIs of the second-order is studied, where the main goal is to obtain necessary
and sufficient optimal conditions for the Cauchy problem of the second-order. One of the
most characteristic features of such approaches with second-order DFIs is the presence of
LAM equivalence relations. We hope that all these improvements will serve for the further
development of the theory of duality theory. The paper [6] considers a class of second-
order evolution differential inclusions in Hilbert spaces. The article considers approximate
controllability for one class of second-order control systems. First, it is established a set of
sufficient conditions for approximate controllability for a class of second-order evolutionary
differential inclusions in Hilbert spaces. Further, the result is extended to the study of the
concept of approximate controllability with nonlocal conditions.

In the present paper to solve the main problem (PC), an auxiliary problem denoted as
(PD), is used

minimize f (x0, xT ) , (5)

(PD) xt+1 ∈F (xt, t) , t = 0, . . . , T − 1, (6)

(x0, xT ) ∈ S, (7)

xt ∈ Dt,t = 1, . . . , T − 1, (8)

where f, S, F,Dt are the same function, set and set-valued mappings as in problem (PC),

respectively, T is fixed natural number. A sequence {xt}Tt=0 = {xt : t = 0, 1, . . . , T} is
called a feasible trajectory for the stated problem (5)-(8). It is required find a trajectory

{xt}Tt=0 to a problem (PD) for the first-order discrete-time problem, satisfying (6)-(8)
and minimizing f (x0, xT ). Note that the reasons for adopting discrete modelling are as
follows: First, statistics are collected at discrete times (day, week, month, or year). Thus,
discrete-time models can be described in a more straightforward, more accurate and timely
manner than continuous-time models. Secondly, the use of discrete-time models avoids
some mathematical complexities such as the choice of the function space and the regularity
of the solution. Third, the numerical simulation of continuous-time models is obtained
through discretization.

The present paper deals with the theory of optimal control for the DSI and DFI problems
with undivided endpoints and state constraints.

The rest of the work is organized as follows:
Section 2 from the book of Mahmudov [10] presents the basic concepts of convex analysis,

convex upper approximation, and the corresponding subdifferential notion.
In Section 3, the problem for the first-order DSI (PD) is reduced to a standard pro-

gramming problem and, using the tangent direction cone method, necessary and sufficient
optimality conditions are formulated for it.

In Section 4 , using a discretized method for a discrete analogue of the problem (PC) in
terms of the new introduced set-valued mapping G, we formulate necessary and sufficient
conditions for optimality, consisting of the Euler-Lagrange inclusion expressed by LAM
G∗ and the transversality condition. Then, in order to pass from LAM G∗ to LAM F ∗,
the so-called equivalence result is proved separately.

In Section 5, using the limit procedure in Section 4, we formulate the Euler - Lagrange
inclusion and the transversality condition for the problem (PC). In the following sections,
we will show that the constructed Euler - Lagrange inclusion is an extremal relation for
problem (PC) and dual problem (PC*).

In Section 6, we prove that if ρ and ρ∗ are the values of primal and dual problems,
respectively, then ρ ≥ ρ∗.
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In Section 7, on the basis of the previous section, we construct a dual problem for
a discrete-approximate problem related to a continuous problem (PC). Moreover, since
the formulated dual problem is expressed through the ”support function” MG of above
mentioned set-valued mapping G, our main problem is to find a connection between the
MG and the MF functions.

Section 8 is devoted to establishing the duality theorem for the main problem (PC).
First of all, to construct the dual problem to the problem (PC), we again use the limiting
process in the dual problem of the previous section as the partition grid tends to zero.
Then the appearing Riemann integral sums are replaced by integrals of MF and WDt . A
dual control problem is formulated in terms of functions with bounded variations, so as
to allow for jumps caused by the presence of state constraints in the primal problem.

Section 9 of the paper demonstrates two optimal control models: a linear discrete model
and a model with a polyhedral DFI.

2. Needed facts and problem statement

All the necessary concepts can be found in Mahmudov’s book [10]. Let F : Rn ⇒ Rn
be a set-valued mapping and

HF (x, y∗) = sup
y
{〈y, y∗〉 : y ∈ F (x)} , y∗ ∈ Rn,

FA (x, y∗) = {y ∈ F (x) : 〈y, y∗〉 = HF (x, y∗)} .
A set-valued mapping F ∗ : Rn ⇒ Rn defined by

F ∗ (y∗; (x, y)) := {x∗ : (x∗,−y∗) ∈ K∗F (x, y)} ,
is the LAM to a set-valued F at a point (x, y) ∈ gphF , where K∗F (x, y) is the dual cone
of tangent directions KgphF (x, y) ≡ KF (x, y). The LAM can be determined using the
Hamilton function

F ∗ (y∗; (x, y)) := {x∗ : HF (x1, y
∗)−HF (x, y∗) ≤ 〈x∗, x1 − x〉 ,

∀ (x1, y1) ∈ R2n
}
, (x, y) ∈ gphF, z ∈ FA (x, y∗) .

Definition 2.1. A function f(x, y) is closed if its epigraph epi f =
{(
x0, x, y

)
: x0 ≥ f(x, y)

}
closed.

Definition 2.2. The function f∗ (x∗, y∗) = supx,y {〈x, x∗〉+ 〈y, y∗〉 − f(x, y)} conjugate
to f .

Denote
MF (x∗, y∗) = inf

x,y
{〈x, x∗〉 − 〈y, y∗〉 : (x, y) ∈ gphF} .

or
MF (x∗, y∗) = inf

x
{〈x, x∗〉 −HF (x, y∗)}

Definition 2.3. The infinal convolution of functions fi, i = 1, 2 is defined as follows

(f1 ⊕ f2) (u) = inf
{
f1

(
u1
)

+ f2

(
u2
)

: u1 + u2 = u
}
, ui ∈ Rn, i = 1, 2.

