OBJECT RECOGNITION WITH COMPETITIVE
CONVOLUTIONAL NEURAL NETWORKS

TUGBA ERKOC

ISIK UNIVERSITY
JUNE, 2023

OBJECT RECOGNITION WITH COMPETITIVE CONVOLUTIONAL
NEURAL NETWORKS

TUGBA ERKOC

Isik University, Graduate School of Higher Education
Computer Engineering Doctoral Program, 2023

This thesis is submitted to the Graduate School of Higher Education at Isik
University for the degree of Doctor of Philosophy (PhD) in Computer Engineering

ISIK UNIVERSITY
JUNE, 2023

ISIK UNIVERSITY
GRADUATE SCHOOL OF HIGHER EDUCATION
COMPUTER ENGINEERING DOCTORAL PROGRAM

OBJECT RECOGNITION WITH COMPETITIVE CONVOLUTIONAL NEURAL

NETWORKS

TUGBA ERKOC
APPROVED BY:
Prof. Dr. M. Taner Eskil Isik University
(Thesis Supervisor)
Assoc. Prof. Erkin Dingmen Isik University
Assist. Prof. Emine Ekin Isik University
Prof. Dr. Bahadir K. Giintiirk Istanbul Medipol University
Assoc. Prof. Yusuf Yaslan Istanbul Technical University

APPROVAL DATE: 12/06/2023

* "5689 Sayil Kisisel Verilerin Korunmasi Kanunu Hiikiimlerine Gére Gevrimigi Yayin Dosyasinda Bulunan Kisisel Veriler Ve Islak imzalar Silinmistir.”

OBJECT RECOGNITION WITH COMPETITIVE
CONVOLUTIONAL NEURAL NETWORKS

ABSTRACT

In recent years, Artificial Intelligence (Al) has achieved impressive results, often sur-
passing human capabilities in tasks involving language comprehension and visual
recognition. Among these, computer vision has experienced remarkable progress,
largely due to the introduction of Convolutional Neural Networks (CNNs). CNNs are
inspired by the hierarchical structure of the visual cortex and are designed to detect
patterns, objects, and complex relationships within visual data. One key advantage is
their ability to learn directly from pixel values without the need for domain expertise,
which has contributed to their popularity. These networks are trained using supervised
backpropagation, a process that calculates gradients of the network’s parameters
(weights and biases) with respect to the loss function. While backpropagation enables
impressive performance with CNNSs, it also presents certain drawbacks. One such
drawback is the requirement for large amounts of labeled data. When the available data
samples are limited, the gradients estimated from this limited information may not
accurately capture the overall data behavior, leading to suboptimal parameter updates.
However, obtaining a sufficient quantity of labeled data poses a challenge. Another
drawback is the requirement of careful configuration of hyperparameters, including the
number of neurons, learning rate, and network architecture. Finding optimal values for
these hyperparameters can be a time-consuming process. Furthermore, as the
complexity of the task increases, the network architecture becomes deeper and more
complex. To effectively train the shallow layers of the network, one must increase the
number of epochs and experiment with solutions to prevent vanishing gradients.
Complex problems often require a greater number of epochs to learn the intricate
patterns and features present in the data. It’s important to note that while CNNs aim to
mimic the structure of the visual cortex, the brain’s learning mechanism does not
necessarily involve back-propagation. Although CNNs incorporate the layered
architecture of the visual cortex, the reliance on backpropagation introduces an

artificial learning procedure that may not align with the brain’s actual learning process.

Therefore, it is crucial to explore alternative learning paradigms that do not rely on
backpropagation.

In this dissertation study, a unique approach to unsupervised training for CNNSs is
explored, setting it apart from previous research. Unlike other unsupervised methods,
the proposed approach eliminates the reliance on backpropagation for training the
filters. Instead, we introduce a filter extraction algorithm capable of extracting dataset
features by processing images only once, without requiring data labels or backward
error updates. This approach operates on individual convolutional layers, gradually
constructing them by discovering filters. To evaluate the effectiveness of this
backpropagation-free algorithm, we design four distinct CNN architectures and
conduct experiments. The results demonstrate the promising performance of training
without backpropagation, achieving impressive classification accuracies on different
datasets. Notably, these outcomes are attained using a single network setup without
any data augmentation. Additionally, our study reveals that the proposed algorithm
eliminates the need to predefine the number of filters per convolutional layer, as the
algorithm automatically determines this value. Furthermore, we demonstrate that filter
initialization from a random distribution is unnecessary when backpropagation is not

employed during training.

Keywords: Convolutional Neural Networks, Unsupervised Learning, Feature
Extraction

REKABETCI EVRISIMLI SINIR AGLARI ILE NESNE TANIMA

OZET

Son yillarda Yapay Zeka (YZ) dili anlama ve gorsel tanimayi igeren gorevlerde
genellikle insan yeteneklerini geride birakarak etkileyici sonuglar elde etti. Bunlarin
arasinda, bilgisayarla gorme, bliyiik Ol¢lide Evrigimli Sinir Aglariin (ESA) ortaya
cikmasi ile dikkate deger bir ilerleme kaydetti. ESAlar, gorsel korteksin hiyerarsik
yapisindan ilham alarak gorsel verilerdeki kaliplari, nesneleri ve karmasik iligkileri
tespit etmek icin tasarlanmistir. En Onemli avantajlarindan biri, popiilerliklerine
katkida bulunan, bir uzmana ihtiya. Duymadan dogrudan piksel degerlerinden
O0grenme yetenekleridir. Bu aglar, kayip fonksiyonuna gore ag parametrelerinin
(agriliklar ve egilimler) gradyanlarini hesaplayan denetimli geri yayilim ile egitilir.
Geri yayilim, ESAlarda etkileyici bir performans saglarken, baz1 dezavantajlar da
getirir. Bu dezavantajlardan biri biiyiik miktarlarda etiketlenmis veri gereksinimidir.
Mevcut veri 6rnekleri sinirli oldugunda, bu smirli bilgiden hesaplanan gradyanlar ,
genel veri davranmisint dogru bir sekilde yakalayamayabilir ve bu da yetersiz
parameter gilincellemelerine yol acar. Bununla birlikte, yeterli miktarda etiketlenmis
veri elde etmek bir zorluk teskil etmektedir. Diger nir dezavantaj ndron sayisi,
O0grenme hizi ve ag mimarisi dahil olmak tizere hiperparametrelerin dikkatli bir
sekilde yapilandirilmast gerekliligidir. Bu hiperparametreler i¢in en uygun degerleri
bulmak zaman alici bir siire¢ olabilir. Ayrica, gorevin karmasikligi arttikca ag
mimarisi daha derin ve karmasik bir hale gelir. Agin s1g katmanlarini etkili bir
sekilde egitmek icin, epok sayisi artirilmali ve kaybolan gradyanlar1 dnlemek i¢in
¢Oziimler tiretilmelidir. Karmasik problemler, verilerde bulunan karmasik kaliplari ve
ozellikleri 6grenmek icin genellikle daha fazla sayida epok gerektirir. ESAlar gorsel
korteksin yapisint taklit etmeyi amaglasa da, beynin 6grenme mekanizmasinin
mutlaka geri yayilimi icermedigini not etmek onemlidir. ESAlar gorsel korteksin
katmanli mimarisini i¢cermelerine ragmen, geri yayilima dayanan 6grenme, beynin
gercek 0grenme silireciyle uyumlu olmayabilen yapay bir 6§renme prosediirii sunar.
Bu nedenle, geri yayilima dayanmayan alternatif 6grenme paradigmalarini kesfetmek

Onem teskil etmektedir.

Bu tez ¢alismasinda, onceki arastirmalardan farkli olarak ESAlar i¢in denetimsiz
egitime yonelik benzersiz bir yaklasim arastirilmaktadir. Onerilen yaklasim diger
denetimsiz yontemlerin aksine, filtrelerin egitimi i¢in geri yayilmaya olan baglilig
kaldirir. Geri yayilim ile 6grenme yerine, veri etiketleri veya geriye doniik hata
guncellemeleri gerektirmeden goriintiileri yalnizca bir kez isleyerek veri kiimesi
Ozelliklerini ¢ikarabilen bir filtre ¢ikarma algoritmasi sunuyoruz. Bu yaklasim
bireysel Evrisimli katmanlar iizerinde ¢alisir ve filtreleri egitim 6rnekleri tizerinden
kesfederek evrisim katmaninin filtrelerini kademeli olarak olusturur. Bu geri
yayilimsiz algoritmanin etkinligini degerlendirmek i¢in dort farkli ESA mimarisi
tasarladik ve deneyler yaptik. Sonuglar, farkli veri kiimelerinde -etkileyici
siiflandirma dogruluklar1 elde ederek, geri yayilim olmadan egitimin miimkiin
olabilecegini gostermektedir. Ozellikle, bu sonuglara herhangi bir veri arttirmm
olmadan vet ek bir ag kullanilarak ulasilmistir. Ek olarak, calismamizda oOnerilen
algoritma, evrisim katmani basina filtre sayisin1 6nceden belirleme ihtiyacini ortadan
kaldirmaktadir c¢linkii algoritmamiz bu degeri otomatik olarak belirlemektedir.
Ayrica, egitim sirasinda geri yayilim kullanilmadigindan rastgele bir dagilimdan

filtrelere ilkdeger verilmesinin gereksiz oldugunu da bu ¢alisma ile gosterdik.

Anahtar Kelimeler: Evrisimli Sinir Aglari, Denetimsiz Ogrenme, Ozellik Cikarma

ACKNOWLEDGEMENTS

I am deeply grateful to the individuals who have made significant contributions to
the completion of this dissertation: First and foremost, | would like to express my
immense gratitude to Prof. Dr. M. Taner Eskil, my supervisor, for their guidance and
support throughout this research journey. Their invaluable insights and constructive
feedback have played a pivotal role in shaping this dissertation. | extend my heartfelt
appreciation to Assoc. Prof. Erkin Dingmen, Assist. Prof. Emine Ekin, Prof. Dr.
Hazim K. Ekenel and Prof. Dr. Ercan Solak for generously dedicating their time and
offering thoughtful suggestions. Their scholarly guidance has significantly enhanced
the quality of this research. Additionally, I am sincerely thankful to my thesis jury
members Prof. Dr. Bahadir K. Giintiirk and Assoc. Prof. Yusuf Yaslan for their
interest and support. 1 am grateful to my colleagues and friends who have provided
moral support and offered encouragement throughout this dissertation. Their
friendship has made this challenging journey more enjoyable. | would like to express
special thanks to my family for their support, love, and understanding. Their
encouragement and belief in my abilities have served as the driving force behind my
accomplishments. In conclusion, | would like to acknowledge the contributions of all
those who have played a part in shaping this dissertation. Your support and
encouragement have been indispensable, and | am truly grateful for your

involvement.

Tugba ERKOC

This work was supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) under Grant 118E293.

