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HARMONIC MULTIVALENT FUNCTIONS ASSOCIATED WITH A

(P,Q)-ANALOGUE OF RUSCHEWEYH OPERATOR

P. SHARMA1∗, O. MISHRA1, O. P. AHUJA2, A. ÇETINKAYA3, §

Abstract. The aim of this paper is to introduce and investigate a new class of harmonic
multivalent functions defined by (p,q)-analogue of Ruscheweyh operator for multivalent
functions. For this new class, we obtain a (p,q)-coefficient inequality as a sufficient con-
dition. Using this coefficient inequality, we establish sharp bounds of the real parts of
the ratios of harmonic multivalent functions to its sequences of partial sums. We further
consider a subclass of our new class and for which we obtain (p,q)-analogue of coefficient
characterization which in fact helps us to determine its properties such as distortion
bounds, extreme points, convolutions and convexity conditions. In the last section on
conclusion, it is pointed out that the results obtained in this paper may also be extended
to some generalized classes.

Keywords: (p,q)-calculus; (p,q)-Ruscheweyh operator; multivalent harmonic functions;
a (p,q)-Ruscheweyh multivalent operator; partial sums.
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1. Introduction

Duren et al. in 1996 [6] introduced multivalent harmonic functions in the open unit
disc D := {z ∈ C : |z| < 1} via the argument principle. For natural number m, let H(m)
denote the class of all multivalent functions f = h+ g, where

h(z) = zm +
∞∑

k=m+1

akz
k and g(z) =

∞∑
k=m

bkz
k.

Let SH(m) be a subclass of H(m) of functions f = h + g that are sense-preserving in D
and S0

H(m) denotes a subclass of SH(m) when g(m)(0) = 0 for a given natural number m.
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Thus if f = h+ g ∈ S0
H(m), then

h(z) = zm +
∞∑

k=m+1

akz
k and g(z) =

∞∑
k=m+1

bkz
k. (1)

We observe that if g ≡ 0 for each f = h+g ∈ S0
H(m), then S0

H(m) reduces to S(m), a well
known subclass of analytic multivalent and normalized functions in D. Note that S0

H(1) is
a subclass of SH(1) of harmonic locally univalent and sense-preserving functions defined
in D that was studied by Clunie and Sheil-Small [5].

We next recall a few notations and definitions of (p, q)-calculus that are needed in this
paper. The theory of (p, q)-calculus (or post-quantum calculus) are used in various areas
of science and mathematics; see for example [12]. Let 0 < q < p ≤ 1. The (p, q)-derivative
operator of a function h is defined by

∂p,qh(z) =

{
h(pz)−h(qz)

(p−q)z , z 6= 0,

h′(0), z = 0.

It is clear that if h1 and h2 are two functions, then

∂p,q(h1(z) + h2(z)) = ∂p,q(h1(z)) + ∂p,q(h2(z))

and

∂p,q(ch(z)) = c∂p,q(h(z)),

where c is a constant. In particular, if h(z) = zk, then

∂p,q(z
k) = [k]p,qz

k−1, (2)

where

[k]p,q =
pk − qk

p− q
= pk−1 + pk−2q + · · ·+ pqk−2 + qk−1, k ∈ N

is a (p, q)-bracket or twin number. The (p, q)-number factorial is defined by

[k]p,q! = [1]p,q[2]p,q[3]p,q . . . [k]p,q, [0]p,q! = 1.

The (p, q)-shifted factorial is defined as

([k]p,q)n =

{
[k]p,q[k + 1]p,q[k + 2]p,q . . . [k + n− 1]p,q, if n ≥ 1

1, if n = 0.

Moreover, the (p, q)-gamma function is defined as

Γp,q(k + 1) = [k]p,qΓp,q(k) and Γp,q(1) = 1.

Some applications of (p, q)-calculus may be found in [20].
Note that, if p = 1, the (p, q)-calculus reduces to the q-calculus and the (p, q)-derivative

∂p,q reduces to the q-derivative. Using the q-derivative, in [22] authors introduced and
studied various families of q-starlike functions f ∈ S(1). It is mentioned in [22] that the
results obtained may easily be extended into the corresponding results for (p, q)-analogue.
A q-analogue of Noor integral operator is also introduced and studied by Arif et al. [3]. For
more study of q-calculus, one may refer to [2, 7, 10, 11] and also some recent publications
[15, 16, 19, 23, 24].