Definition 2.4. It is said that for the convex problem (5) - (8) the nondegeneracy condi-
tion is satisfied, if either (i) or (ii) for the points xt ∈ Rn is true:
(i) (xt, xt+1) ∈ ri gphF (·, t) (t = 0, . . . , T −1), xt ∈ riDt (t = 1, . . . , T −1), (x0, xT ) ∈ riS,
(x0, xT ) ∈ ridom f ;
(ii) (xt, xt+1) ∈ int gphF (·, t) (t = 0, . . . , T − 1), xt ∈ intDt (t = 1, . . . , T − 1), (x0, xT ) ∈
intS,
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Definition 2.5. With respect to [14] h(x̄, x) is called a CUA of the function g : Rn →
R1{±∞} at a point x ∈ domg = {x : |g(x)| < +∞} if h(x̄, x) ≥ V (x̄, x) for all x̄ 6= 0 and
h(·, x) is a convex closed positive homogeneous function, where

V (x̄, x) = sup
r(·)

lim sup
γ↓0

(1/γ)[g(x+ γx̄+ r(γ))− g(x)], γ−1r(γ)→ 0.

Definition 2.6. [10] A set ∂h(0, x) = {x∗ ∈ Rn : h(x̄, x) ≥ 〈x̄, x〉, x̄ ∈ Rn} is called a sub-
differential of the function g at a point x and is denoted by ∂g(x).

Condition A [10] Let in the problem (5)-(8) F (·, t) the cones of tangent directions

KG(,t) (x̃t, x̃t+1) be local tents, where x̃t be the points of the trajectory {x̃t}Tt=0. Moreover,
let f admit a continuous CUA h (·, x̃0, x̃T ) at the point (x̃0, x̃T ), which implies that the
subdifferential ∂f (x̃0, x̃T ) = ∂h (0, x̃0, x̃T ) is defined.

3. Optimization of first order DSIs

Define in the space Rn(T+1) the sets

Mt = {u = (x0, . . . , xT ) : (xt, xt+1) ∈ gphF (·, t)} , t = 0, . . . , T − 1;

P = {u = (x0, . . . , xT ) : (x0, xT ) ∈ S} ; Φt = {u = (x0, . . . , xT ) : xt ∈ Dt} , t = 1, . . . , T − 1.

Clearly, denoting ϕ(u) = f (x0, xT ) we can reduce this problem to a mathematical
programming problem; it is not hard to see that (5)-(8) is equivalent to the following one

minimize ϕ(u) subject to u ∈ Ω =

(
T−1⋂
t=0

Mt

)
∩

(
T−1⋂
t=1

Φt

)
∩ P , (9)

where Ω is the convex set.
In the sense of first order DSI terminology [10,19], we give necessary and sufficient condi-
tions for problem (5) - (8), which play an important role in the following improvements.

Theorem 3.1. Suppose f : R2n → R1 ∪ {+∞} is a convex function, F (·, t) : Rn ⇒ Rn
is set-valued mapping and S ⊆ R2n, Dt ⊆ Rn(t = 1, . . . , T − 1). Then, for the trajectory
{x̃}Tt=0 to be optimal it is necessary that there exist vectors x∗t , t = 0, . . . , T and a scalar
λ ∈ {0, 1}, not all equal to zero, satisfying inclusion (i) and the condition (ii):

(i) x∗t ∈ F ∗
(
x∗t+1; (x̃t, x̃t+1) , t

)
+K∗Dt

(x̃t) , t = 1, . . . , T − 1,
(ii) (x∗0,−x∗T ) ∈ λ∂f (x̃0, x̃T )−K∗S (x̃0, x̃T ).

Moreover, under the nondegeneracy condition λ = 1 and these conditions are also sufficient
for optimality.

Proof. In view of Theorems 1.30 and 1.11 [10] we obtain

K∗Ω(ũ) =
T−1∑
t=0

K∗Mt
(ũ) +

T−1∑
t=1

K∗Φt
(ũ) +K∗P (ũ), ũ = (x̃0, . . . , x̃N )

By the necessary optimality conditions [10] for the problem (9) there exist not all zero
vectors u∗(t) ∈ K∗Mt

(ũ), t = 0, 1, . . . , T − 1, u∗0 ∈ K∗P (ũ), ū∗(t) ∈ K∗Φt
(ũ), t = 1, . . . , T − 1,

and the scalar λ ∈ {0, 1}, such that

λû∗ =

T−1∑
t=0

u∗(t) +

T−1∑
t=1

ū∗(t) + u∗0, û
∗ ∈ ∂uϕ(ũ). (10)

From the form of the function ϕ it is easy to see that

∂uϕ(ũ) = {(x̂∗0, 0, . . . , 0, x̂∗T ) : (x̂∗0, x̂
∗
T ) ∈ ∂f (x̃0, x̃T )} ,
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whence it follows that the vector û∗ ∈ ∂uϕ(ũ) has the form û∗ = (x̂∗0, 0, . . . , 0︸ ︷︷ ︸
T−1

, x̂∗T ), (x̂∗0, x̂
∗
T ) ∈

∂f (x̃0, x̃T ). We should compute the cone of tangent directions KF (x̃t, x̃t+1) to gphF (·, t);
for sufficiently small scalar γ > 0 we have

KMt(ũ) = {ū = (x̄0, . . . , x̄T ) : (x̃t + γx̄t, x̃t+1 + γx̄t+1) ∈ gphF (·, t)}
= {ū = (x̄0, . . . , x̄T ) : (x̄t, x̄t+1) ∈ KF (x̃t, x̃t+1) , x̄k ∈ Rn, k 6= t, t+ 1} , t = 0, . . . , T − 1.