Vi

This study is dedicated to my family.

vii

TABLE OF CONTENTS

APPROVAL PAGE ..ottt i
ABSTRACT ettt ettt bbb s ii
(@)74 = [O TR U TP iv
ACKNOWLEDGEMENTS ...ttt vi
LIST OF CONTENTS ..ot viii
LIST OF TABLES ...t bbb Xi
TABLE OF FIGURESottt Xiil
LIST OF ALGORITHMS ...ttt XV
LIST OF ABBREVIATIONS ... XVi
CHAPTER L .ottt bbb et re s e e 1
1. INTRODUCTION ..ottt e e e e e naeennee e 1
I I O 1] 11 o TSRS 4

1.2. Organization of ThiS THESIS.......c.cciiriireiiiereee e 4
CHAPTER 2 .ttt ettt bbbt ne e e e 6
2. CONVOLUTIONAL NEURAL NETWORKS ...t 6
2.1 Convolutional Neural Network ArchiteCture...........cccooveveveneieienisieieen, 7

2.1.1 ConvolUutional LAYETc..ooiiiiiiieieiesie e 7

2.1.1.1 ACtivation FUNCHIONcccviiiieieie e 9

2.1.1.2 Convolution OPErationccooererirerinieiesese e 10

2.1.2 POOKING LAYE ...ttt 13

2.1.3 Fully Connected LaYer..........ccueieieiiirieiie it 15

2.1.4 OULPUL LAYET ..ottt e s 17
2.1.5Training OF CNN ...oooiiiiiii e 18
CHAPTER 3 .ottt sttt re e es 21
3. LITERATURE SURVEYooiiiiiiiieieieieie sttt 21
L INITIAD STEPS ..t 21

viii

3.2 Backpropagation Eraccccceiieiiiiiii e 22

3.2.1 Fundamental Deep Learning Problemccccooeiiiiiiiiiiiiicee, 23

3.2.2 Revival of the Neural Networks Research..........ccccoceveveninineninnnen, 24

Be2.3 GPU Bl s 24

3.2.4 Unsupervised Learning with Backpropagation..............cccccevvvevvenenne. 27

3.3 NEOCOGNITION ...t bbb 30
CHAPTER 4 ...t bbbt 32
A, APPROACH. ...ttt e e e e e na e e e nae e 32
o I Y oo [0 Tox o] TSP PR RSP 32

4.2 Convolutional Filter DISCOVETYcccciiiiiiiinisieeieiese e 34

4.2.1 Center of Gravity Based Candidate Filter Extraction...............c......... 35

4.2.2 Unsupervised Learning Algorithm for Convolutional Layers of CCNN
ATCNITECTUIE ...ttt ettt 37
CHAPTER 5 ottt e e e e nna e e naeeanneas 41
5. EXPERIMENTS ...ttt 41
5.1 MOUEI TYPES ..ottt bbbt 41

5.2 EXPEriMENt SELUPD......eiiiiiieieitieeie ettt 42

5.3 DAtASEESttt et 43

B3 L IMINIST Lot 43

5.3.2 EMNIST-DIgITS....cecieeieiiieieiiesieese e se e ens 43

5.3.3 KUZUSNIJI-MNIST ..ot 44

5.3.4 FashioN-MNISTooiiiee e 44

5.4 Performance METFICS.......ccviiiieieieese st 44

5.5 EXPeriment DetailScooiiiiiiiie e 45
CHAPTER B ..ottt bt 46
B. RESULT S .. e et e e e e e ra e e e neeeanneas 46
6.1 MNIST Experiment RESUILSccooivieiiiiiicce e 46

6.2 EMNIST-Digits EXperiment RESUITScoooviieiiiiiiieic e 48

6.3 Kuzushiji-MNIST Experiment ReSUltS.........cccocvvveviiiiiiie e 50

6.4 Fashion-MNIST Experiment RESUILScooviiieiiniieie e 52

6.5 Filters Discovered via Proposed Unsupervised Process..........ccccceevevuvenee. 54

6.5.1 MINIST DataSetcveeeiiieiiiee ettt 54

6.5.2 EMNIST-DIgits Dataset..........ccceeviiiiiieiieiiieiee e 55

6.5.3 KUzushiji-MNIST DataSetcccovrverriririirieiieieiere e 56

6.5.4 Fashion-MNIST DataSetccoooeeeeeeeeeeeeeeee 56

6.5.5 Extracted Filters in Subsequent Layers.........ccccvvevevieeneeiesieesieereennns 57
6.6 Samples with Incorrect Classificationccccceveveiiienininiseeeeen 58
6.6.1 Incorrectly Classified MNIST Samples.........ccccoovevevieiieie e 58
6.6.2 Incorrectly Classified EMNIST-Digits Samples...........ccccocvvvivinennen. 60
6.6.3 Incorrectly Classified Kuzushiji-MNIST Samples........ccccceevevvenenne. 62
6.6.4 Incorrectly Classified Fashion-MNIST Samples............cccoovviiinennee. 63
CHAPTER 7 ottt 65
7. DISCUSSION ...ttt e et e e s e e e s e e neeeannes 65
7.1 Comparison of Performance Against Other Studies...........cccoeeiivereiienen. 66
7.1.1 Comparison of Performance Against Unsupervised Studies.............. 66
7.1.2 Comparison of Performance Against Mixed Studies............cccccoeunenne. 67
7.1.3 Comparison of Performance Against Supervised Studies 68
7.2 Proof of Linear Independence of the Extracted Filters............c.cccccevinnnn. 70

7.3 Proof of Independence over the Order of Candidate Processing for Filter
EXEPACTION.. .ttt bbb 71
7.4 Comparison to Low-Capacity CNINccccoviiiiiiieseseeeeee 77
CHAPTER 8 ...ttt 78
ST 0@ N0 I 1] [78
REFERENCES.........coiiii ettt 82
CURRICULUM VITAE ...ttt ee ettt e et anae e 91

LIST OF TABLES

Table 5.1 CCNN networks that are used in the experiments with various datasets.
Convolutional layers either use 5 x 5 or 3 x 3 filters. Maxpooling is applied on the
feature maps on 2 x 2 windows with strides of 2. The size of the convolutional filters

is denoted with n while the maxpooling window size is shown with m. 42
Table 6.1 Extracted filter counts and the test accuracy of individual models on
IMINIST GALASEL. ...veviiveiiieiieiee ettt bbbt 46
Table 6.2 The confusion matrix represents the performance of Model A on the
IMINIST QALASEL. ..ottt bbbt 47
Table 6.3 Performance metrics of Model type A for individual classes of MNIST
(0 F L L ST USSR 48
Table 6.4 Extracted filter counts and the test accuracy of individual models on
EMNIST-DIgits dataSet.ccoviiiiiieiecic i 49
Table 6.5 The confusion matrix represents the performance of Model A on the
EMNIST-DIgits dataSet.ccoviiiiiieiecic i 49
Table 6.6 Performance metrics of Model type A for individual classes of EMNIST-
DIQILS AALASEL.evieiicie ettt sreereenes 50
Table 6.7 Extracted filter counts and the test accuracy of individual models on
KUZUShiJi-MNIST Aataset.ccveiieiiiiiesieeie e 51
Table 6.8 The confusion matrix represents the performance of Model B on the
KUZUShiJi-MNIST Aataset.ccveiieiiiiiesieeie e 51
Table 6.9 Performance metrics of Model type B for individual classes of Kuzushiji-
IMINTST GALASEL. ...ttt e eeenes 52
Table 6.10 Extracted filter counts and the test accuracy of individual models on
Fashion-MNIST dataset.cooiiiiieiiiie e 53

Table 6.11 The confusion matrix represents the performance of Model B on the
Fashion-MNIST dataset. The classes are assigned to numbers ranging from 0 to 9. In
order, the class labels correspond to Tshirt/top, Trouser, Pullover, Dress, Coat, San-

dal, Shirt, Sneaker, Bag, and Ankle bOOt.ccooviiiiiiiie e 53
Table 6.12 Performance metrics of Model type B for individual classes of Fashion-
AT S e 17 S OSSR 54

Xi

file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962078
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962078
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962081
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962081
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962084
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962084

Table 7.1 Comparison between previous works and our method for the number of
epochs of training needed for convolutional filters, whether data augmentation and

ensemble of networks are used. The legend of the table: v: applied, x : not applied,
NA: no information available.ccooiiiii e 66

Table 7.2 Comparison of the proposed method with other unsupervised studies...... 67
Table 7.3 Comparison of the proposed method with other mixed studies. 68
Table 7.4 Comparison of the proposed method with other supervised studies........... 69

Table 7.5 Comparison of best performing model filter counts and test accuracy
before and after addition of candidate shuffling. The median of the 50 runs of the
EXPeriments IS alSO PreSENTEA.ccueieeiieiece e 72

Xii

file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962093
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962093
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962093

TABLE OF FIGURES

Figure 2.1 A typical Convolutional Neural Networkccccooeveiininiiiiiccee, 6

Figure 2.2 CNNs can recognize high level concepts like face by hierarchically
building feature detectors starting from basic edge like shapes to complex features
LI BYBS. ..ttt et e et e e e re e e re e reaneenres 7

Figure 2.3 Sigmoid, hyperbolic tangent and ReLU activation function curves shown.
ReLU is most popular activation function in CNNS.ccccceviiiiiiieieccc e, 9

Figure 2.4 PReLU and Leaky ReLU activation function curves. PReLU and Leaky
ReLU allows a small gradient for negative values whereas original ReLU strictly sets
the Negative VAIUES 0 ZEI0.coviiviieieesisieeeee e 10

Figure 2.5 Visualization of convolution operation on with a5 x 5 image and a 3 x 3
filter with a stride of L PIXel.ooiiii e 11

Figure 2.6 Visualization of convolution operation on with a5 x 5 image and a 3 x 3
filter with a stride of 1 pixel and zero padding of 1 pixel as per Equation 2.2. Green
background is padding while the image data is shown with light blue background.. 12

Figure 2.7 Convolution layer applies convolution operation to the input images. The

feature maps are then introduced to non-linearity with activation function............... 13
Figure 2.8 Visualization of max pooling operation on with a 4 x 4 image with 2 x 2
WINAOW Size and StrdES OF 2.cvoiiiiiiiiicee e 14
Figure 2.9 Fully connected layers learn the relations between the high-level
DA IS . . e e 15
Figure 2.10 Single neuron in Fully Connected Layer.ccoceveiiieniiincsiee 16

Figure 2.11 Neurons dropped out with dropout regularization technique do not
receive or transmit signal. Dropout with probability p = 0.5 is applied to the
0TS0 PP 16

Figure 2.12 Output Layer iN @ CNN........cccoiieiiieiie e 17

Figure 4.1 The proposed unsupervised backpropagationless filter extraction method.
Images/feature maps are converted to candidates from which the filters are
discovered without label information. Any filter candidate ci can become a new filter
for the current layer if the maximum similarity value is less than a preset threshold. If
not, filter with the highest similarity’s weights is updated.cccevviiiiiiiiinnen 33

Figure 6.1 First layer filters of Model A trained with MNIST dataset..............c........ 55
Figure 6.2 First layer filters of Model B trained with Kuzushiji-MNIST dataset...... 55

Xiii

file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962113
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962114
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962114
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962114
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962115
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962115
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962116
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962116
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962116
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962117
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962117
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962118
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962118
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962118
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962119
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962119
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962120
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962120
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962121
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962121
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962122
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962124
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962125
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962125
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962125
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962125
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962125
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962126
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962127

Figure 6.3 First layer filters of Model A trained with EMNIST-Digits dataset. 55
Figure 6.4 First layer filters of Model B trained with Fashion-MNIST dataset. 57

Figure 6.5 The visualization illustrates the collection of 54 features obtained from the
MNIST training images using Model type A in the second layer.cccccevvennne. 57

Figure 6.6 The test images belonging to digit class 1 from the MNIST dataset are
inaccurately classified by Model A. Among these images, the second, fourth, and
fifth samples are mistakenly labeled as 6, potentially due to the presence of artifacts

and curved elements Within the IMAgeS.ccecviieiiece e 59
Figure 6.7 The test images belonging to digit class 9 from the MNIST dataset are
inaccurately labeled by MOdel A.........covoiiei e 59
Figure 6.8 Misclassified images from the digit class 6 in the EMNIST-Digits dataset,
as predicted by MOGEL A.oooeece e 60
Figure 6.9 The test images belonging to digit class 8 from the EMNIST-Digits
dataset are inaccurately labeled by Model A............coooooieeieece e, 61
Figure 6.10 Misclassified images from the class 3 in the Kuzushiji-MNIST dataset,
as predicted by MOdEl B.cooiiiieece e 62
Figure 6.11 The test images belonging to digit class 2 from the Kuzushiji-MNIST
dataset are inaccurately labeled by Model B.............cccooveiiiieii i 63

Figure 6.12 The test images belonging to the Bag class that were misclassified. 64
Figure 6.13 The mislabeled test images from the Shirt class, which were incorrectly

classified as similar classes by Model B. ..., 64
Figure 7.1 Boxplot of the number of filters extracted from MNIST dataset for both
layers of Model A with candidate Shuffling.c.ccooiiiiiiiii, 72
Figure 7.2 Boxplot of the number of filters extracted from EMNIST-Digits dataset
for both layers of Model A with candidate shuffling.cccocooeiiiniiiien, 74
Figure 7.3 Boxplot of the number of filters extracted from Kuzushiji-MNIST dataset
for both layers of Model B with candidate shuffling.cccccooeviiniiiicn, 74
Figure 7.4 Boxplot of the number of filters extracted from Fashion MNIST dataset
for both layers of Model B with candidate shuffling.cccccooeiiininiicn, 74
Figure 7.5 Boxplot of the test accuracy distribution of Model A over 50 runs on
MNIST dataset with candidate ShUfFliNg.ccoccoiiiiiiiiie 75
Figure 7.6 Boxplot of the test accuracy distribution of Model A over 50 runs on
EMNIST-Digits dataset with candidate shuffling.ccocoviiiiiiin 75
Figure 7.7 Boxplot of the test accuracy distribution of Model B over 50 runs on
Kuzushiji-MNIST dataset with candidate Shuffling..........cccccooeiiniiiniiiccen, 76
Figure 7.8 Boxplot of the test accuracy distribution of Model B over 50 runs on
Fashion MNIST dataset with candidate Shuffling.............ccccoveiiiiiiiiii e 76