The convolution of two analytic functions

h1(z) =

∞∑
k=1

αkz
k and h2(z) =

∞∑
k=1

βkz
k
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is defined by

h1(z) ∗ h2(z) = (h1 ∗ h2)(z) =
∞∑
k=1

αkβkz
k.

A q-analogue of Ruscheweyh operator Rλq : S(1)→ S(1) was introduced and studied by
Kanas and Raducanu [14]. Recently, Arif et al. in [4] defined a q-analogue of Ruscheweyh
operator for multivalent functions in the class S(m).

Define a (p, q)-analogue of Ruscheweyh operator for multivalent functions: Lδ+m−1
p,q :

S(m)→ S(m) by

Lδ+m−1
p,q h(z) = h(z) ∗ φm(p, q, δ; z), (3)

where the function φm(p, q, δ; z) is defined by

φm(p, q, δ; z) = zm +

∞∑
k=m+1

([δ +m]p,q)k−m
[k −m]p,q!

zk (4)

(δ > −m,m ∈ N, 0 < q < p ≤ 1).

Note that the series in (4) converges absolutely in the unit disk D.
For the case if δ +m ∈ N, the (p, q)-operator ∂δ+m−1

p,q of order δ +m− 1 is defined by

∂δ+m−1
p,q = ∂p,q...∂p,q︸ ︷︷ ︸

δ+m−1 times

and hence, for this case, the operator Lδ+m−1
p,q defined by (3) may also be given by

Lδ+m−1
p,q h(z) =

zm∂δ+m−1
p,q

(
zδ−1h(z)

)
[δ +m− 1]p,q!

.

Making use of (3) and (4), for the functions h and g given by (1), we get

Lδ+m−1
p,q (h(z) + g(z)) = zm +

∞∑
k=m+1

ψk (δ) (ak + bk)z
k, (5)

where

ψk (δ) =
([δ +m]p,q)k−m

[k −m]p,q!
. (6)

Taking p = 1, we denote the operator Lδ+m−1
p,q by Lδ+m−1

q which was defined in [4, p.

1213]. Further, taking p = 1, m = 1, and replacing δ by λ, the operator Lδ+m−1
p,q reduces

to Rλq which was considered in [14]. Some applications of the operator Rλq may be found in

[1, 18]. Taking p = 1, q → 1− and replacing m by p, δ by n, the operator Lδ+m−1
p,q reduces

to the operator Dn+p−1, introduced by Goel and Sohi in [8, 9] for functions h ∈ S(p), which
generalizes the well known Ruscheweyh operator Dn [21] for univalent analytic functions
h ∈ S(1).

Clunie and Sheil-Small in [5] studied univalent harmonic functions through some geo-
metric properties of related analytic functions by introducing a shearing technique. Using
this concept of shearing and motivated with Karpuzoǧullari et al. [13] and Li and Liu [17],
involving the operator Lδ+m−1

p,q , we define a class S0
H(m, δ, p, q, α) as follows:
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Definition 1.1. A function f = h+ g ∈ S0
H(m) is said to be in the class S0

H(m, δ, p, q, α)
if the function f satisfy the condition

<e

{
∂p,qL

δ+m−1
p,q (h(z) + g(z))

[m]p,qzm−1

}
> α, 0 ≤ α < 1, (7)

where δ > −m,m ∈ N, 0 < q < p ≤ 1.

If p = 1, q → 1−, m = 1, δ = 0 and replacing α to β, the class S0
H(m, δ, p, q, α) reduces

to the class HP(β) which was studied in [13]. If we take p = 1, q → 1−, g ≡ 0 and
replacing m by p, δ by n in the condition (7), it reduces to the class condition that was
studied by Goel and Sohi in [9] for analytic functions h ∈ S(p).

In this paper, we obtain a sufficient coefficient condition in the form of a coefficient
inequality for the functions f = h + g to be in the class S0

H(m, δ, p, q, α). Results related
to the partial sums are derived when the functions f = h + g ∈ S0

H(m) that satisfy
the sufficient condition for the class S0

H(m, δ, p, q, α). We further consider a subclass of
the class S0

H(m, δ, p, q, α) and then establish a (p, q)-coefficient characterization of the
functions in this subclass. We also obtain distortion bounds, extreme points, convolutions
and convexity for functions belonging to the subclass of S0

H(m, δ, p, q, α).