(11)

It is also not hard to calculate the cone of tangent KΦt(ũ) :

KΦt(ũ) = {ū = (x̄0, . . . , x̄T ) : x̄t ∈ KDt (x̃t) , x̄k ∈ Rn, k 6= t} , t = 1, . . . , T − 1. (12)

Further, for sufficiently small scalar γ > 0 we have

KP (ũ) = {ū = (x̄0, . . . , x̄T ) : ũ+ γū ∈ P}
= {ū = (x̄0, . . . , x̄T ) : (x̃0 + γx̄0, x̃T + γx̄T ) ∈ S, x̄k ∈ Rn, k 6= 0, T}
= {ū = (x̄0, . . . , x̄T ) : (x̄0, x̄T ) ∈ KS (x̃0, x̃T ) , x̄k ∈ Rn, k 6= 0, T} . (13)

Taking into account that in formulas (11)-(13) x̄k are arbitrary vectors, we can easily
compute the dual cones of tangent directions, correspondingly:

K∗Mt
(ũ) =

{
u∗(t) = (x∗0(t), . . . , x∗T (t)) :

(
x∗t (t), x

∗
t+1(t)

)
∈ K∗F (x̃t, x̃t+1) , x∗k(t) = 0, k 6= t, t+ 1} , t = 0, . . . , T − 1,

K∗Φt
(ũ) =

{
ū∗(t) =

(
0, x̄∗1(t), . . . , x̄∗T−1(t), 0

)
: x̄∗t (t) ∈ K∗Dt

(x̃t) , x̄k(t) = 0, k 6= t
}
,

t = 1, . . . , T − 1;

K∗P (ũ) = {u∗0 = (x∗00, . . . , x
∗
0T ) : (x∗00, x

∗
0T ) ∈ K∗S (x̃0, x̃T ) , x∗0k = 0, k 6= 0, T} .

(14)

Let us now compute the sum of vectors
∑T−1

t=0 u∗(t) and
∑T−1

t=1 ū∗(t). Using the structure
of vectors u∗(t) =

(
0, . . . , 0, x∗t (t), x

∗
t+1(t), 0, . . . , 0

)
, t = 0, . . . , T − 1 we have

T−1∑
t=0

u∗(t) =


x∗0(0), t = 0,

x∗t (t− 1) + x∗t (t), t = 1, . . . , T − 1,

x∗T (T − 1), t = T.

Analogously, since ū∗(t) =
(
0, x̄∗1(t), . . . , x̄∗T−1(t), 0

)
, x̄k(t) = 0, k 6= t we have

T−1∑
t=1

ū∗(t) =
(
0, x̄∗1(1), x̄∗2(2), . . . , x̄∗T−1(T − 1), 0

)
, x̄∗t (t) ∈ K∗Φt

(x̃t) , t = 1, . . . , T − 1.

Moreover, it is clear that

u∗0 = (x∗00, 0, . . . , 0︸ ︷︷ ︸
T−1

, x∗0T ), (x∗00, x
∗
0T ) ∈ K∗S (x̃0, x̃T ) .

On the other hand, using the componentwise representation (10), we obtain that

λx̂∗0 = x∗0(0) + x∗00, t = 0,
0 = x∗t (t− 1) + x∗t (t) + x̄∗t (t), t = 1, . . . , T − 1,
λx̂∗T = x∗T (T − 1) + x∗0T , t = T,

(15)

where

(x̂∗0, x̂
∗
T ) ∈ ∂f (x̃0, x̃T ) , x̄∗t (t) ∈ K∗Dt

(x̃t) , t = 1, . . . , T − 1; (x∗00, x
∗
0T ) ∈ K∗S (x̃0, x̃T ) . (16)
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From the second relation of (15) by definition of LAM we deduce that

x∗t (t) ∈ F ∗
(
−x∗t+1(t); (x̃t, x̃t+1)

)
, t = 1, . . . , T − 1. (17)

Now with new notation −x∗t+1(t) ≡ x∗t+1, t = 1, . . . , T − 1 in the formula (17) we obtain

x∗t ∈ F ∗
(
x∗t+1; (x̃t, x̃t+1)

)
+ x̄∗t (t), t = 1, . . . , T − 1

or

x∗t ∈ F ∗
(
x∗t+1; (x̃t, x̃t+1)

)
+K∗Dt

(x̃t) , t = 1, . . . , T − 1 (18)

In addition, it is clear that setting x∗0(0) ≡ x∗0 the first and third relations of (15) can be
combined as follows

(x∗0, x
∗
T (T − 1)) = λ (x̂∗0, x̂

∗
T )− (x∗00, x

∗
0T )

or, in view of first and third formulas of (3.8) and notation −x∗T (T − 1) ≡ x∗T
(x∗0,−x∗T ) ∈ λ∂f (x̃0, x̃T )−K∗S (x̃0, x̃T ) . (19)

As a result, taking into account formulas (18), (19), the necessary condition is proved.
Besides, by Theorem 3.4 [10, p.99], under the nondegeneracy condition (10) holds with
scalar λ = 1, where u∗ ∈ ∂uϕ(ũ) ∩K∗Ω(ũ). �

4. Optimization of first order discrete-approximate inclusions

Suppose that h = T/N is the step along the t-axis and x(t) ≡ xh(t) is a grid function
on a uniform grid on [0, T ], where N is a sufficiently large positive integer. We introduce
the following first order difference operator ∆x(t) t = 0, h, . . . , T − h

∆x(t) =
1

h
[x(t+ h)− x(t)],

and put in accordance with the problem (PC) a discrete-approximate first order problem
with undivided endpoints and state conditions:

minimize f(x(0), x(T )),

∆x(t) ∈ F (x(t), t), t = 0, h, . . . , T − h,
(x(0), x(T )) ∈ S;x(t) ∈ D(t), t = h, . . . , T − h.

(20)

Obviously, Theorem 3.1 cannot be applied to problem (20) in its current form. Therefore,
we must reduce problem (20) to a problem of the form (5) - (8) or (PD) with endpoints and
state constraints. Introducing an auxiliary multivalued mapping G(x, t) = x + hF (x, t),
we reduce problem (20) to the following form:

minimize f(x(0), x(T )),

(PDA) x(t+ h) ∈ G(x(t), t), t = 0, h, . . . , T − h,
(x(0), x(T )) ∈ S;x(t) ∈ D(t), t = h, . . . , T − h.