Xiv

file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962128
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962129
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962130
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962130
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962132
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962132
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962134
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962134
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962135
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962135
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962136
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962136
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962137
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962138
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962138
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962139
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962139
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962140
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962140
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962141
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962141
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962143
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962143
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962142
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962142
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962144
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962144
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962145
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962145
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962146
file:///C:/Users/Tugba/Desktop/santimetre/tugba_new.docx%23_Toc137962146

LIST OF ALGORITHMS

Algorithm 4.1 Candidate Set Creation Process..............c.c.ccovuenn..
Algorithm 4.2 CCNN CoG Based Unsupervised Learning Algorithm

XV

AE:
Al:
AiS:
ANN:
CAE:
CNN:
CCNN:
CoG:
DEC:
FN:

FP:
GAN:
GMM:
GPU:
GS:
KL:
MLP:
MNIST:
NIST:
PReLU:
RelLU:
RS:
SAE:
SGD:

LIST OF ABBREVIATIONS

Auto Encoder

Artificial Intelligence

Add if Silent

Artificial Neural Network
Convolutional Auto Encoder
Convolutional Neural Network
Competitive Convolutional Neural Network
Center of Gravity

Deep Embedded Clustering

False Negative

False Positive

Generative Adversarial Network
Gaussian Mixture Model

Graphics Processing Unit

Grid Search

Kullback-Leibler

Multi-Layer Perceptron

Modified NIST

National Institute of Standards and Technology
Parametrized Rectified Linear Unit
Rectified Linear Unit

Random Search

Stacked Auto Encoder

Stochastic Gradient Descent

XVi

SMBO: Sequential Model Based Optimization
TN: True Negative

TP: True Positive

WTA: Winner Take All

XVil

CHAPTER 1

1. INTRODUCTION

In recent years, CNNs have emerged as the predominant approach for image
classification tasks. Even though it gained popularity in recent years, the history of
CNNs dates back to 1959. Hubel and Weisel (Hubel, Wiesel, 1959) discovered the
presence of alternating set of neurons in the visual cortex of a cat that fire when an
oriented edge stimulus is presented. Fukushima (Fukushima, 1980) proposed the first
CNN architecture that was based on the findings of Hubel and Weisel (Hubel,
Wiesel, 1959). Unlike the majority of modern CNN implementations, Neocognitron
deviated from using gradient-based algorithms for training. Later in 1998 (LeCun,
Bottou, Bengio, Haffner, 1998), LeCun et. al proposed a CNN architecture that is
similar to Neocognitron but trained with the backpropagation algorithm, which has
become the standard for CNNs today. Many different CNN architectures
(Krizhevsky, Sutskever, Geoffrey E., 2012; Simonyan Zisserman, 2014; Zeiler
Fergus, 2014) were proposed since LeNet. Most of the architectures proposed in the
literature are similar; they consist of several convolutional, pooling and fully
connected layers and they are trained through gradient-based backpropagation.

A CNN can be considered as a network that is composed of a feature extractor
and a classifier. The feature extractor implements convolutional and pooling layers
while the classifier part consists of fully connected and softmax layers. Each of these
layers should be carefully preconfigured to achieve reasonable results with training.
The hyperparameters that have to be initialized only for the convolutional layer
include the number of filters and filter size in each layer, stride, activation function
and the learning rate. There is unfortunately no rule of thumb for selecting the right

value for the hyperparameters of a network. Each application domain requires

specific settings to attain the optimal architecture, which are generally obtained
through empirical hyperparameter optimization methods.

In traditional CNN implementations, specification of the network architecture
is followed by initialization of the weights of the entire network from a specific
distribution, often without any regard to the input domain (Glorot, Bengio, 2010; He,
Zhang, Ren, Sun, 2015). The expectation of a researcher in this stage is to
coincidentally initialize a set of neurons at such points in the search space that a
gradient based walk will progress their weights to some optima. Since it is
coincidental, the researcher has no other choice than generating a superfluous
number of neurons at each layer to be able to span the search space. Moreover, the
experiments will produce varying results, some of which are subpar due to
circumstantial starting points in the search space. Thus, decision on the number of
neurons/features and the initialization of them in the convolutional layers of CNN are
problems that needs a less tedious process than hyperparameter optimization
methods.

The convolutional layers of CNN architectures serve for one purpose only;
extraction of good features to be fed to a classifier. In visual analysis of images, these
features are cues that involve edges, corners and patterns, all visually observable and
meaningful. These visual cues are building blocks of all objects which are to be
assembled in incremental complexity from shallow to deep layers of CNN. In the
past, these features were handcrafted to reach better classification results. However,
in current CNN architecture, the features are initialized with a random distribution as
mentioned in the previous paragraph. Then, they are trained through gradient based
backpropagation algorithm to some convergence point which is generally reached
after a couple of hundreds of epochs. Moreover, gradient based approaches lose a
leverage of great significance by random initialization of weights and stochastic
search during training, since visual cues in the training set are overlooked. If the
random initialization of the features in convolutional layers could be eliminated,
training the features with a gradient based training algorithm could be discarded.
This would allow less time spent on training the overall CNN model while obtaining
domain specific visual cues.

The utilization of backpropagation for training of the CNN introduces the
credit assignment problem. In neural networks, we do not know which neuron made

the correct/incorrect decision to reach the current classification result. Hence, we do

2

not know which neuron’s weight should be updated with the error signal. Our
approach to creation of a deep convolutional network and its training for feature
extraction is based purely on observations, hence it is not vulnerable to the credit
assignment problem like traditional CNNs that are trained by backpropagation. As
aforementioned, in traditional CNN implementations the network is built with a
number of neurons per layer, its weights are initialized from a random distribution
and the entire network is trained through backpropagation. The backpropagation
algorithm updates the weights of the network incrementally and depending on the
partial derivative of the error on the weights. Since backpropagation is a gradient
based approach, it takes multiple epochs for the neurons to converge to meaningful
filters. This is inherent of the approach since all that is observable is the gradient of
the hyperplane on the search space towards the direction that minimizes the error. We
are forced to take small steps since a large step might lead to divergence, making
training impossible.

Backpropagation based training is also vulnerable to the problem of exploding
or vanishing gradients (Hochreiter, 1991) which impacts the learning process in deep
networks. It is shown that when the gradient of the error is small in the last layer, it
diminishes to infinitesimal values until the backpropagation reaches to the first layer.
Since the value of the gradient gets smaller as backpropagation approaches to the
first layer, training the shallow layers of deep networks through pure
backpropagation is difficult in deep networks. Combined with the weakened error
signal, deep architectures challenge us with an exemplary version of the credit
assignment problem. We cannot correctly distribute and backpropagate the error to
shallow layers, hence producing subpar features at early and simple stages of image
processing. Thus, the quality of the patterns learned in the deeper layers is hampered
and the classification performance deteriorates. Skip connections in Residual
networks (He et al., 2015) were proposed as a work around for the gradual vanishing
of the gradients which adds more complexity to the CNN architectures.

In this work, we introduce Competitive Convolutional Neural Network
(CCNN); an unsupervised deep learning architecture and training algorithm that
extracts a sufficient number of features that span the input domain. We neither
predefine the number of neurons nor initialize them with random values from a
distribution as in conventional CNNSs. The filters in our model are discovered within

a single epoch using an unsupervised approach that utilizes competitive learning and

3

a filter discovery rule. This new approach does not add more complexity to the
traditional CNN models since we do not propose new layer or connection types.

1.1. Contributions

Our contributions to the literature with this work are 3-fold. First, we propose
an architecture and an unsupervised training algorithm that eliminate the need for
setting the number of filters in layers before the training commences. The proposed
method starts with empty layers and builds them gradually to discover the sufficient
number of features to represent the complexity of the input domain, in increasing
levels of abstraction from shallow to deep layers.

Our second contribution is to eliminate pre-training initialization of network
weights. This follows from the fact that in our approach training starts with an empty
network. We create and initialize new neurons as needed; a decision made through
the similarity of the observation (input at a specific layer) to the features represented
by the existing neurons. The new neuron that is to represent a new feature is
initialized to resemble the input sample. Thus, creation and initialization of a new
neuron is not random anymore, but rather dependent on the observations, i.e., the
input domain.

Our third contribution in this work is an unsupervised training algorithm that is
a robust, effective and fast feature extractor. This algorithm searches for clusters in
input, finding simple to complex features layer by layer. It is not prone to credit
assignment problem as it is purely unsupervised. It is very fast, often converging in
one epoch per layer. This new training algorithm allows us to completely eliminate

the backpropagation training for the convolutional layers of the model.

1.2. Organization of This Thesis

The motivation and the aim of this thesis is given in the previous sections. The
remainder of this dissertation is structured as follows:

* Chapter 2 - Convolutional Neural Networks: This chapter will introduce the
reader to the concepts of Convolutional Neural Networks. It will provide necessary

information on the topic, so the reader can easily follow the approach in this work.

» Chapter 3 - Literature Survey: In this chapter, a brief literature survey on the
topics covered in this thesis will be presented.

 Chapter 4 - Approach: The proposed CNN architecture and the unsupervised
training algorithm for the discovery of the features to be used in the convolutional
layers will be discussed in detail in this chapter.

» Chapter 5 - Experiments: In this chapter, experiment setup, CCNN models,
datasets and the performance metrics used in the experiments are described. Then,
how experiments are conducted will be discussed.

» Chapter 6 - Results: The results of the experiments detailed in the previous
chapter is discussed in this chapter.

» Chapter 7 - Discussion: In this chapter, the results of the new approach are
compared with the previous studies.

 Chapter 8 - Conclusion: In the last chapter of the thesis, a conclusion will be
shared with possible new directions this research may lead to.

CHAPTER 2

2. CONVOLUTIONAL NEURAL NETWORKS

Flatten

TR
%'l B\ .,;_g Conv Pooling Conv
i“..‘ > ‘ Layer1 Layer 1 Layer 2

Feature Extractor Classifier

Figure 2.1 A typical Convolutional Neural Network

CNN is a type of multilayer feed-forward Artificial Neural Network (ANN)
which is based on the structure of animal visual cortex (Hubel, Wiesel, 1959). Due to
its hierarchical layered architecture inspired by the visual cortex of animals, CNNs
are well-suited for visual classification tasks. In basic terms, a CNN consists of
several different kinds of layers that learn features from training images
hierarchically and predicts the class of a given test image based on the learned
features in the images. Convolution and Pooling layers are the key layers in learning
the features from training images while Fully Connected layers act as classifiers

(Figure2.1).

2.1 Convolutional Neural Network Architecture

2.1.1 Convolutional Layer

The purpose of convolutional layer is detecting high level features from given
visual data so that the classifier can classify that data into specific classes according
to the particular features detected in the given data. Prior to the usage of CNNs, the
features had to be hand crafted by the field experts who has domain expertise on that
particular task. The hand crafting of features is a daunting task since every variation

in illumination, position, scale and variations in same class of objects must be

=l

= =

N D] [0]

= [t Face
.

Figure 2.2 CNNs can recognize high level concepts like face by hierarchically
building feature detectors starting from basic edge like shapes to complex features

like eyes.

considered during the feature creation process. The solution to this is creating a
feature detection pipeline which resembles the animal visual cortex that could start
by learning basic features like lines and edges and hierarchically building more
complex features (Figure 2.2) to classify images. To be able to work with this kind of
pipeline, we need to be able to extract local features from the given data.
Convolutional layers perform this task with filters. However, for each possible
feature in the given data, we need to define a filter of specific size. This specific size
of the filter ensures that the feature that we are trying to extract is within some local
area which is called receptive field in the given data. Conventionally, the filters are
defined in sizesof 3 x 3,5 % 5,7 x 7 or 11 x 11 depending on the visual task at hand.