2. Analogues of Partial Sums in (p,q)-Calculus

In order to obtain certain analogues of patial sums in (p, q)-calculus, we need the fol-
lowing result.

Lemma 2.1. Let f = h + g ∈ S0
H(m), where h and g are given by (1). Then f ∈

S0
H(m, δ, p, q, α) if

∞∑
k=m+1

[k]p,q
[m]p,q

ψk (δ) (|ak|+ |bk|) ≤ 1− α, (8)

where ψk (δ) is defined by (6). The inequality (8) is sharp.

Proof. Using the fact <e(w) > α if and only if |1− α+ w| > |1 + α − w|, to prove the
lemma, it is sufficient to prove for |z| = r (0 < r < 1) that∣∣∣∣∣∂p,qLδ+m−1

p,q (h(z) + g(z))

[m]p,qzm−1
+ 1− α

∣∣∣∣∣−
∣∣∣∣∣∂p,qLδ+m−1

p,q (h(z) + g(z))

[m]p,qzm−1
− (1 + α)

∣∣∣∣∣ > 0. (9)

On using (5), the left-hand-side of (9) is given by∣∣∣∣∣2− α+
∞∑

k=m+1

[k]p,q
[m]p,q

ψk (δ) (|ak|+ |bk|)zk−m
∣∣∣∣∣

−

∣∣∣∣∣−α+
∞∑

k=m+1

[k]p,q
[m]p,q

ψk (δ) (|ak|+ |bk|)zk−m
∣∣∣∣∣

≥ 2

{
1− α−

∞∑
k=m+1

[k]p,q
[m]p,q

ψk (δ) (|ak|+ |bk|) rk−m
}
> 0

as r → 1−, if inequality (8) holds. The harmonic mappings

f(z) = zm +
∞∑

k=m+1

[m]p,q(1− α)

[k]p,qψk(δ)

(
xkz

k + ykz̄
k
)

(10)



1168 TWMS J. APP. AND ENG. MATH. V.13, N.3, 2023

where
∞∑

k=m+1

(|xk|+ |yk|) = 1,

shows that the coefficient inequality given by (8) is sharp. This completes the proof of
Lemma 2.1. �

We now study partial sums of certain multivalent harmonic functions belonging to the
class S0

H(m, δ, p, q, α). We establish some new results giving the sharp bounds of the real
parts of ratios of harmonic multivalent functions to its sequences of partial sums.

Let f = h + g ∈ S0
H(m), where h and g are of the form (1). Then the sequences of

partial sum of functions f are defined by

Ss(f) = zm +

s∑
k=m+1

akz
k +

∞∑
k=m+1

bkz
k := Ss(h) + g,

Sl(f) = zm +
∞∑

k=m+1

akz
k +

l∑
k=m+1

bkz
k := h+ Sl(g),

and

Ss,l(f) = zm +

s∑
k=m+1

akz
k +

l∑
k=m+1

bkz
k := Ss(h) + Sl(g).

In this section, we determine the sharp lower bounds for <e
{ f(z)
Ss(f)

}
, <e

{Ss(f)
f(z)

}
, <e

{ f(z)
Sl(f)

}
,

<e
{Sl(f)
f(z)

}
, <e

{ f(z)
Ss,l(f)

}
, and <e

{Ss,l(f)
f(z)

}
.

Theorem 2.1. Let f = h + g, where h and g are of the form (1). If f satisfies the
condition (8), then

i) <e
(
f(z)

Ss(f)

)
≥ cs+1 − (1− α)

cs+1
, (11)

ii) <e
(
Ss(f)

f(z)

)
≥ cs+1

cs+1 + 1− α
, (12)

where

ck =
[k]p,qψk(δ)

[m]p,q
and ck ≥

 1− α, k = m+ 1,m+ 2, ..., s

cs+1, k = s+ 1, s+ 2, ... .
(13)

These estimates are sharp for the function given by

f(z) = zm +
1− α
cs+1

zs+m, (14)

where cs+1 is given by (13) for k = s+ 1, s ≥ m+ 1 and 0 ≤ α < 1.