(21)

Obviously, now problems (PD) and (21) have the same form. Thus, we can apply Theorem
3.1 to problem (21) that is there exist x∗(t), t = 0, . . . , T and a scalar λ ∈ {0, 1}, satisfying
the following adjoint inclusion and the transversality condition:

x∗(t) ∈ G∗ (x∗(t+ h); (x̃(t), x̃(t+ h)), t) +K∗D(t)(x̃(t)), t = 1, . . . , T − h,
(x∗(0),−x∗(T )) ∈ λ∂f(x̃(0), x̃(T ))−K∗S(x̃(0), x̃(T )).

(22)

On the other hand, we must be able to express LAM G∗ through LAM F ∗. On this path,
the following equivalence result turns out to be extremely important.
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Proposition 4.1. Suppose F (·, t) : Rn ⇒ Rn is a convex set-valued mapping and that
G(·, t) : Rn ⇒ Rn is defined as G(x, t) = x+ hF (x, t). Then the inclusions are equivalent

(1) x∗ ∈ G∗ (y∗; (x, y), t) , y ∈ GA (x; y∗, t) ,

(2)
x∗ − y∗

h
∈ F ∗

(
y∗;

(
x,
y − x
h

)
, t

)
,
y − x
h
∈ FA (x; y∗, t) , y∗ ∈ Rn.

Proof. Let KG(x, y), (x, y) ∈ gphG(·, t) be cone of tangent directions. It is easy to verify
that, the inclusions

(x̄, ȳ) ∈ KG(x, y) (23)

and
(x̄, (ȳ − x̄)/h) ∈ KF (x, (y − x)/h) (24)

are equivalent. In fact, satisfaction of (24) means that for small γ > 0

x̄ = γ(x̃− x),
ȳ − x̄
h

= γ

(
ỹ − x̃
h
− y − x

h

)
,

and for all (x̃, ỹ) such that ỹ−x̃
h ∈ F (x̃, t) or equivalently, ỹ ∈ G(x̃). Simplifying the latter

relations, we have x̄ = γ(x̃− x), ȳ − x̄ = γ(ỹ − x̃)− γ(y − x). Now, we have ȳ = γ(ỹ − y),
i.e. (x̄, ȳ) ∈ KG(x, y). Suppose now x∗ ∈ G∗ (y∗; (x, y), t) , y ∈ GA (x; y∗, t), that is

〈x̄, x∗〉 − 〈ȳ, y∗〉 ≥ 0, (x̄, ȳ) ∈ KG(x, y). (25)

It means that

〈x̄, a〉 −
〈
ȳ − x̄
h

, y∗
〉
≥ 0,

for which (24) is satisfied. Here the vector a should be appropriately defined. It is not
hard to see that the latter inequality is equivalent to the inequality

〈x̄, ha+ y∗〉 − 〈ȳ, y∗〉 ≥ 0. (26)

Then comparing it with (25) and (26), we find that a = (x∗ − y∗) /h. Then from the
equivalence of (23) and (24) we have

x∗ − y∗

h
∈ F ∗

(
y∗;

(
x,
y − x
h

)
, t

)
.

Moreover, it is easy to see that

G∗ (y∗; (x, y), t) 6= ∅ if y ∈ GA (x; y∗, t) and

F ∗
(
y∗;

(
x,
y − x
h

)
, t

)
6= ∅ if

y − x
h
∈ FA (x; y∗) ,

respectively. The theorem is proved. �

Remark 4.1. Note that it is possible to weaken the condition imposed on G(x, y, t) =
x + hF (x, t) assuming that cone of tangent directions KG(x, y), (x, y) ∈ gphG(·, t) is a
local tent. Then the corresponding inclusions (1) and (2) of Proposition 4.1 concerning
LAM will again be equivalent. In particular, it is known that for a convex multivalued
mapping a local tent always exists [10, p.120].

Theorem 4.1. Let F (·, t) : Rn ⇒ Rn and f : R2n → R1 ∪ {+∞} be a proper convex
function, S ⊆ R2n, Dt ⊆ Rn(t = h, . . . , T − h) be convex subsets. Then for optimality of
{x̃(t)}, t = 0, . . . , T in the problem (20) it is necessary that there exist a scalar λ ∈ {0, 1}
and vectors x∗(t), t = 0, . . . , T such that:

(i) −∆x∗(t) ∈ F ∗ (x∗(t+ h); (x̃(t),∆x̃(t)), t) +K∗D(t)(x̃(t))

(ii) ∆x̃(t) ∈ FA (x̃(t);x∗(t+ h), t) , t = 1, . . . , T − h,
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(iii) (x∗(0),−x∗(T )) ∈ λ∂f(x̃(0), x̃(T ))−K∗s (x̃(0), x̃(T )).
In addition, if the nondegeneracy condition is satisfied, these conditions are also sufficient
for optimality of {x̃(t)}, t = 0, . . . , T .

Proof. Obviously, it suffices to show the validity of Euler-Lagrange’s inclusion (i). Using
Proposition 4.1 it follows from the Euler-Lagrange inclusion in (22), that

x∗(t)− x∗(t+ h)

h
∈ F ∗ (x∗(t+ h); (x̃(t), x̃(t+ h)), t) +

1

h
K∗D(t)(x̃(t)), t = 1, . . . , T − h.

(27)

Then taking into account, that x∗(t)−x∗(t+h)
h = −∆x∗(t) and K∗D(t)(x̃(t)) ≡ 1

hK
∗
D(t)(x̃(t))

( K∗D(t)(x̃(t)) is a cone) from (27) we have the condition (i) of theorem. It remains to

emphasize that by Proposition 4.1 F ∗ is nonempty if y ∈ FA (x, y∗, t), which implies that
∆x̃(t) ∈ FA (x̃(t), x∗(t+ h), t). �

The results of Theorem 3.1 can also be generalized to the non-convex case.