Since we need one filter per feature, the number of filters - which we do not
know beforehand - in a convolutional layer must also be defined during the
construction of the convolutional layer. The number of filters on a convolutional
layer is a hyperparameter. This hyperparameter’s value needs to be selected with
hyperparameter optimization techniques to achieve good classification performance.
One of the easiest such hyperparameter optimization method is Grid Search (GS),
where a subset of hyperparameter space is searched (Bengio, 2012) for the optimal
performance. However, it is not a suitable optimization technique since the number
of hyperparameters in the CNNs are too large which renders GS a computationally
expensive optimization method (Kaneko, Funatsu, 2015), and GS is often stuck at
some local optima (Keerthi, Lin, 2003). For the optimization of hyperparameters, a
combination of GS and Random Search (RS) is proposed by in works (Larochelle,
Erhan, Courville, Bergstra, Bengio, 2007;Yann, Bottou, Orr, Miiller, 1998; Hinton,
2010) whereas it is argued (Hutter, 2009) that Sequential Model Based
Optimization(SMBO) more effectively finds the best solution than RS. It is shown
that CNN hyperparameters can be effectively tuned (Snoek, Larochelle, Adams,
2012) with a Bayesian approach. Regardless of the method of optimization,
hyperparameter values need to be optimized for achieving the optimal performance
from CNN.

The last step in defining feature extracting filters is setting the weights of said
filters. However, in CNNs we do not handcraft the features, so the filters should be
initialized with some values. Initializing the filters in convolutional layers is an
important task, since it affects the ability to learn features from the training data. If
the values of the weights are initialized too small or too big, the learning from the
training data will be either too slow or will not happen at all. This situation is called
vanishing/exploding gradients since learning depends on the backpropagation of
errors which is calculated based on these weight values. Thus, just randomly
initializing the filter weights is not enough. Initializing the weights of the filters
requires some initialization technique that allows CNN to learn from the data in an
acceptable time. The commonly used weight initialization techniques are Gaussian
initialization where the weights are initialized from a zero-mean Gaussian
distribution with a standard deviation of 0.01 (Krizhevsky et al., 2012), Glorot
(Glorot, Bengio, 2010) initialization technique in which the weights are initialized

based on the incoming and outgoing connection counts and He(He et al., 2015)

8

initialization method which is a variant of Glorot that allows very deep networks to
be built. Choosing one of those initialization methods depends on which activation

function is used in the convolutional layer.

'Sigmoid
1
flx) = =

Figure 2.3 Sigmoid, hyperbolic tangent and ReL.U activation function curves

shown. ReLU is most popular activation function in CNNs.

2.1.1.1 Activation Function

Activation functions are used to introduce non-linearity to the neural network
models so that the model can generalize well by deciding whether its related neuron
will fire or not. It would not be possible to correctly classify objects that belong to
the same class that have intra-class variations with a linear model. Thus, non-
linearity is introduced to the ANNSs through activation functions like sigmoid,
hyperbolic tangent (tanh) and Rectified Linear Units (ReLU) (Nair, Hinton, 2010)
which add generalization capability to ANNSs. Instead of sigmoid or hyperbolic
tangent, ReLU and its variants like PReLU or Leaky ReLU is utilized in deep
architectures. The reason behind this selection is based on the vanishing gradients
problem. With the increasing depth of the network in CNNSs, very small gradients are
obtained from both sigmoid and tanh functions in backward pass of the training
which slows down the learning until a point where learning becomes impossible.
They also get saturated on the both positive and negative sides and the gradients
become very close to zero for very small or big weight values which again affects the
weight updates in the backward pass of the training phase. ReLU can be described as
a piece-wise function which acts as a linear function for positive inputs whereas it
acts non-linearly for negative inputs by setting the negative values to zero.
Computation cost of the ReLU is small compared to sigmoid or tanh since these

functions involve exponentiation operations. The lack of exponentiation in ReLU

reduces the cost of complex derivation operation which accelerates the training. This
allows the addition of more layers to the network since the computation cost freed up
from the derivation equations can be invested in increasing the capacity of the
network. Compared to sigmoid and tanh, ReLU do not saturate except for the
negative values. This leads to the downside of using ReLU which is called dying
ReLU problem. When a large gradient flow updates the weight of a neuron in a way
that it starts generating negative responses to stimuli, we encounter dying ReLU
problem. There is no way to recover from this situation when ReLU is the chosen
activation function and some neurons might end up dead (i.e., no contribution to
learning). This problem is addressed with the ReLU variants PReLU (He et al., 2015)
and Leaky RelLU(Maas, Hannun, Ng, 2013) where instead of zeroing out the

negative response to the stimuli, both of these activation functions have a small slope

Figure 2.4 PReLU and Leaky ReL U activation function curves. PReLU and Leaky
ReLU allows a small gradient for negative values whereas original ReLU strictly

sets the negative values to zero.

to the curve in the negative side of the original ReLU function as can be seen in
Figure 2.4. This small slope allows for a small gradient to flow for negative
responses of the neurons instead of completely shutting them down with the cost of

introducing another parameter into the calculations.
2.1.1.2 Convolution Operation

The aim of convolution operation is filtering out specific patterns from the
image which are crucial for identifying the object that is present in the image. Thus,
the convolution operation takes an input image and a filter/kernel. The kernel is used

to search for the pattern locally in the image by applying the convolution operation

10

shown in Equation 2.1. The convolution operation is repeated for each kernel K

defined in the convolutional layer for the same input image I.

K+l = ZZI(m,n)K(i — mij — n) 2.1)

Starting from the top left of the image, the convolution operation is performed
on the image I. The result is a single value which denotes the likelihood of the

presence of that pattern at that specific location which the current kernel is seeking in

]
d

===
jolof1 oo _
1lo|o|11 o]0 130
| I 10 (-1 ==
o|o|11|0 |0
e e | * 100 |1 —
o|0[1 1|0 |0
100 |1
o|o|1(1|0 |0
o|o|1(1]0 |0
—
00110 |0
1 I =
ollo|1|1]o |0 313
: : 10 |1 EE.
o/]o|1(1[0 |0
| S e el * 100 (1| —
ofof1 1o |0
100 |1
o|o|1(1|0 |0
o|o|1(1|0 |0
o|o|1(1|0 |0
o|o|1(1|0 |0 313(3 (3
100 |1
o|o|1]1|0 |0 3|33 (3
F=t=r-=1 x 100 |1 —
0|0 |11 |0 |0 3033 (3
10 (1 i
o|o|11/1 |0 |o | 3(3(33 |
0|0 1:1 0 o: -

Figure 2.5 Visualization of convolution operation on witha5 x 5imageanda 3 x 3
filter with a stride of 1 pixel.

the image. Then, the kernel is moved in the horizontal direction. The amount of
movement is called stride and, it is a parameter that should be predetermined. If the
stride is 1 pixel, the kernel is moved in the horizontal direction 1 step. When the
horizontal locations are exhausted, the kernel is moved in the vertical direction
according to the stride parameter. This is repeated until all possible locations on the

given image is spanned by the kernel as seen in Figure 2.5.

11

= ===
BEHE

r=--—=-1

o|o|o|o|gfolelo|

S

ole|e|e|aleo|e|(a]l
o|o|o|o|o|o|o|o
o|loc|o|oc|o|o|o|o

oloje|e|o|elo|o

olele

e
OOQOO'OOOlOODOOIDOOI
L "

o|lr|kr[r|[rlelslall |[o|r|[s[~]~
slelelelcrFHrmt [olelelalrlel=]o
o|loo|o|jlo|lO0o|O0 O
oo oo o|jlcoo|la o
o|lolo|0o|o|o|o ©

*

-

o

i

o|o|lo|ofo

'slole|o]e

o|lo|o|o|o|O

R o[oo ||

[IR O IR O VR

N w w w wn

N w|w w w|N

=
=}

olo|olele]elole

c|lo|lo|o|o|o|o|e

o|lo|lo|o|o|o|o|o

olr|r|krr|rirlo

olelrlrirlrirlo
|ele|eje|e|eo|e
lle|lolofle|lo|ao|o|o
leleloflele|elele
[

Figure 2.6 Visualization of convolution operation on witha5 x 5 imageanda 3 x 3
filter with a stride of 1 pixel and zero padding of 1 pixel as per Equation 2.2. Green
background is padding while the image data is shown with light blue background.

As it can be observed from Figure 2.5, applying convolution to the image
changes its dimensions. If we apply another layer of convolution, the image will
further shrink to 2 x 2 dimensions. The information at the borders of images is
rapidly lost in this fashion. Instead of losing data in a rapid fashion, we would like to
preserve data even after convolution operation. To be able to preserve as much as we
can, padding is applied to the images before convolution operation. In CNNs,
padding is generally just adding zeros around the image as if we are framing a
portrait. The size of the padding is calculated with Equation 2.2 for stride of 1 pixel
and filter size k. The dimensions of the output of the convolution operation can be
calculated with Equation 2.3. Figure 2.6 shows convolution operation with the same

image padded with 1 pixel of zeros on each side of the image.

P=—— (2.2)

0=(U,—k+1+2P1,—k+1+2P) (2.3)

12

[
o
s

*
-
o
-

o|lo|o|o|eo|o
o|lo|leo|o|e|e
o|lo|leo|o|e|e

c|lo|loc|o|o|O

RSN N I I
RlR|[R|R|R]|~

== 2

Activation

Filters Feature Maps .
function

Input Image Convolutional Layer

Figure 2.7 Convolution layer applies convolution operation to the input images. The

feature maps are then introduced to non-linearity with activation function.

The output of convolution operation is another matrix that is called feature map
or activation map since moving the filter over the image and calculating convolution
maps all possible locations that this particular feature might be present (i.e., map of
filter activation). One feature map per filter is generated for the same image | which
means that if there are K filters in the convolutional layer, the number of feature
maps generated for image | would be K. However, the actual output of the
convolutional layer is not the raw feature maps. The chosen non-linearity/activation
function is applied to these feature maps as seen in Figure 2.7. If the activation

funciton is ReL.U, the result is called rectified feature maps (Zeiler, Fergus, 2014).
2.1.2 Pooling Layer

Pooling operation is employed in CNNs to downsample the images so that the
number of equations can be restricted to a manageable number. This dimension
reduction also introduces spatial invariance to the CNNs. Another advantage of using
pooling layer is that it allows the next layer to focus on a larger receptive field while
maintaining the same filter size as the previous convolutional layer. This leads to

detecting more complex features compared to the earlier layers.

13

== [e
13|53 |4 - 1 3|5B |2 25
I|-1(-28 |2 -1y U alaf2. |2
=r=x - = L s T -
8|71 |5 (8|71 |5
4|60 |9 : 4|60 |9
3T | . s[s3 al
31-5(3 |4 = : 2= I 2.751 4.25
-1)-2A|8 (21 a8 | 5 |L1[-28 |2 .
== -] ==
8l-7]1 |5 1 8|71 |5
]
46|09 1 4(-6[(0 |9
]
3]- 3]
3|53 |4 e il Bl N 275 | 4.25
-1(-2(8 |2 18 g l1]2]8 |2
I L —_— —t g o —_—
118171 |5 1140 ' H-8[-7| |5 1-6.25
I|-4|-6(l0 |9 - p ll4|-6ll0 |9
[r—r— [| = -
3|-5(3 |4 : 3|53 |4 2.75 | 4.25
1(-218 |2 -1] -1)-2(8 |2
== —_— ==l u =" — |
8|71 |5 49|, u 8|71 |5 6.251 3.75
4|-6llo 9 |l == 0 lalselfo |9 |l
=—==1] ===
]
]

Max Pooling Average Pooling

Figure 2.8 Visualization of max pooling operation on with a 4 x 4 image with 2 x 2

window size and strides of 2.