Proof. i) In order to prove (11), we may write

ψ1(z) =
cs+1

1− α

{
f(z)

Ss(f)
−
(

1− 1− α
cs+1

)}

= 1 +

cs+1

1−α

∞∑
k=s+1

akz
k

zm +
s∑

k=m+1

akzk +
∞∑

k=m+1

bkzk
.
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It is now sufficient to show that <eψ1(z) > 0 or equivalently∣∣∣∣ψ1(z)− 1

ψ1(z) + 1

∣∣∣∣ ≤ 1.

On the other hand

∣∣∣∣ψ1(z)− 1

ψ1(z) + 1

∣∣∣∣ ≤
cs+1

1−α

∞∑
k=s+1

|ak|

2− 2

(
s∑

k=m+1

|ak|+
∞∑

k=m+1

|bk|

)
− cs+1

1−α

∞∑
k=s+1

|ak|
≤ 1

if and only if
s∑

k=m+1

|ak|+
∞∑

k=m+1

|bk|+
cs+1

1− α

∞∑
k=s+1

|ak| ≤ 1. (15)

In view of (8), it is enough to show that left side of (15) is bounded above by

∞∑
k=m+1

ck
1− α

|ak|+
∞∑

k=m+1

ck
1− α

|bk|,

which is equivalent to

s∑
k=m+1

ck − (1− α)

1− α
|ak|+

∞∑
k=m+1

ck − (1− α)

1− α
|bk|+

∞∑
k=s+1

ck − cs+1

1− α
|ak| ≥ 0;

but it is true because of (13). In order to show that f(z) = zm + 1−α
cs+1

zs+m gives the sharp

result, we observe for z = reiπ/s that

f(z)

Ss(f)
= 1 +

1− α
cs+1

zs → 1− 1− α
cs+1

rs =
cs+1 − (1− α)

cs+1
,

when r → 1−.
ii) In order to prove result (12), we write

ψ2(z) =
cs+1 + 1− α

1− α

{
Ss(f)

f(z)
−
(

1− 1− α
cs+1 + 1− α

)}

= 1−

cs+1+1−α
1−α

∞∑
k=s+1

akz
k

zm +
∞∑

k=m+1

akzk +
∞∑

k=m+1

bkzk
.

Therefore

∣∣∣∣ψ2(z)− 1

ψ2(z) + 1

∣∣∣∣ ≤
cs+1+1−α

1−α

∞∑
k=s+1

|ak|

2− 2

(
s∑

k=m+1

|ak|+
∞∑

k=m+1

|bk|

)
− cs+1−(1−α)

1−α

∞∑
k=s+1

|ak|
≤ 1

if and only if
s∑

k=m+1

|ak|+
∞∑

k=m+1

|bk|+
cs+1

1− α

∞∑
k=s+1

|ak| ≤ 1. (16)
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Since, left side of (16) is bounded above by

∞∑
k=m+1

ck
1− α

|ak|+
∞∑

k=m+1

ck
1− α

|bk|,

the proof is completed because of given condition (8). �

Theorem 2.2. Let f = h + g, where h and g are of the form (1). If f satisfies the
condition (8), then

i) <e
(
f(z)

Sl(f)

)
≥ cl+1 − (1− α)

cl+1
, (17)

ii) <e
(
Sl(f)

f(z)

)
≥ cl+1

cl+1 + 1− α
, (18)

where

ck =
[k]p,qψk(δ)

[m]p,q
and ck ≥

 1− α, k = m+ 1,m+ 2, ..., l

cl+1, k = l + 1, l + 2, ... .
(19)

These estimates are sharp for the function given by

f(z) = zm +
1− α
cl+1

zl+m. (20)

Proof. The proof of Theorem 2.2 is similar to the proof of Theorem 2.1, and therefore it
is omitted. �

Theorem 2.3. Let f = h + g, where h and g are of the form (1). If f satisfies the
condition (8), then

i) <e
(

f(z)

Ss,l(f)

)
≥ cs+1 − (1− α)

cs+1
, (21)

ii) <e
(
Ss,l(f)

f(z)

)
≥ cs+1

cs+1 + 1− α
, (22)

where ck is given by (13). These estimates are sharp for the function given by (14).

Proof. i) We may write

ψ3(z) =
cs+1

1− α

{
f(z)

Ss,l(z)
−
(

1− 1− α
cs+1

)}

= 1 +

cs+1

1−α

( ∞∑
k=s+1

akz
k +

∞∑
k=l+1

bkzk
)

zm +
s∑

k=m+1

akzk +
l∑

k=m+1

bkzk
.