5. Sufficient condition of optimality for a continuous problem (PC)

In this section using the limit procedure in the conditions of Theorem 4.1 of Section
4 we formulate the following Euler-Lagrange inclusion and transversality condition for a
problem (PC). Then considering limh→0 ∆x∗(t) = x∗′(t), limh→0 ∆x(t) = x′(t) and setting
λ = 1, we have

(a) −x∗′(t) ∈ F ∗ (x∗(t); (x̃(t), x̃′(t)) , t) +K∗D(t)(x̃(t)), a.e. t ∈ [0, T ],

(b) x̃′(t) ∈ FA (x̃(t);x∗(t), t) , t ∈ [0, T ]
(c) (x∗(0),−x∗(T )) ∈ ∂f(x̃(0), x̃(T ))−K∗s (x̃(0), x̃(T )).

Here and henceforth as a solution of the adjoint DFI (a) we use a function of bounded vari-
ation instead of an absolutely continuous function, to take into account the jumps caused
by the presence of state constraints in the primal problem (PC). This definition is inspired
by the Hamiltonian conditions, were extended from absolutely continuous trajectories to
trajectories of bounded variation [12]. We recall that every function with bounded varia-
tion has almost everywhere a finite derivative and if v(·) is of bounded variation in [0, T ],
then the set of discontinuities of v(·) can at most be denumerable. Besides, each point of
discontinuity is of the first kind. Note that if a function v(·) is absolutely continuous on
the interval [0, T ] then v(·) is of bounded variation on [0, T ]. The space (BV ([0, T ];Rn)
of functions v(·) of bounded variation on the interval [0, T ] is a Banach space with respect
to norm ‖v‖BV = ‖v(0)‖ + V T

0 [v], where V T
0 [v] designates the total variation of v(·) on

[0, T ].

Theorem 5.1. Suppose that F (·, t) : Rn ⇒ Rn is a convex mapping, f(·, ·) : R2n →
R1 ∪ {+∞} is continuous and that S ⊆ R2n, D(t) ⊆ Rn, t ∈ [0, T ] are convex. Then
for optimality of x̃(·) in the problem (PC) it is sufficient that there exists a function of
bounded variation x∗(·), t ∈ [0, T ] (a), (b) and condition (c).

Proof. Using Theorem 2.1 [10, p.62] and the Euler-Lagrange type inclusion ( a ) we have

−x∗′(t) ∈ ∂xHF (x̃(t), x∗(t)) + v∗(t), v∗(t) ∈ K∗D(t)(x̃(t)),

which implies that

HF (x(t), x∗(t))−HF (x̃(t), x∗(t)) ≤ −
〈
x∗′(t) + v∗(t), x(t)− x̃(t)

〉
.

In turn, using the definition of the Hamilton function, the argmaximum set and the dual
cone, the last inequality implies〈

x∗(t), x′(t)− x̃′(t)
〉

+
〈
x∗′(t), x(t)− x̃(t)

〉
≤ 0.
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Integrating this inequality over the time interval [0, T ] we have∫ T

0
d 〈x∗(t), x(t)− x̃(t)〉 ≤ 0

or

〈x∗(0), x(0)− x̃(0)〉 − 〈x∗(T ), x(T )− x̃(T )〉 ≥ 0. (28)

Further, let (µ∗(0), µ∗(T )) ∈ K∗s (x̃(0), x̃(T )). Then by the transversality condition (c) we
can write

f(x(0), x(T ))− f(x̃(0), x̃(T )) ≥ 〈x∗(0) + µ∗(0), x(0)− x̃(0)〉
+ 〈µ∗(T )− x∗(T ), x(T )− x̃(T )〉

whence

f(x(0), x(T ))− f(x̃(0), x̃(T )) ≥ 〈x∗(0), x(0)− x̃(0)〉 − 〈x∗(T ), x(T )− x̃(T )〉 . (29)

Then from (28) and (29) make sure that for all possible trajectories x(·) ∈ AC[0, T ]

f(x(0), x(T )) ≥ f(x̃(0), x̃(T )),

which completes the proof of theorem. �

6. On duality for first order DSI problems

First of all, we prove the following result useful in what follows.

Proposition 6.1. The conjugate of ϕ(u) = f (x0, xT ) is

ϕ∗ (x∗0, . . . , x
∗
T ) = f∗ (x∗0, x

∗
T ) ;x∗i = 0, i 6= 0, T.

Proof. The proof of the proposition follows easily from the definition of conjugate func-
tions:

ϕ∗ (u∗) = sup
u
{〈u, u∗〉 − ϕ(u)} = sup

x0,...,xT

{
T∑
i=0

〈xi, x∗i 〉 − f (x0, xT )

}

= sup
x0,...,xT

{
T−1∑
i=1

〈xi, x∗i 〉+ 〈x0, x
∗
0〉+ 〈xT , x∗T 〉 − f (x0, xT )

}

=

{
f (x∗0, x

∗
T ) , if x∗i = 0, i = 1, . . . , T − 1,

+∞, otherwise.

�

We announce the following problem, denoted (PD∗), a dual problem to the first order DSI
problem (PD):

(PD∗) sup
x∗t ,v

∗
t ,µ

∗
0,µ

∗
T

{
−f∗ (x∗0 + µ∗0, µ

∗
T − x∗T ) +

T−1∑
t=0

MF

(
x∗t − v∗t , x∗t+1

)
−
T−1∑
t=1

WDt (−v∗t )

−WS (−µ∗0,−µ∗T )

}
,

where WXt ,WS are support functions of the sets Xt, S, respectively.
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Theorem 6.1. Let (ρ, ρ∗) be a pair of the optimal values of the primal (PD) and dual
(PD∗) problems, respectively, then ρ ≥ ρ∗. In particular, under the nondegeneracy con-
dition, the presence of a solution to one problem provides the existence of a solution to
another problem, ρ = ρ∗ and, in the finiteness of ρ, the dual problem (PD∗) has a solution.