Similar to defining a filter in the convolutional layer, a window size is defined
for pooling. This window size is the local data that will be pooled down to a single
value. Pooling window starts from the top left of the image as in the convolution
operation and pooling is applied to the pixels in that region of the image. After the
pooling is applied, the pooling window is shifted in the horizontal direction
according to the stride value. When all the horizontal positions are exhausted, the
pooling window is moved in the vertical direction according to the stride value. The
most commonly used pooling types are max and average pooling. In max pooling the
maximum value inside the pooling window is the output of the pooling operation
whereas in average pooling the average of all values inside the pooling window is the
output of the pooling operation. Max pooling preserves the feature that has the most
activation and removes the surrounding features in the pooling window by ruling
them out as noise while average pooling takes all of the information into account
during the pooling process including the noise. This is why max pooling performs
better than average pooling in classification tasks with CNNs. Figure 2.8 shows how
both max and average pooling operations are applied on the same input with stride of

14

1 and windows size of 2 x 2. The dimensions of the image are halved because of the

pooling window size.

2.1.3 Fully Connected Layer

Feature
Maps

Prediction

Figure 2.9 Fully connected layers learn the relations between the high-level

patterns.

The convolutional and pooling layers extracts the patterns that could be useful
in classifying the image while fully connected layers(Figure 2.9) learn how to
combine these features to define a specific class. Thus, we can call the fully
connected layers as the classifier part of the CNNs while the other half of the
network works as a feature extractor. The feature maps are three-dimensional data
which need to be connected to fully connected layer which only accepts single
dimensional data. Flatten operation is applied on the feature maps and the flattened
feature maps are connected to fully connected layers. The number of fully connected
layers and how many neurons these layers will include are all hyperparameters that
needs to be tuned with optimization techniques. The neurons (Figure 2.10) in the
fully connected layers are the same as ANN neurons. Each neuron has weights

connected to them and an activation function is applied to the output of the neuron.

15

Output

Inputs

Wi sum Activation
function

Figure 2.10 Single neuron in Fully Connected Layer.

Fully connected layers are prone to overfitting during the training due to the
immense number of connections between the neurons. A regularization technique
called Dropout (N. Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov, 2014)
is applied to avoid overfitting during the training of the fully connected layers.

Dropout randomly selects some neurons in the fully connected layers and disables

Figure 2.11 Neurons dropped out with dropout regularization technique do not
receive or transmit signal. Dropout with probability p = 0.5 is applied to the neurons.

that neuron with a probability of p to receive or transmit signal temporarily for the
current iteration of the training as seen in Figure 2.11. The neuron that is disabled in
one training iteration might become active in the next one since the neuron to be
dropped out is re-selected on each iteration. The probability p is a hyperparameter
that needs to be configured. If the value is set as 0.3, it means that 30% of the

neurons will be dropped in each iteration of the training.

16

2.1.4 Output Layer

Output layer is the last layer of a CNN. This layer is actually another fully
connected layer but a special layer since this is where the predictions are made by
CNN. The number of neurons is determined by the number of classes in the dataset.
Thus, each neuron represents a class. The activation function in this layer is Softmax.
Softmax makes sure that the activation value of each one of these neurons is in (0, 1)
interval and the total of the activations of the neurons in the output layer does not

exceed 1. The Softmax value is calculated with Equation 2.4.

eZi

0(2)i =
()l ;{=1er

(2.4)
The activation amount for each neuron in this layer represents the belief that
how much the given sample image resembles the specific class represented by the
neurons. The neuron with the maximum activation determines the class of the image.
As an example, assume that there is a CNN model which is trained to recognize cats
and dogs as in Figure 2.12. The Softmax function turns the amount of the stimuli

these two neurons receive into a probability distribution. The network believes that

Maps

i) “u
%” . Feature

Figure 2.12 Output Layer in a CNN.

this input image belongs to cat class with 77% confidence while the confidence of
the network is 23% for this image belonging to the dog class. Since the highest
confidence value belongs to the cat neuron, this image is labeled as cat. At this point

the predicted label and the actual label of the image is compared and if the labels do

17

not match, the error is calculated to update the weights of the network. The training
is explained in detail in the next section.

2.1.5 Training of CNN

As mentioned in the previous sections, CNNs consist of convolutional and
fully connected layers which are initialized with a pre-defined initialization method.
After initialization, the weights of the filters in convolutional layers and the neurons
in the fully connected layers need to be trained to be able to identify the class of the
presented object. The training of the CNNs is performed by a gradient descent (GD)
algorithm which minimizes the loss function, and the gradients are calculated with
backpropagation algorithm.

In basic terms, training has two phases; forward pass and backward pass. In the
forward pass, we send an image as the input to the CNN, and we obtain a result from
the output layer. This output is then checked for correctness. This is done by
comparing the real label of the input image and the class label predicted by the CNN.
If both labels are the same, no weight update is required. However, if the labels are
found to be different, then the weights in all layers must be updated one by one so
that the amount of error between the output and the correct label is minimized
(Rumelhart, Hinton, Williams, 1986).

CE@9) = =) () -log3, 25)

The backpropagation starts with the prediction of the label of a particular input
data. After this prediction is made by the network, the error between the actual and
predicted labels is calculated by a loss function. This loss function is typically
categorical cross entropy (Equation 2.5) for scenarios where CNN is labeling more

than two classes of objects.
WHL = Wt —n %V, (W) (2.6)

We do not know which connections in the network is responsible for this error
which is called credit assignment problem. Thus, the error is distributed to all of the

units in the network by adjusting the weights by calculating partial derivatives of the

18

errors with respect to the weights according to chain rule until we reach the input
layer. The backpropagation algorithm ends when the stopping criteria is met. This
stopping criterion could be reaching a specific loss value, a specific number of
training epochs or monitoring the validation error rate. Since the weight updates are
done in the opposite direction of the gradient (Equation 2.6) and the value of
gradients depend on the weights, the performance of the backpropagation is strongly
related to the weight initialization method (Sutskever, Martens, Dahl, Hinton, 2013).
The learning rate is a hyperparameter whose value should be carefully determined. If
the value of 1 is too small, the weight updates will be small and the convergence
would take a long time. On the other hand, if the value of n is large, weight updates
might occur in a manner that misses the convergence point by fluctuating around it or
in extreme cases instead of converging system might diverge.

Stochastic Gradient Descent (SGD) is the most commonly used training
algorithm in CNNs which updates the weights after each training input compared to
gradient descent which only applies one weight update by calculating gradients for
whole dataset. Because of a single update which requires calculation of all gradients,
the gradient descent can be very slow for big datasets. Compared to gradient descent,
SGD is much faster because of the gradient calculations per training sample that
prevent re-calculation of same gradients over and over as opposed to gradient
descent. However, this means that SGD weight updates does not converge to the
local/global minima as smoothly as gradient descent. To introduce the smoothness of
GD, learning rate annealing is applied to SGD. Both the smoothness of GD and the
speed of SGD can be achieved by using mini-batched SGD for training of the CNN
where weight updates are calculated for mini-batches of n training samples. The size
of the mini-batches depends on the application of CNN. However, there are still
problems that need to be addressed in training the network. Selection of initial
learning rate value, the annealing schedule or SGD getting stuck at some sub optimal
local minima or saddle points (Dauphin et al., 2014) where the gradients are close to

zero and it is not possible to escape such a point.

Ui
AW, = ————=4 2.7)
=1 9z

19

SGD optimization techniques are implemented to fix the problems of SGD.
One of those optimization schemes is introducing momentum(Qian, 1999) which
tries to lessen the oscillations to speed up the training. Another method is applying
weight updates in a way (Equation 2.7) that allows usage of higher learning rates for
less frequent patterns and smaller learning rates for frequent patterns. This is
achieved by automatically adjusting the learning rate based on the past gradients
computed for the weights. This method is called Adagrad (Duchi, Hazan, Singer,
2011) and removes the manual learning annealing process. However, the learning
rate might get very small during training epochs since this method takes all past
gradients into account while calculating the new learning rate. This would lead to not

learning anything at all.

RMS[AW],_,
=— 2.
AW, RsTal (2.8)

The solution for this problem is proposed in another SGD optimization method
called Adadelta (Zeiler, 2012) which is actually a variant of Adagrad. As opposed to
Adagrad, Adadelta only takes the past gradients in a small window of fixed size for
the calculations instead of all past gradients. Another advantage of Adadelta is that
the weight updates does not require a global learning rate value to be set since it is

not used in weight update rule as can be observed in Equation 2.8.

20

CHAPTER 3

3. LITERATURE SURVEY

3.1 Initial Steps

Neural networks have a long history starting from the first description of an
artificial neuron by McCulloch and Pitts (McCulloch, Pitts, 1943). Although its
evolution was first disrupted by Minsky and Papert’s work (Minsky, Papert, 1969) ,
then by technical limitations on training them, it has become the most thriving
research topic due to the technological advances in the recent couple of years.

The concept of artificial neuron was first described by McCulloch and Pitts
(Minsky, Papert, 1969) in 1943. The aim of this work was mathematically explaining
how the cells in brain works together. This artificial neuron model takes and
aggregates one or more binary inputs and applies a linear threshold gate to these
inputs to form a binary output. The artificial neuron described here could be used to
build networks and solve simple logical expressions containing logical AND, OR or
NOT operators. However, this model could only apply some logical operations on
the given input and could not learn from experience as in human brain. Later in 1949,
a supervised learning algorithm, known as Hebb’s rule (Hebb, 1949) today, was
proposed. Hebb proposed theories on the learning and memorization mechanisms of
the brain. He theorized that if a neuron is responsible of activation of another neuron,
then that neuron’s efficiency should be increased with some mechanism. At that time
there was not any evidence about the neuronal activity happening between the
neurons which is known as synaptic plasticity today. The synaptic plasticity is the
biological process of strengthening (long-termpotentiation (Lomo,1966)) or

weakening (long-term depression (Albus, 1971) (Ito, Sakurai, Tongroach, 1982))

21

of synapses due to the neuronal activity volume between two neurons. If the volume
of synaptic communication between two neurons increases, the synapses are
strengthened. In 1958, Rosenblatt (Rosenblatt, 1958) combined the McCulloch-Pitts
neuron model with Hebb’s ideas and formed Perceptron. In essence, Perceptron
changed the way how the inputs are handled to achieve learning with McCulloch-
Pitts neurons. Originally McCulloch-Pitts neurons can only accept binary inputs.
However, the inputs are associated with adjustable weights in Perceptron. The
adjustment on the weights is applied in supervised fashion based on the ideas of
Hebb. However, as in McCulloch-Pitts, Perceptron can only work with linearly
separable functions and cannot solve XOR as stated in Papert and Minsky’s book
(Minsky, Papert, 1969) Perceptrons: An Introduction to Computational Geometry in
1969. They demonstrated that it is not possible to classify patterns of nonlinearly
separable classes with single layer neural network Perceptron. Actually, this was an
oversight of the capability of Perceptrons. Today we know that it is possible to solve
nonlinear problems with multilayer Perceptrons. The research on neural networks
was slowed down with the limitations mentioned by Papert and Minsky until the

proposal of backpropagation algorithm (Rumelhart et al., 1986).

3.2 Backpropagation Era

In modern artificial neural networks, the training is performed with error back-
propagation. Even though error backpropagation was first suggested in 1974 (P.
Werboso J. Paul John, 1974) and later applied to an ANN by Werbos (P. J. Werbos,
1982), it became widely known through Rumelhard and Zipser’s work (Rumelhardo
Zipser, 1985). They showed that when error backpropagation was applied to
multilayer neural networks, good internal representations could be discovered.
Before the error backpropagation was adopted, domain experts handcrafted features
that were specially crafted for the specific task at hand for use in ANNs. The slow
process of handcrafting the required features was no longer the issue with the
introduction of error backpropagation. Applying backpropagation to ANNs enabled
hidden layers to automatically learn these handcrafted features.