It is sufficient to show that <eψ3(z) > 0, or equivalently

∣∣∣∣ψ3(z)− 1

ψ3(z) + 1

∣∣∣∣ ≤
cs+1

1−α

( ∞∑
k=s+1

|ak|+
∞∑

k=l+1

bk

)
2− 2

(
s∑

k=m+1

|ak|+
l∑

k=m+1

|bk|

)
− cs+1

1−α

( ∞∑
k=s+1

|ak|+
∞∑

k=l+1

bk

) ≤ 1
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if and only if

s∑
k=m+1

|ak|+
l∑

k=m+1

|bk|+
cs+1

1− α

( ∞∑
k=s+1

|ak|+
∞∑

k=l+1

bk

)
≤ 1. (23)

In view of (8), it suffices to show that left side of (23) is bounded above by

∞∑
k=m+1

ck
1− α

|ak|+
∞∑

k=m+1

ck
1− α

|bk|,

which is equivalent to

l∑
k=m+1

ck − (1− α)

1− α
|ak|+

∞∑
k=m+1

ck − (1− α)

1− α
|bk|+

∞∑
k=s+1

ck − cs+1

1− α
|ak|+

∞∑
k=l+1

ck − cs+1

1− α
|bk| ≥ 0.

To see that f(z) = zm + 1−α
cs+1

zs+m gives the sharp result, let z = reiπ/s. Then

f(z)

Ss,l(f)
= 1 +

1− α
cs+1

zs → 1− 1− α
cs+1

(r → 1−).

This proves (21).
ii) Similarly, we obtain the assertion in (22). �

Theorem 2.4. Let f = h + g, where h and g are of the form (1). If f satisfies the
condition (8), then

i) <e
(

f(z)

Ss,l(f)

)
≥ cl+1 − (1− α)

cl+1
, (24)

ii) <e
(
Ss,l(f)

f(z)

)
≥ cl+1

cl+1 + 1− α
, (25)

where ck is given by (19). These estimates are sharp for the function given by (20).

Proof. The proof of Theorem 2.4 is similar to the proof of Theorem 2.1, and therefore it
is omitted. �

3. (p,q)-Analogues of Certain Properties of a Subclass of S0
H(m, δ, p, q, α)

We now consider a subclass T S0
H(m, δ, p, q, α) of functions f = h+g ∈ S0

H(m, δ, p, q, α),
where h and g are of the form

h(z) = zm −
∞∑

k=m+1

|ak|zk and g(z) = −
∞∑

k=m+1

|bk|zk. (26)

Lemma 3.1. Let h and g be of the form (26).Then f = h+ g ∈ T S0
H(m, δ, p, q, α) if and

only if the condition (8) holds.

Proof. ”If part” follows from Lemma 2.1 because T S0
H(m, δ, p, q, α) is a subset of S0

H(m, δ, p, q, α).
For ”Only if part”, assume that f = h+ g ∈ T S0

H(m, δ, p, q, α), where h and g are of the
form (26). Then from (7) we have

<e

{
∂p,qL

δ+m−1
p,q (h(z) + g(z))

[m]p,qzm−1

}
> α, ∀z ∈ D
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which on using the series expansion from (5), gives

<e

{
1−

∞∑
k=m+1

[k]p,q
[m]p,q

ψk (δ) (|ak|+ |bk|)zk−m
}
> α (27)

for all values of z ∈ D. As for real values of z → 1−, the condition (27) proves the inequality
(8). �

Finally, using Lemma 3.1, we obtain (p,q)-analogues of certain properties for the class
T S0
H(m, δ, p, q, α) such as distortion bounds, extreme points, convolutions and convexity.

Theorem 3.1. If f ∈ T S0
H(m, δ, p, q, α), then

|f(z)| ≤ |z|m +
[m]p,q(1− α)

[m+ 1]p,q[δ +m]p,q
|z|m+1 (28)

and

|f(z)| ≥ |z|m − [m]p,q(1− α)

[m+ 1]p,q[δ +m]p,q
|z|m+1. (29)

Proof. Let f = h+ g ∈ T S0
H(m, δ, p, q, α), where h and g are of the form (26). In view of

Lemma 3.1 and letting β =
[m+1]p,q [δ+m]p,q

[m]p,q
, we have

|f(z)| ≤ |z|m +

∞∑
k=m+1

(|ak|+ |bk|)|z|k

≤ |z|m + |z|m+1
∞∑

k=m+1

(|ak|+ |bk|)

= |z|m +
1

β
|z|m+1

∞∑
k=m+1

β (|ak|+ |bk|)

≤ |z|m +
1

β
|z|m+1

∞∑
k=m+1

[k]p,q
[m]p,q

ψk (δ) (|ak|+ |bk|)

≤ |z|m +
1− α
β
|z|m+1.