Proof. Recall from convex analysis at the points of continuity u0 ∈ Ω, of the function ϕ,

inf
u∈Ω

ϕ(u) = inf {ϕ(u) + δΩ(u)} = − sup {−ϕ(u)− δΩ(u)}

= − (ϕ+ δΩ)∗ (0) = − (ϕ∗ ⊕ δ∗Ω) (0) = sup {−ϕ∗ (u∗)− δ∗Ω (−u∗)} ,

where δΩ(·) is the indicator function of Ω, i.e., δΩ(u) = 0, u ∈ Ω and δΩ(u) = +∞, u /∈ Ω.
It should be noted that the nondegeneracy condition ensures the existence of a point with
this property. In general, it can be noticed that (ϕ+ δΩ)∗ (0) ≤ (ϕ∗ ⊕ δ∗Ω) (0) and so

inf
u∈Ω

ϕ(u) ≥ sup {−ϕ∗ (u∗)− δ∗Ω (−u∗)} .

Then it can be argued that the dual problem to convex programming problem (9) has the
form

sup {−ϕ∗ (u∗)− δ∗Ω (−u∗)} . (30)

Besides, the supremum in (30) is attained and δΩ =
∑T−1

t=0 δMt +
∑T−1

t=1 δDt + δP . Then,
we have

δ∗Ω (−u∗) ≤ inf

{
T−1∑
t=0

δ∗Mt
(−u∗(t)) +

T−1∑
t=1

δ∗Φt
(−ū∗(t))

+δ∗P (−u∗0) :
T−1∑
i=0

u∗(i) +
T−1∑
i=1

ū∗(i) + u∗0 = ũ∗

}
, (31)

where u∗(i) = (x∗0(i), . . . , x∗N (i)) , i = 0, . . . , T−1 and ū∗(i) = (x̄∗0(i), . . . , x̄∗N (i)) , i =
1, . . . , T − 1, u∗0 = (x∗00, . . . , x

∗
0T ) , ũ∗ = (x̃∗0, . . . , x̃

∗
T ). Then we deduce that

δ∗Mt
(−u∗(t)) =


− inf

(xt(t),xt+1(t))∈gphF (·,t)

[
〈xt(t), x∗t (t)〉+

〈
xt+1(t), x∗t+1(t)

〉]
, x∗i (t) = 0,

i 6= t, t+ 1,
+∞, otherwise,

(32)

t = 0, . . . , T − 1;

δ∗Φt
(−ū∗(t)) =

{
sup
xt∈Xt

〈xt,−x̄∗t 〉 , x̄∗i = 0, i 6= t,

+∞, otherwise
(33)

t = 1, . . . , T − 1;

δ∗P (−u∗0) =

{
sup

(x0,xT )∈S
[〈x0,−x∗00〉+ 〈xT ,−x∗0T 〉] , if x∗0k = 0, k 6= 0, T,

+∞, otherwise.
(34)

Furthermore, from the formulas (31)-(34) and from the relation ϕ∗ (x∗0, . . . , x
∗
T ) = f∗ (x∗0, x

∗
T )

of Proposition 6.1, where x∗i = 0, i 6= 0, T , in view of (15) with the preceding notations,
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we conclude that

sup {−ϕ∗ (u∗)− δ∗Ω (−u∗)} = sup

{
−f∗ (x̃∗0, x̃

∗
T ) +

T−1∑
t=0

MF

(
x∗t (t),−x∗t+1(t)

)
−
T−1∑
t=1

WDt (−x̄∗t (t))−WS (−x∗00,−x∗0T ) : x∗0(0) + x∗00 = x̃∗0,

x∗t (t− 1) + x∗t (t) + x̄∗t (t) = 0 (t = 1, . . . , T − 1), x∗T (T − 1) + x∗0T = x̃∗T

}
,

(35)

where the supremum is attained, if α > −∞. For what follows, we denote x∗t+1(t) ≡ −x∗t+1,
t = 0, . . . , T − 1 and x̄∗t (t) = v∗t , x

∗
00 = µ∗0, x

∗
0T = µ∗T . Then, taking into account these

notations, we will make sure that the right-hand side of (35) is nothing but ( PD∗). �

7. The dual problem for discrete approximate problem.

Here we construct the dual problem to discrete-approximate problem (20) or equiva-
lently (21). According to (PD∗) for problem (21) we have the dual problem

sup
x∗(t),v∗(t),µ∗(0),µ∗(T )

{
− f∗ (x∗(0) + µ∗(0), µ∗(T )− x∗(T ))

+

T−h∑
t=0

MG (x∗(t)− v∗(t), x∗(t+ h))−
T−h∑
t=h

WDt (−v∗(t))−WS (−µ∗(0),−µ∗(T ))

}
.

(36)

Here, if we are able to express the function MG(·,t) ≡ MG through MF , then we can
construct a dual problem to problem (20), which plays a decisive role in constructing
duality to the main problem (PC). The following result turns out to be true.

Proposition 7.1. Let F (·, t) : Rn ⇒ Rn be a convex and G(x, y, t) = x+ hF (x, t). Then

MG (x∗, y∗) = hMF

(
x∗ − y∗

h
, y∗
)

Proof. Recall that,

MG (x∗, y∗) = inf
x,y,z
{〈x, x∗〉 − 〈y, y∗〉 : (x, y) ∈ gphG(·, t)}

= inf

{
〈x, x∗〉 − 〈y, y∗〉 :

(
x,
y − x
h

)
∈ gphF (·, t)

}
.

Rewrite in the last curly braces in a more relevant form

〈x, x∗1〉 −
〈
y − x
h

, y∗1

〉
, (37)

where x∗1, y
∗
1 should be determined. Rewrite (37) as follows〈

x, x∗1 +
y∗1
h

〉
−
〈
y,
y∗1
h

〉
and compare it with the difference of inner products 〈x, x∗〉−〈y, y∗〉. Then we immediately
have x∗1 = x∗ − y∗, y∗1 = hy∗. Substituting these expressions into (37), we have

〈x, x∗ − y∗〉+

〈
y − x
h

, hy∗
〉
. (38)
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Therefore, taking into account (38), we have the desired result:

MG (x∗, y∗) = h inf

{〈
x,
x∗ − y∗

h

〉
+

〈
y − x
h

, y∗
〉

:(
x,
y − x
h

)
∈ gphF (·, t)

}
= hMF

(
x∗ − y∗

h
, y∗
)
.