Denker et al. (Denker et al., 1989) proposed a neural network which applied
convolution operation in 1989. However, the filters used in the convolution operation
were handcrafted based on Hubel and Wiesel’s work (Hubel, Wiesel, 1959). The

22

handcrafted filters were designed specifically for detecting zip code digits. A similar
work by LeCun et al. (Lecun et al., 1989) was also proposed a neural network which
included convolutional layers for zip code recognition in the same year as Denker et
al.. The difference between Denker et al. and Lecun et al. was how the convolutional
filters were obtained. Lecun et al. obtained the convolutional filters with
backpropagation training as opposed to handcrafting. Lecun et al.’s network had
three hidden layers and to lower the computational cost of the training, a subset of
connections within the convolutional layers were discarded. The performance of
Lecun et al.’s network was greater than the state-of-the-art at its time of publication.
Eventually in 1998, Lecun et al. (LeCun et al., 1998) proposed an updated
convolutional neural network architecture named LeNet-5. This network was deeper
than its predecessor with a depth of seven layers. This new network’s architecture
was an alternating set of convolutional and subsampling layers which was connected
to fully connected layers. To test the performance of this new architecture, a new
dataset called MNIST (LeCun, Cortes, 2010) was created. MNIST only included
handwritten digits which were picked from different NIST datasets. Today, this

dataset is one of the most popular datasets for benchmarking CNNs.
3.2.1 Fundamental Deep Learning Problem

Introduction of backpropagation training made it possible to train multilayered
neural networks. However, it was also the reason that the neural networks research
hindered. When backpropagation training made it possible to train the hidden layers,
it was seen that the more layers the neural networks had, the training of network
became harder or impossible. Thus, the expectation that adding more and more layers
to the network would provide better performance was not met. The reason for this
training behavior, fundamental deep learning problem, was explained by Hochreiter
(Hochreiter, 1991) in his 1991 PhD dissertation. The backpropagation of the errors
was not effectively training the first layers on a multilayered neural network due to
the vanishing or exploding gradients. In case of vanishing gradients, it was shown
that the error signal got smaller and smaller until it made the weight updates
insignificantly small on shallow layers of the network. This behavior slowed down
the updates and eventually made it impossible to train the most important filters that

were on the shallow layers.

23

3.2.2 Revival of the Neural Networks Research

A greedy unsupervised training scheme was proposed by Hinton et al. (Hinton,
Osindero, Teh, 2006) in 2006 which was not affected by the vanishing gradient
problem. This new algorithm was a combination of wake-sleep algorithm (Hinton,
Dayan, J Frey, M Neal, 1995) and contrastive divergence learning (Hinton, 2002) and
applied to Restricted Boltzmann Machines (Smolensky, 1986). It was shown that
greedy learning of the initial weights with pre-training overcame the vanishing
gradient problem and made it possible to train deep networks with backpropagation.
This led to the revival of neural networks research. Even though the shortcomings,
the neural networks research kept building on backpropagation training.

3.2.3 GPU Era

With the utilization of Graphical Processing Unit (GPU) instead of Central
Processing Unit (CPU) for training, it was seen that it is possible to add more layers
to the neural networks and train them relatively faster due to the architectural design
of GPUs. The possibility of adding more layers sparked interest in the neural
networks research once again in the 2010s. However, adding more layers comes with
the fundamental deep learning problem. Thus, the research has been focused on
creating mechanisms to avoid this problem since then.

In 2010, it was shown that plain multilayered neural networks can be trained
with backpropagation on GPUs (Ciresan, Meier, Gambardella, Schmidhuber, 2010)
with a better performance than the state-of-the-art of that time. This was managed
with adding more neurons and more layers to plain ANN. To be able to train the
network data augmentation techniques were applied to MNIST dataset. No new
techniques were applied other than usage of GPU. After this demonstration, Ciresan
et al. (Ciresan, Meier, Masci, Gambardella, Schmidhuber, 2011) proposed that CNNs
could be trained on GPUs without introducing any new training techniques. The
GPU implementation of backpropagation training improved the performance on
CIFAR10 (Krizhevsky, 2009) and MNIST datasets.

A new milestone was set in neural networks in 2012. An eight layered CNN
model called Alexnet (Krizhevsky et al., 2012) which was trained on GPUs was
shown to outperform all of the state-of-the-art machine learning approaches with its

remarkable recognition performance on the ImageNet (Deng et al., 2009) dataset.

24

Alexnet was built on LeNet concepts with more layers. Since the architecture was
deeper than its predecessor and still uses backpropagation, it has to deal with the
fundamental deep learning problem. The solution was the introduction of avoidance
mechanisms that were built around the backpropagation’s flaw. Thus, a new
activation function which could avoid vanishing gradient problem associated with
sigmoid or hyperbolic tangent functions were implemented. The non-linearity was
provided with ReLU (Nair, Hinton, 2010) since its gradient was non-saturating
which allowed faster convergence. ReLU made it possible to have sparsity of
activations which helped with training accuracy and time. However, with such a
large network (62 million parameters), overfitting was inevitable. Dropout (N.
Srivastava et al., 2014) applied to the hidden neurons and data augmentation
techniques were applied to training images to avoid overfitting.

Replacement of sigmoid and hyperbolic tangent with ReLU helped with the
vanishing gradient problem. However, ReLU was not the perfect solution. ReLU
units tend to die if their gradients become zero. The function f (x) = max(0, x) clearly
sets the activation values below zero to zero, where the gradient also becomes zero.
If this happens on a neuron, that neuron stops responding to stimuli, and its training
permanently stops. This behavior is known as the dying ReLU problem. A predefined
slope for negative values is proposed in order to avoid dead neurons in the network.
This variation of ReLU is called Leaky ReLU (Maas et al., 2013). Another variation
of ReLU was proposed by He et al. (He, Zhang, Ren, Sun, 2016) where the slope is
learned as a network parameter. This variation is known as parametric ReLU
(PReLU) (He et al., 2015).

Various initialization schemes have been proposed since Alexnet to avoid
vanishing/exploding gradient issue. This issue is the fundamental roadblock on
achieving convergence on deeper architectures. Glorot et al. (Glorot, Bengio, 2010)
proposed a normalized initialization method that took into account the number of
input and output connections to each neuron. This initialization technique allowed
addition of more layers where the activation function was a sigmoid like function.
However, Glorot et al.’s initialization technique was not adequate for networks with
ReLU activation functions. He at al. (He et al., 2015) proposed an initialization
scheme that allowed very deep networks, which use parametric ReLU as

nonlinearity, to converge.

25

Another side effect of using backpropagation training was pointed by loffe et
al. as internal covariate shift. It was shown that the weight updates during the back-
propagation training changes the weights in a way that would move the inputs of the
activation function to saturated regions. As explained in Section 2.1.1.1, when the
input moves the sigmoid-like activation functions to their saturated regions, the
learning slows down or stops. loffe et al. proposed a batch normalization scheme to
further augment the weights at a normalization step. Inputs to the activation function
were updated with batch normalization method to fix variance and the mean of the
layer to avoid the saturated regions of the nonlinearity.

As the CNNs got deeper, the various mechanisms to avoid the weakening of
the signal across the layers became insufficient and the training error kept getting
bigger with addition of more layers. He et al.(He et al., 2016) proposed skip
connections to avoid this problem. Skip connection allowed feeding the output of a
layer to some deeper layer rather than just feeding the next layer. The result of adding
skip connection was strengthening of the output signal in deeper layer. Since the
signal was not as weak as it got with networks without skip connections, He et al.
managed to add more layers before network performance drops. A similar network
was proposed by Srivastava et al. (Srivastava, Greff, Schmidhuber, 2015a, 2015b)
called Highway networks. The difference was that the highway networks used data-
dependent parametric gating functions in skip connections.

Often overlooked problem in deep architectures is that going deeper means
more and more hyperparameters required to configure the models. In current
research, CNNSs are defined with hyperparameters like number of filters, number of
layers, learning rate, momentum, number epochs, batch size, etc. These
hyperparameters need to be tuned carefully to achieve the optimal performance on
the task. The tuning of these hyperparameters is another research topic. Grid
Search(GS) is the easiest to implement hyperparameter optimization technique where
a subset of hyperparameter space is searched (Bengio, 2012) for the optimal
performance. However, it is a computationally expensive optimization method
(Kaneko, Funatsu, 2015) and the sheer number of hyperparameters used in CNNs
make it unsuitable. Even if the number of hyperparameters was not high, GS is found
to be stuck at local optima (Keerthi, Lin, 2003). Another method is employing
random searches in the hyperparameter space with RS. A combination of GS and RS

is proposed in different works (Hinton, 2010; Larochelle et al., 2007; Yann et al.,

26

1998). Hutter (Hutter, 2009) showed that the computationally less expensive SMBO
more effectively finds the best solution than RS. Bayesian optimization is shown to
be appropriate to optimize(Snoek et al., 2012) CNN hyperparameters since Bayesian
approach is suitable for black box type functions. Another approach on
hyperparameter optimization on ANNs (Aki, Erkog, Eskil, 2017) is using a reduced
set that will speed up the search for the best parameter values.

As mentioned in LeCun et al. (LeCun, Bengio, Hinton, 2015), the interest in
deep networks was revived with Hinton et al.’s unsupervised approach (Hinton et al.,
2006). However, the remarkable results of supervised approaches led the research in
a purely supervised manner by inventing new ways to circumvent the vanishing
gradient problem. LeCun et al. (LeCun et al., 2015) anticipated that unsupervised
learning will become more important in the future. As they mention, an infant’s brain
processes information and extracts concepts purely by observation and not by being

taught by a supervisor.
3.2.4 Unsupervised Learning with Backpropagation

While supervised learning remains the dominant focus of research on deep net-
works, there has also been significant exploration of unsupervised learning within
this field. It is worth mentioning that even though the following studies that are
discussed under this title are all categorized under unsupervised learning topic, they
still employ backpropagation. We can categorize unsupervised methods into self-
supervised learning, cluster-based learning, and generative models.

In self-supervised learning, the use of pretext tasks allows for the replacement
of data labels with pseudo-labels. Dosovitskiy et al. (Dosovitskiy, Springenberg,
Riedmiller, Brox, 2014) generate surrogate classes by first selecting random im- age
patches and then applying transformations to the randomly sampled patches. The
transformations can be one of rotation, translation, contrast manipulation or scaling
operations. The patches may contain whole object or object parts. After the trans-
formations, these surrogate classes are labeled with pseudo-labels. The pseudo-labels
are used in backpropagation training instead of the real labels. Thus, the CNN learns
to classify the surrogate classes. Another pretext task is usage of relative positions of
image patches. This method involves cutting the images into pieces to create a jig-
saw. Both (Doersch, Gupta, Efros, 2015) and (Noroozi, Favaro, 2016) utilizes this
pretext task. They train their networks to master puzzle-solving. Image colorization

27

is utilized by (Larsson, Maire, Shakhnarovich, 2016, 2017; Zhang, Isola, Efros,
2016). In contrast, the approach proposed by (Pathak, Krahenbuhl, Donahue, Darrell,
Efros, 2016) utilizes image in-painting, where the prediction of pixels is based on the
information of neighboring pixels. Tracking video frames is also utilized for motion
cues in (Misra, Zitnick, Hebert, 2016; Wang, He, Gupta, 2017). Jaehoon et al.
(Jaehoon et al., 2018) procure drivable space and surface normals from stereo
images. These data then used to produce pseudo ground truth. Finally, to determine
the quality of an image, ranking is used as a pretext task in (Liu, Weijer, Bagdanov,
2019).

Gaussian Mixture Models (GMM) and k-means (Macqueen, 1967) is
commonly used in cluster-based unsupervised learning methods. The objective of the
cluster-based algorithms is generating clusters that can be used for pseudo-labeling
the training samples. Training of the network is performed through backpropagation
using the assigned pseudo-labels. As a result, the performance of the trained network
depends on the clustering performance. Yang et al. (Yang, Parikh, Batra, 2016)
performs agglomerative clustering on the output of a CNN. Based on the cluster
labels, they update both the clusters and the CNN weights on each backward pass.
This is repeated until they reach a stopping criterion. A very similar approach is
proposed by (Liao, Schwing, Zemel, Urtasun, 2016). Xie et al. (Xie, Girshick,
Farhadi, 2016) proposes deep embedded clustering (DEC) method where input
images mapped to feature space by using stacked auto encoders (SAE). To initialize
the cluster centroids, k-means clustering is applied on the outputs of SAE. They
further refine the clusters by applying Kullback-Leibler (KL) divergence. In another
work (Xu, McCord, 2021), spatial vector outputs from a randomly initialized CNN
are used to generate clusters by applying GMM. CNN weights are updated by using
the cluster assignments. Finally, the features are obtained from the trained CNN.
Mahon et al. (Mahon, Lukasiewicz, 2021) trains a couple of auto encoders(AE) in
parallel. During the training process, they selectively choose the mutually agreed
cluster pseudo-labels. ClusterFit (YYan, Misra, Gupta, Ghadiyaram, Mahajan, 2020)
employs self-supervised learning method from (Noroozi, Favaro, 2016) and (Gidaris,
Singh, Komodakis, 2018) to train ResNet-50 (He et al., 2016) with the ImageNet
(Deng et al., 2009) dataset. They create clusters from another dataset by using k-
means along with the pretrained network and assign pseudo-labels to these clusters.