This proves (28). The proof of (29) is similar to the proof of (28). �

From the lower bound of |f(z)| given in (29), we obtain following covering result.

Corollary 3.1. If f ∈ T S0
H(m, δ, p, q, α), then{

w ∈ C : |w| < 1− [m]p,q(1− α)

[m+ 1]p,q[δ +m]p,q

}
⊂ f(D).

Theorem 3.2. A function f ∈ T S0
H(m, δ, p, q, α) if and only if

f(z) =

∞∑
k=m

[xkhk(z) + ykgk(z)] , (30)
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where

hm(z) = zm, hk(z) = zm − [m]p,q(1− α)

[k]p,qψk(δ)
zk (k = m+ 1,m+ 2, ...)

gk(z) = zm − [m]p,q(1− α)

[k]p,qψk(δ)
zk (k = m+ 1,m+ 2, ...)

xk, yk ≥ 0, k = m,m+ 1, ..., xm = 1−
∞∑

k=m+1

(xk + yk) . (31)

In particular, the points {hk} and {gk} are called the extreme points of the closed convex
hull of the class T S0

H(m, δ, p, q, α) denoted by clcoT S0
H(m, δ, p, q, α).

Proof. Let f be given by (30). Using (31), we can write

f(z) = zm −
∞∑

k=m+1

[m]p,q(1− α)

[k]p,qψk(δ)

(
xkz

k + ykz
k
)

which by Lemma 3.1 proves that f ∈ T S0
H(m, δ, p, q, α), since for this function

∞∑
k=m+1

[k]p,qψk(δ)

[m]p,q (1− α)

[m]p,q(1− α)

[k]p,qψk(δ)
(xk + yk)

=
∞∑

k=m+1

(xk + yk) = 1− xm ≤ 1.

Thus, f ∈ clcoT S0
H(m, δ, p, q, α). Conversely, let f = h + g ∈ T S0

H(m, δ, p, q, α), where h
and g are of the form (26). Set

xk =
[k]p,qψk(δ)

[m]p,q(1− α)
|ak| , yk =

[k]p,qψk(δ)

[m]p,q(1− α)
|bk| .

Then on using (31), we obtain

f(z) = zm −
∞∑

k=m+1

|ak| zk −
∞∑

k=m+1

|bk| zk

= zm −
∞∑

k=m+1

xk
[m]p,q(1− α)

[k]p,qψk(δ)
zk −

∞∑
k=m+1

yk
[m]p,q(1− α)

[k]p,qψk(δ)
zk

= zm −
∞∑

k=m+1

xk {zm − hk(z)} −
∞∑

k=m+1

yk {zm − gk(z)}

=

[
1−

∞∑
k=m+1

(xk + yk)

]
zm +

∞∑
k=m+1

{xkhk(z) + ykgk(z)}

which is of the form (30). This proves Theorem 3.2. �

Theorem 3.3. For 0 ≤ β < α < 1, let f ∈ T S0
H(m, δ, p, q, α) and F ∈ T S0

H(m, δ, p, q, α).
Then f ∗ F ∈ S0

H(m, δ, p, q, α) ⊂ S0
H(m, δ, p, q, β).

Proof. Let

f(z) = zm −
∞∑

k=m+1

|ak|zk −
∞∑

k=m+1

|bk|zk
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and

F (z) = zm −
∞∑

k=m+1

|Ak|zk −
∞∑

k=m+1

|Bk|zk.