�

Proposition 7.2. Suppose F (·, t) : Rn ⇒ Rn is a convex set-valued mapping and G(x, t) =
x+ hF (x, t). Then the function MG can be expressed in terms of MF as follows

MG (x∗(t)− v∗(t), x∗(t+ h)) = hMF (−∆x∗(t)− v∗(t), x∗(t+ h)) ,

where v∗(t) = v∗(t)/h.

Proof. In fact, applying the Proposition 7.1 for MG (x∗(t)− v∗(t), x∗(t+ h)) in the dual
problem (36) we obtain

MG (x∗(t)− v∗(t), x∗(t+ h)) = hMF

(
x∗(t)− v∗(t)− x∗(t+ h)

h
, x∗(t+ h)

)
=hMF (−∆x∗(t)− v∗(t), x∗(t+ h)) .

�

Now, using Proposition 7.2 in the dual problem (36), we establish the following dual
problem for the discrete-approximate problem (20):

sup
x∗(t),v∗(t),µ∗(0),µ∗(T )

{
− f∗ (x∗(0) + µ∗(0), µ∗(T )− x∗(T ))

+

T−h∑
t=0

hMF (−∆x∗(t)− v∗(t), x∗(t+ h))−
T−h∑
t=h

hWDt (−v∗(t))−WS (−µ∗(0),−µ∗(T ))

}
.

(39)

8. The dual problem for convex DFIs

To construct the problem (PC*) we use the limit process in the problem (39), where the
obtained sums are the Riemann sums of the functions MF and WDt , respectively. But in
what follows we mean that the integrals appearing in (PC*) are understood in the sense
of Lebesgue

sup
x∗(t),v∗(t),µ∗(0),µ∗(T )

J∗ [x∗(t), v∗(t), µ∗(0), µ∗(T )]

(PC*) J∗ [x∗(t), v∗(t), µ∗(0), µ∗(T )] = −f∗ (x∗(0) + µ∗(0), µ∗(T )− x∗(T ))

+

∫ T

0
MF

(
−x∗′(t)− v∗(t), x∗(t)

)
dt−

∫ T

0
WDt (−v∗(t)) dt−WS (−µ∗(0),−µ∗(T )) .

Further, we assume that x∗(t), v∗(t), t ∈ [0, T ] are functions of bounded variations. To
prove the duality theorem for (PC), we use the results of Theorem 5.1.

Theorem 8.1. Suppose that x̃(t) is an optimal solution of the primal convex problem (PC)
with undivided endpoint and state constraints. Then a quadruple {x̃∗(·), ṽ∗(·), µ̃∗(0), µ̃∗(T )}
is an optimal solution of the problem (PC∗) if the conditions (a)-(c) of Theorem 5.1 are
satisfied.
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Proof. First of all, we should prove that for all feasible solutions x(·) and dual variables
{x̃∗(·), ṽ∗(·), µ̃∗(0), µ̃∗(T )} of the primal (PC) and dual (PC∗) problems, respectively, the
following inequality holds:

f(x(0), x(T )) ≥ J∗ [x∗(t), v∗(t), µ∗(0), µ∗(T )] = −f∗ (x∗(0) + µ∗(0), µ∗(T )− x∗(T ))

+

∫ T

0
MF

(
−x∗′(t)− v∗(t), x∗(t)

)
dt−

∫ T

0
WDt (−v∗(t)) dt−WS (−µ∗(0),−µ∗(T ))

}
.

(40)
For this, we use the definitions of the conjugate function f∗, the Hamilton function and
the support function. Therefore, we obtain

−f∗ (x∗(0) + µ∗(0), µ∗(T )− x∗(T ))

≤ f(x(0), x(T ))− 〈x(0), x∗(0) + µ∗(0)〉 − 〈x(T ), µ∗(T )− x∗(T )〉 .
(41)

∫ T

0
MF

(
−x∗′(t)− v∗(t), x∗(t)

)
dt ≤

∫ T

0

[〈
−x∗′(t)− v∗(t), x(t)

〉
−
〈
x∗(t), x′(t)

〉]
dt

= −
∫ T

0

[〈
x∗′(t), x(t)

〉
+
〈
x∗(t), x′(t)

〉]
dt−

∫ T

0
〈v∗(t), x(t)〉 dt

= −
∫ T

0
d
〈
x∗′(t), x(t)

〉
dt−

∫ T

0
〈v∗(t), x(t)〉 dt (42)

−
∫ T

0
WDt (−v∗(t)) dt ≤

∫ T

0
〈x(t), v∗(t)〉 dt (43)

−WS (−µ∗(0),−µ∗(T )) ≤ 〈x(0), µ∗(0)〉+ 〈x(T ), µ∗(T )〉 . (44)

Summing the inequalities (41)-(44) we deduce

J∗ [x∗(t), v∗(t), µ∗(0), µ∗(T )] ≤ f(x(0), x(T ))

−〈x(0), x∗(0) + µ∗(0)〉 − 〈x(T ), µ∗(T )− x∗(T )〉

−
∫ T

0
d
〈
x∗′(t), x(t)

〉
dt+ 〈x(0), µ∗(0)〉+ 〈x(T ), µ∗(T )〉

= f(x(0), x(T ))− 〈x(0), x∗(0)〉+ 〈x(T ), x∗(T )〉

−
∫ T

0
d 〈x∗(t), x(t)〉 dt = f(x(0), x(T ))− 〈x(0), x∗(0)〉+ 〈x(T ), x∗(T )〉

+ 〈x∗(0), x(0)〉 − 〈x∗(T ), x(T )〉 = f(x(0), x(T ))

and this proves the inequality (40). Further, let the quadruple {x̃∗(·), ṽ∗(·), µ̃∗(0), µ̃∗(T )}
satisfy conditions (a) − (c) of Theorem 5.1. Then the Euler-Lagrange type inclusion (a)
and the condition (b) of Theorem 5.1 imply that

HF (x(t), x∗(t))−HF (x̃(t), x̃∗(t)) ≤ −
〈
x̃∗′(t) + ṽ∗(t), x(t)− x̃(t)

〉
,

whence by the definition of function MF we deduce that

−
〈
x̃∗′(t) + ṽ∗(t), x̃(t)

〉
−
〈
x̃∗(t), x̃′(t)

〉
−HF (x̃(t), x̃∗(t)) = MF

(
−x̃∗′(t)− ṽ∗(t), x̃∗(t)

)
.