They end up with a new dataset with the pseudo-labels generated by clustering

28

process. This dataset is utilized to train a new network which has the same
architecture with Resnet-50 from scratch with backpropagation with the objective of
minimizing cross-entropy.

Generative Adversarial Networks (GAN) and AEs are unsupervised methods
that aim to train models on input data to generate outputs close to inputs. AEs
objective is to minimize the reconstruction error between the input training data and
their respective reconstructed output. To minimize the error, parameters of the AEs
are updated iteratively using gradient descent. In (Masci, Meier, Ciresan,
Schmidhuber, 2011), Convolutional Auto Encoder (CAE) is proposed as a weight
initialization method for CNNs. CAE is used to obtain localized features from the
training data. Later, these feature representations are used as the initial values of a
CNN. Another application of CAE (Hou, Yan, 2018) is fingerprint verification.
Vincent et al. (Vincent, Larochelle, Lajoie, Bengio, Manzagol, 2010) uses stacked
denoising AEs which is able to learn edges resembling to Gabor filters. Using this
method is shown to perform better on MNIST dataset compared to ordinary stacked
AEs. In (Makhzani, Frey, 2014), k-sparse AE is proposed. In this method,
reconstruction is performed by only using the top-k units instead of using all hidden
units which allows better accuracy. While AEs aim to learn the latent representations
of the input data to better reconstruction in a single network, GANs (Goodfellow et
al., 2014) utilizes two networks. The two networks are the generative network and
adversary network. While the adversary model aims to differentiate between real and
generated data, the generative model’s objective is to deceive the discriminative
model. In (Chen et al., 2016), to learn meaningful representations without any label
information, mutual information is maximized between the noise variables of the
GAN and the observations. Synthetically generated images can be also used to
extract features by using GAN (Ren, Lee, 2018). DCGAN (Radford, Metz, Chintala,
2016) is a GAN architecture that uses transposed convolutional network for
unsupervised feature extraction.

To summarize, we can divide the unsupervised research into three primary
categories: self-supervised learning, cluster-based learning and generative networks.
Although we mention the works in this section as unsupervised, all of them still
utilize backpropagation for training, whereas our proposal suggests training without
backpropagation. By utilizing pretext tasks or clustering methods, the self-supervised

and cluster-based learning approaches mentioned earlier designate pseudo-labels to

29

the training data. The models are trained using backpropagation, leveraging the
pseudo-labels derived from the aforementioned methods. Generative models consist
of two networks. The objective of the generative model is to produce new images
that closely resemble the original training images to deceive the discriminative
model. On the other hand, the discriminative model’s goal is to differentiate between
generated and real data. During the training process, both the generative and

discriminative models employ backpropagation for optimization.

3.3 Neocognitron

The roots of CNN architecture dates back to 1980. Fukushima (Fukushima,
1980) proposed a network called Neocognitron which can be trained without back-
propagation. While building the Neocognitron architecture, Fukushima implemented
the simple and complex cells discovered by Hubel and Wiesel (Hubel, Wiesel, 1959)
as alternating layers. With implementing this hierarchical structure, Fukushima
managed to extract features through simple cells, while he achieved translation
invariance with complex cells. Fukushima proposed supervised and unsupervised
learning approaches (Fukushima, 2013, 2016; Fukushima, Hayashi, Léveille, 2014;
Fukushima, Wake, 1991) for training Neocognitron architecture throughout the years
following its first introduction.

One of those learning schemes that Fukushima proposed for training of
Neocognitron was an unsupervised competitive learning scheme known as Winner-
Take-All (WTA) (Fukushima, 2003). Based on Hubel and Weisel’s work, Fukushima
implemented simple and complex cells as cell planes in the layers. Upon presenting a
visual stimulus to the system, the simple cells engage in competitive interactions to
encode the input. Among the simple cells, the one with the strongest response to the
input stimulus emerges as the representative within its corresponding cell plane.
Through the self-organizing mechanism facilitated by the Winner-Takes-All (WTA)
algorithm, the simple cell planes exhibit selective sensitivity towards specific
features. This self-organization process relies on a similarity threshold, which
regulates the creation of new filters within the WTA algorithm.

Another unsupervised learning method proposed by Fukushima is known as
Add-if-Silent(AiS) (Fukushima, 2013). According to the AiS rule, if all post-synaptic

simple cells are silent (not stimulated at a predefined rate), a new cell is generated

30

and added to the layer. The input stimulus vector that triggered the generation of a
new cell is assigned as the weights of the new cell. The connections to this new cell
cannot be changed after the initial values were set. However, since weight updates
never occur for the cells, as the training progresses, the number of cell planes
steadily grows until the entire feature space is effectively spanned by the reference
vectors.

Fukushima’s work is intriguing, as it seeks for visually observable and
meaningful cues in the training set as opposed to random initialization of both the
number of neurons and their weights and stochastic search towards error
minimization, which is the common practice of supervised approaches. As in very
early neural network research, we are looking for spatial features that make up
simple components of complex objects in the image domain. For this reason, it is
both reasonable and intuitive to look into the training images to generate and train
new features. Our approach follows this school of thought, which has been strangely

ignored in neural network research.

31

CHAPTER 4

4. APPROACH

4.1 Introduction

In this work, we propose an unsupervised backpropagationless learning
algorithm that was inspired by Fukushima’s Neocognitron to train the convolutional
layers of CNINs. Our approach (Erkog, Eskil, 2023) leverages competition of neurons
in a convolutional neural network to represent the training samples, hence
Competitive Convolutional Neural Network (CCNN). A CCNN is initially empty at
the beginning of the training, i.e., there are no neurons/filters defined. Training
proceeds layer-wise, the first input stimulus becoming the first filter for the layer.
From this point on, we calculate the similarity of the next input stimulus with the
filters that are extracted and assigned to the layer. If there is a representative feature
of this input in the layer, i.e., the highest similarity result is greater than a similarity
threshold, we carry out a weighted update on the weights of the winner filter in
contrast to the AiS rule of Fukushima. Otherwise, we conclude that the layer does not
possess a representative feature, hence we generate a new filter for the layer and use
the particular stimulus to initialize the filter’s weights. Since all of the filters in
CCNN are discovered and weight updates are carried with this competitive self-
organizing scheme, convolutional layers neither require backpropagation of errors
nor a predefined number of filters hyperparameter defined per layer. The process of
filter creation and weight adjustments is done in an unsupervised fashion because the
decision is based on the similarity of input sample with the previously extracted
filters of the current layer instead of backpropagation of error based on a label

information.

32

Images/
Feature Maps

e

Set of candidates Similarity calculations

Figure 4.1 The proposed unsupervised backpropagationless filter extraction
method. Images/feature maps are converted to candidates from which the filters are
discovered without label information. Any filter candidate ¢; can become a new
filter for the current layer if the maximum similarity value is less than a preset

threshold. If not, filter with the highest similarity’s weights is updated.

Contrary to the conventional CNN approach, the approach that will be
presented here does not require selecting a suitable value for the number of filters
hyperparameter of convolutional layers. The filters are discovered in a self-
organizing way from the training set images in a single epoch. Proposed training
method makes sure that the filters are initialized and trained with a completely
unsupervised self-organized scheme. This approach enables us to entirely disregard
the filter initialization techniques mentioned in previous sections, as well as the need
for training the filters through back-propagation. This results in much fewer epochs
of training compared to general CNN approach.

The proposed algorithm is a two-stage filter extraction method. The initial step
involves extracting filter candidates from the input data using the center of gravity as
a criterion. The next step is to select the filters among the among them using a
predefined similarity threshold. The process is depicted in Figure 4.1. The following

33

sections will discuss the method in detail. In Section 4.2, we will discuss
convolutional filter discovery scheme of CCNN and in Section 4.2.2, the training of

the convolutional layers of the CCNN model is discussed.

4.2 Convolutional Filter Discovery

Typically, the number of filters per convolutional layer is predetermined as a
hyperparameter during the model construction process. Since the training of the
CNN is the next step after the model building, the filters are actually filled with
random numbers from a distribution according to one of the suitable initialization
techniques mentioned in Section 2.1.1. The randomly initialized filters then need to
be trained to be able to extract meaningful patterns from the images for correct
predictions. However, the number of filters is a hyperparameter that needs to be
tuned to give the best results since it is not known how many features are needed in
each convolutional layer for optimal performance. Another problem here stems from
the random initialization of the filters. Because of the randomness of initialization,
some number of epochs (that is not known know beforehand) of backpropagation is
performed so that the filters can become good feature extractors.

The approach proposed here is a filter extraction scheme where filters are
discovered in the training space without the knowledge of the contents and labels of
the given data. The input space is analyzed in an unsupervised fashion to discover
filters for the current convolutional layer. The process involves competition and
relies on a similarity threshold, which is determined through a grid search in
increments of 0.1 within the range of [0, 1], where 0 indicates no similarity and 1
represents an exact match. Based on the similarity threshold value, filter discovery
scheme either generates a new filter from this candidate filter and adds it to the
convolutional layer or updates an already extracted filter that belongs to this
convolutional layer. The input filter candidates for the discovery of the filters are
prepared from the training images of the given dataset with a process explained in
Section 4.2.1. After the inputs are prepared, the filter discovery algorithm is run for
only a single epoch. When this epoch is completed, the current convolution layer
training is complete and there will be no updates on this layer anymore. This process
is repeated for each convolutional layer in CCNN model. The implementation of this

approach is a hybrid of CPU and GPU tasks. The filter discovery scheme is

34

implemented entirely on the CPU, while the convolution and maxpooling operations
are performed on the GPU for efficient processing. After the filter discovery for the
whole system is completed, the CCNN is built and only the fully connected layers

undergo training on GPU.
4.2.1 Center of Gravity Based Candidate Filter Extraction

The purpose of convolutional layers is to apply convolution operation to the
images. In convolution operation, filters are slid on the input image with a specific
stride. At each step, convolution operation is applied on a receptive field sized
windows on the input image. The aim of the approach that is presented here is
discovering the filters from the input images. Thus, the training images are cut into
receptive field sized patches with strides of 1 as discussed in (Erkog, Eskil, 2022).
The stride value is selected as the same value that will be used with the CCNN model
for convolutions. In this study, CCNN models are all defined with stride value of 1 in
convolutional layers. Since the proposed CCNN model is based on the discovery of
the filters, the key to the high performance is based on how the images are
transformed into filter candidates. The remaining paragraphs of this section explains
the algorithm of choosing the appropriate filter candidates for CCNN model in the
perspective of MNIST dataset. Although, the explanation is based on the MNIST
dataset, all steps of the proposed algorithm are applicable as it is on other datasets.

Proposed algorithm processes each image in the training set one by one. When
an image from the training set is selected, it is first cut into small filter size x filter
size patches with strides of 1 which forms a set of filter candidates. However, a very
large number of filter candidates are obtained even with a small dataset like MNIST.
Moreover, the candidates obtained with this simple process often include no useful
information (e.g., background). The proposed algorithm’s running time is affected by
the sheer number of candidate filters that are obtained with this simple process. The
higher the number of the candidates, the longer it takes to calculate similarities. For
example,

Each MNIST (LeCun, Cortes, 2010) image’s dimensions is 28 x 28. If the filter
size is selected as 5 x 5 pixels, then the number of candidate filters that is added to
candidate filter set from just one image can be up to 567. Since there are 50000
training images processed by the proposed algorithm, the number of candidate filters
obtained from MNIST training set images can reach up to nearly 17 million. The

35

Algorithm 4.1: Candidate Set Creation Process:
I is the training image, patches is the patches of filter_size x filter_size.
Input: L. filter_size
Output: patches
m < Ljan — filter_size + 1
n < heion: — filter_size + 1
shape < (m.n, 1, filter_size, filter_size.1)
strides < stridesy* 2
patches < as_strided (1. shape. strides)
foreach patches; do
if Var(patches;) = 0 then

| Discard patches;

R - Y S SOV R S

=]

foreach patches; do

10 cog + computeCog(patches;)

11 if cog > filter width/2—0.5 & cog < filter width/2+ 0.5 then
12 | Keep patches;

13 else

14 | patches;

7

5 return patches

number of candidates depends on the size of the filters and the number of training
images in the dataset. The number of image patches can be larger than 17 million if
the size of the filters is reduced from 5 x 5 pixel filters to 3 x 3 pixel filters or just by
using another dataset which has more training images than MNIST. The filter
extraction process cannot be fast if all of the possible image patches are used as filter
candidates in the filter discovery scheme proposed here. Therefore, an elimination
procedure is employed on the image patches to guarantee that the size of the
candidate set remains within an acceptable range, while retaining essential
information.