Then

(f ∗ F ) = zm +
∞∑

k=m+1

|ak||Ak|zn +
∞∑

k=m+1

|bk||Bk|zk

Since F ∈ T S0
H(m, δ, p, q, α), by Lemma 3.1, we have |Ak| ≤ 1 and |Bk| ≤ 1. Therefore,

∞∑
k=m+1

(
[k]p,qψk(δ)

[m]p,q(1− α)
|ak||Ak|+

[k]p,qψk(δ)

[m]p,q(1− α)
|bk||Bk|

)

≤
∞∑

k=m+1

(
[k]p,qψk(δ)

[m]p,q(1− α)
|ak|+

[k]p,qψk(δ)

[m]p,q(1− α)
|bk|
)
≤ 1

By Lemma 3.1, it follows that f ∗ F ∈ T S0
H(m, δ, p, q, α). Further, it is obvious that

T S0
H(m, δ, p, q, α) ⊂ T S0

H(m, δ, p, q, β). �

Theorem 3.4. The class T S0
H(m, δ, p, q, α) is closed under convex combination.

Proof. For i = 1, 2, 3 . . . , let fi ∈ T S0
H(m, δ, p, q, α) be given by

fi(z) = zm −
∞∑

k=m+1

|ak,i|zk −
∞∑

k=m+1

|bk,i|zk.

Then by (8), we have
∞∑

k=m+1

[k]p,q
[m]p,q

ψk (δ) {|ak,i|+ |bk,i|} ≤ 1− α. (32)

For
∑∞

i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi is

∞∑
i=1

tifi(z) = zm −
∞∑

k=m+1

( ∞∑
i=1

ti|ak,i|

)
zk −

∞∑
k=m+1

( ∞∑
i=1

ti|bk,i|

)
zk.

Then on using Lemma 3.1, we see that
∞∑

k=m+1

[k]p,q
[m]p,q

ψk (δ)

(∣∣∣∣∣
∞∑
i=1

ti|ak,i|

∣∣∣∣∣+

∣∣∣∣∣
∞∑
i=1

ti|bk,i|

∣∣∣∣∣
)

≤
∞∑
i=1

ti

{ ∞∑
k=m+1

[k]p,q
[m]p,q

ψk (δ) (|ak,i|+ |bk,i|)

}
≤ 1− α,

and so
∑∞

i=1 tifi(z) ∈ T S0
H(m, δ, p, q, α). �

4. Conclusion

Recently, in Geometric Function Theory, q-calculus and (p, q)-calculus are being ap-
plied not only in defining several linear operators but also in defining various analogue of
previously defined well known classes of analytic as well as harmonic functions. In this
study, a (p, q)-analogue of Ruscheweyh operator Lδ+m−1

p,q for multivalent functions is be-

ing defind by (3). In view of the shearing technique, a class S0
H(m, δ, p, q, α) of functions

f = h + g ∈ S0
H(m) is defined in Definition 1.1 by involving the operator Lδ+m−1

p,q . A
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sufficient coefficient condition for f ∈ S0
H(m, δ, p, q, α) is obtained as Lemma 2.1. With

the use of this coefficient condition, sharp bounds of the real parts of ratios of functions
f ∈ S0

H(m) to its partial sums Ss(f), Sl(f) and Ss,l(f) are obtained in Section 2. Further,
in Section 3, it is proved that the coefficient condition (8) is necessary and sufficient for the
functions in a subclass T S0

H(m, δ, p, q, α). Again in Section 3, for functions in this subclass,
results based on bounds, convolution, extreme points and on convexity are derived.

There is a possibility of extension of the results obtained in this paper to some gener-
alized classes associated with the Janowski type of functions as well as the Rønning class
of functions. For this, we may define classes S0

H(m, δ, p, q, A,B) and k-S0
H(m, δ, p, q, α) of

functions f = h+ g ∈ S0
H(m) satisfying, respectively, the conditions

∂p,qL
δ+m−1
p,q (h(z) + g(z))

[m]p,qzm−1
≺ 1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1) ,

where the notion ≺ denotes the familiar subordination and

<e

{
∂p,qL

δ+m−1
p,q (h(z) + g(z))

[m]p,qzm−1

}
> k

∣∣∣∣∣∂p,qLδ+m−1
p,q (h(z) + g(z))

[m]p,qzm−1
− 1

∣∣∣∣∣+ α, 0 ≤ α < 1.

Obviously, if A = 1−2α,B = −1, then S0
H(m, δ, p, q, A,B) = S0

H(m, δ, p, q, α) and if k = 0,
then k-S0

H(m, δ, p, q, α) = S0
H(m, δ, p, q, α).
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