(45)
Further, by the transversality condition (c) there is

−WS (−µ̃∗(0),−µ̃∗(T )) = 〈x̃(0), µ̃∗(0)〉+ 〈x̃(T ), µ̃∗(T )〉 ;WDt (−ṽ∗(t) = −〈x̃(t), ṽ∗(t)〉 .
(46)
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Consequently, by Theorem 1.27 [10] the transversality condition (c) is equivalent to the
relation

−f∗ (x̃∗(0) + µ̃∗(0), µ̃∗(T )− x̃∗(T ))

= f(x̃(0), x̃(T ))− 〈x̃(0), x̃∗(0) + µ̃∗(0)〉 − 〈x̃(T ), µ̃∗(T )− x̃∗(T )〉 .
(47)

Hence, if we take into account relations (45)-(47) in (40), then we will make sure that the
equality will satisfied and for x̃(·), {x̃∗(·), ṽ∗(·), µ̃∗(0), µ̃∗(T )} the equality of the values of
the primal and dual problems is guaranteed. Hence, x̃(·), {x̃∗(·), ṽ∗(·), µ̃∗(0), µ̃∗(T )} (a)
- (c) is the dual relation for the primal and dual problems. Thus, we have proved that
from conditions (a) - (c) it follows that {x̃∗(·), ṽ∗(·), µ̃∗(0), µ̃∗(T )} is a solution of the dual
problem (PC*). The converse is proved by analogy.
Regarding (c), it suffices to recall that (47) is equivalent to (c) inscribed for a family of
functions {x̃∗(·)ṽ∗(·), µ̃∗(0), µ̃∗(T )}. The proof of theorem is completed. �

9. Duality in some optimal control problems.

9.1. Linear discrete problem.
Let us consider the problem:

minimize f (x0, xT ) ,

subject to xt+1 = Axt +But, ut ∈ U, t = 0, . . . , T − 1

(x0, xT ) ∈ S, xt ∈ Dt, t = 1, . . . , T − 1,

(48)

where A and B are n×n and n× r matrices, correspondingly, f convex function, U ⊆ Rr,
S ⊆ R2n, Xt ⊆ Rn(t = 1, . . . , T − 1) . Clearly, in this case F (xt) = Axt + BU, t =
0, . . . , T − 1 and

MF

(
x∗t − v∗t , x

∗
t+1

)
=

{
−WU

(
B∗x∗t+1

)
, if x∗t − v∗t = A∗x∗t+1

−∞, otherwise.

Then it is clear that, the problem dual to problem (48) has the form

sup
x∗t ,µ

∗
0,µ

∗
T

{
−f∗ (x∗0 + µ∗0, µ

∗
T − x∗T )−

T−1∑
t=0

WU

(
B∗x∗t+1

)
−
T−1∑
t=1

WDt

(
A∗x∗t+1 − x∗t

)
−WS (−µ∗0,−µ∗T )

}
.

9.2. The polyhedral problem.
Here we establish a dual problem (PL∗) to a problem with a first-order polyhedral DFI
and constraints on undivided endpoints and states:

minimize f(x(0), x(T )),

(PL) x′(t) ∈ F (x(t)), a.e. t ∈ [0, T ], F (x) = {y : Ax−By ≤ d},
(x(0), x(t)) ∈ S, x(t) ∈ X(t), t ∈ [0, T ]

where F is polyhedral a mapping, A,B are s × n matrices, d is a s dimensional column-
vector, f : R2n → R1, S ⊆ R2n, D(t) ⊆ Rn. We label this problem by (PL). According to
the dual problem (PC∗), we calculate the function MF (x∗, y∗) :

MF (x∗, y∗) = inf {〈x, x∗〉 − 〈y, y∗〉 : (x, y) ∈ gphF} . (49)

Let us denote w = (x, y) ∈ R2n, w∗ = (x∗,−y∗) ∈ R2n. Then we have:

inf {〈w,w∗〉 : Lw ≤ d} , (50)
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where L = [A : −B] is s× 2n matrix. Then, It follows from (50) that

w∗ = −L∗λ, 〈Ax̃−Bỹ − d, λ〉 = 0, λ ≥ 0.

Hence, w∗ = −L∗λ implies that x∗ = −A∗λ, y∗ = B∗λ, λ ≥ 0. Therefore

MF (x∗, y∗) = 〈x̃,−A∗λ〉+ 〈ỹ, B∗λ〉 = −〈Ax̃, λ〉+ 〈Bỹ, λ〉 = −〈d, λ〉. (51)

Then from the form of MF (−x∗′(t)− v∗(t), x∗(t)) we get

−x∗′(t)− v∗(t) = −A∗λ(t), x∗(t) = B∗λ(t), λ(t) ≥ 0 (52)

or

A∗λ(t)−B∗λ′(t) = v∗(t), λ(t) ≥ 0. (53)

Therefore, taking into account (51)-(53) we obtain the dual problem

sup
λ(t)≥0,µ∗(0),µ∗(T )

{
−f∗ (B∗λ(0) + µ∗(0), µ∗(T )−B∗λ(T ))−

∫ T

0
〈d, λ(t)〉dt

−
∫ T

0
WDt

(
B∗λ′(t)−A∗λ(t)

)
dt−WS (−µ∗(0),−µ∗(T ))

}
.
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