Whenever an image is picked from the training set, the process shown in
Algorithm 4.1 is used to extract the candidate filters. The image patches are cut out
with specific stride and shape by using Python library NumPy’s as_strided function.
After the execution of as_strided function, we obtain a set of patches which contains
(n — filtery;,, + 1)? patches assuming that the image dimensions are n x n. This set
contains all possible image patches that can be extracted from that image. However,
not all of these patches enclose valuable information. Thus, the patches which have
variance value of O are discarded because these patches do not contain useful data.
Even with this initial elimination, most of the remaining patches in the set do not
contain meaningful patterns if closely inspected. Some of the features are on the
sides or corners of the filter while the middle part of the filter is all black. This is

caused by including the patches that are cut out from the images in strides of 1

36

throughout the image. While the window is slid through the image, several pieces
that contains the same feature in different positions are cut out from the image and
added to the candidate filters set. Sometimes the candidate filter window can just
capture a couple of pixels from that feature in its corner.

The second elimination removes those kind of image patches from the
candidate filters set by just including the features that are positioned in the middle of
the patch window. This is accomplished by computing the Center of Gravity (CoG)
per image patch. If the determined CoG value is situated at a distance of up to £0.5
pixels from the CoG of the image patch in both the horizontal and vertical axes, the
image patch is considered as a viable filter candidate. Otherwise, the current image
patch is discarded from the candidate filter set. CoG based elimination scheme
significantly reduces the number of candidate filters. These two elimination methods
applied on the image patches can be seen as an attention mechanism rather than a
preprocessing step. They ensure that focus is directed towards the features that are
relevant for extracting the crucial elements from the training images. After the
extraction of filters is completed, the filter weights are stored in a file to be later used
in CCNN model.

4.2.2 Unsupervised Learning Algorithm for Convolutional Layers of CCNN

Architecture

By executing the first step of the proposed method, we obtain the filter
candidates set. The next phase involves the identification of filters from the pool of
candidates. The aim is to start from a blank slate and dynamically discovering filters
from the training images for each convolutional layer.

The training algorithm described in Algorithm 4.2 operates on a layer-by-layer
basis, ensuring that the next convolutional layer is trained only once all possible
filters have been discovered for the previous layer. The process starts from the input
layer. The input layer L directly fed with the raw training images | from the selected
dataset. The training images | is processed by Algorithm 4.1 and the candidate
patches are stored in C. The discovery of the first filter is a special case since the
convolutional layer start with no filters. The algorithm relies on the similarity
between a candidate filter patch and convolutional layer filters. Thus, the first

candidate filter patch in C, directly becomes the first discovered filter for the empty

37

Algorithm 4.2: CCNN CoG Based Unsupervised Learning Algorithm:
C is the candidates of filter_size x filter_size, W is the weight matrix, V denotes
the votes/supporter count, s represents the similarity scores, L denotes the layer
number, I is the images, N denotes the number of filters.
Input: L. 1
Output: W
1 first_feature < True
2 if L # 0 then
3 L Obtain feature maps

4 foreach image/feature map do
5 Generate candidate filters set C
6 if first_feature then
7

Wi < Co
8 Vi1
9 first_feature + False
10 nk1
1 continue

12 foreach candidate C; do
3| S Wk.Cf

14 J + argmax(S)
15 if 5, = threshold then

16 W W (- Why/(vE)
17 VjL — '»7;’-—&— 1

18 else

19 WL ¢

20 VT{‘ — 1

21 | ntent+

22 foreach WjL do

23 | Map filter weights W to [~ 1, 1]
24 Update positive weights with (4.3)
25 Update negative weights with (4.4)

26 return W

convolutional layer and added as a filter to this layer. Supporter count (vote) variable

V , which is crucial for the weight update rule of the proposed approach, for this
filter is also set as 1. The number of supporters represents the frequency with which
the related filter is selected as the representative (winner) for another candidate filter
patch. The number of filters 1 for this layer is incremented by 1.

After the special case of discovering the first filter of the current convolutional
layer, the algorithm incorporates a competitive method to discover the remaining
filters. All of the previously discovered convolutional layer filters competes to be the
representative of the remaining input candidate filters. The competition is based on a
similarity threshold and a similarity score. For each candidate filter patch, a
similarity score between the candidate and the filters of the convolutional layer is
calculated. If the filter and candidate are both vectors in the training space, then the

similarity between them can be calculated with dot product. The filter vectors and the

38

candidate vector normalized and dot product calculated between the unit vectors. The

calculated dot products are then stored in vector S. The values inside the vector § is
the similarity scores of each filter to the current candidate. Since the filters are
competing, the winner filter is the one which holds the highest similarity score.
However, just winning is not enough to be the representative of this candidate filter
patch. The similarity score also must be higher than the user specified similarity
threshold. If the score 57; is greater than the similarity threshold value, that means the
candidate filter is similar enough to the winner filter. The pattern in the candidate
filter C; is observed in the past. Thus, a new feature is not encountered but a
supporter of the winner filter is found among the candidates. Since a new supporter is
found for the winner filter, the winner filter adjusts its weights according to weight
update rule in Equation 4.1 and the algorithm increases the supporter count
associated with the filter by one (Equation 4.2).

C— Wt
wh = w! TIIL 1’ (4.1)
L+
VE=Vr+1 (4.2)

If the highest score in §; is below the similarity threshold value, it indicates that
the candidate filter C; contains a previously unobserved pattern according to the
algorithm. Consequently, C; is acknowledged as a novel filter for the current
convolutional layer, and its supporter count is set to 1. This procedure is iterated for
each candidate filter until the entire set is evaluated, signifying the completion of the
filter search for the current layer L. Once all the candidates have been processed, the
discovered filters undergo a normalization routine as the final step in the proposed
algorithm. As part of the normalization procedure, the filter weights are stretched to
fit within the range of [-1, 1]. Subsequently, the positive and negative filter weights
are individually updated using Equations (4.3) and (4.4) respectively. Finally, the
weights of the discovered filters are stored in a file upon the completion of Algorithm
4.2.

39

WiL<+) - WiL(+) / |2 w]?(+)| 4.1)

w].L(‘) - w].L(‘) / |Z W;(—)| (4.2)

The Algorithm 4.2 is also applied to the subsequent convolutional layers in the
CCNN model. After the input layer, the process of extracting the filters from the data
slightly changes. The input data must now be the output of the previous
convolutional and pooling layers. Thus, except for the input layer, proposed
algorithm must obtain the feature maps from the previous layer’s output. However, to
do this, we first start by creating a Keras Sequential model. The convolutional layers
added with Conv2D layer of Keras. The normal operation for Conv2D constructor is
to get various input parameters the number of filters, weight initialization method,
activation function, bias value, convolution type, stride value, etc. and create the
convolutional layer. The weights of the filters are initialized randomly according to
the selected initialization scheme. However, in CCNN approach, the filters are
discovered before the CCNN model is built in Keras. Thus, the count of discovered
filters is set as the number of filters. The discovered filters are also at their trained
form, so they should not neither be initialized nor trained. Consequently, the filter
weights of the convolutional layer are determined by utilizing the output of the
Algorithm 4.2 and setting them using the set weights method in Keras. After the
weights of the filters are set, the trainable parameter of the filters is set the False to
prevent the training of convolutional layer. If the CCNN model includes a max
pooling layer after the convolutional layer, it is created and appended to the

Sequential model.

40

CHAPTER 5

5. EXPERIMENTS

The proposed method is evaluated on different CCNN model architectures.
Handwritten digit datasets MNIST (LeCun, Cortes, 2010) and EMNIST-Digits (Co-
hen, Afshar, Tapson, van Schaik, 2017), handwritten Japanese character dataset
Kuzushiji-MNIST (Clanuwat et al., 2018), and fashion items dataset Fashion-MNIST
(Xiao, Rasul, Vollgraf, 2017) are utilized in the experiments. The following sections
discuss the model architecture, the experiment settings, the datasets, performance

metrics, experiment results and misclassified test samples.

5.1 Model Types

In the experiments, four different model types are utilized. The models are
called type A, B, C and D. Table 5.1 shows the general structure of the layers in the
CCNN models. We do not know the number of filters hyperparameter value in
advance so the number of filters will be different for each parameter setup per
dataset. Thus, the final models will be unique to the parameter settings. The max
pooling layers are configured to halve the input. Since our algorithm only touches the
feature extractor part of the CNN architecture, the classifier part of the models is all
set as the same. We configured two fully connected layers separated by a dropout

layer.

41

5.2 Experiment Setup

All models types (Table 5.1) in our experiments are implemented with Keras.
The deep learning backend is configured as Theano (Theano Development Team,
2016). We use Sequential model of Keras to build the CCNN models in Table 5.1.
After applying our algorithm, we obtain the filter weights for the convolutional
layers. These weights are used for initializing the convolutional layers in the

Sequential model. However, we freeze the weights so that they become untrainable
by Keras.

Table 5.1 CCNN networks that are used in the experiments with various datasets.
Convolutional layers either use 5 x 5 or 3 x 3 filters. Maxpooling is applied on the
feature maps on 2 x 2 windows with strides of 2. The size of the convolutional filters

is denoted with n while the maxpooling window size is shown with m.

Model Layer1l Layer2 Layer3 Layer4 Layer5 Classifier
Conv MaxPool Conv

A . .
nxn mxm nxn
Conv Conv MaxPool ~ S
8 ' " 8388
— 4 ":—;
Conv. MaxPool Conv MaxPool Conv g 3 & 2
C S S o 8
nxn mxm nxn mxm nxn o5 °@
Conv Conv MaxPool Conv Conv
D
nxn nxn mxm nxn nxn

Convolutional layer convolution mode is set as same to use zero-padding in
during the convolution operations. This ensures the preservation of input data
dimensions. Pooling layers are configured to apply max pooling operation on 2 x 2
windows with strides of 2. This allows dimensions of the inputs to be halved. Keras
trains only the fully connected layers for 50 epochs. Two fully connected layers of
1000 and 500 neurons separated by a Dropout layer with a 50% drop rate in between
is configured. The activation function used in the experiments is ReLU. The only

exception is the output layer where we used Softmax. The output layer is configured

42

with 10 units. Loss is calculated with categorical cross-entropy and the weights of
the fully connected layers are updated with Adadelta (Zeiler, 2012). We used an entry
level desktop computer for the experiments which carries a 3.6 GHz Intel Core i7
7700 CPU and a single GTX1050 GPU with 2GBs of VRAM.

5.3 Datasets

The following sections will introduce the datasets that are used in the
experiments. Note that the datasets are used as it is. We do not apply preprocessing to

the dataset or increase the training set image count by using data augmentation.
5.3.1 MNIST

MNIST is a collection of labeled handwritten digits images. The dataset
comprises a training set containing 60000 images and a separate test set containing
10000 images. In our experiments, we partitioned the training set into 50,000 training
images and 10,000 validation images. The validation set was randomly chosen and
extracted from the original training set. It is important to note that both the training
and validation sets exhibit an imbalanced class distribution, resulting in varying
sample counts across different classes due to random sampling performed during the

separation of the validation sets.
5.3.2 EMNIST-Digits

EMNIST-Digits is a collection of handwritten digit images, similar to the
original MNIST dataset, but with an extended range of characters. EMNIST-Digits
consists of 10 classes representing the digits 0-9 as in MINIST. It provides a larger
and more diverse set of handwritten digit samples in contrast to the original MNIST
dataset. The EMNIST-Digits consists of 240000 training and 40000 test images. In
the training set, the last 40000 images have been specifically designated as a
validation set (Cohen et al., 2017). This validation set has been organized in a way

that ensures a balanced distribution of classes.

43

5.3.3 Kuzushiji-MNIST

The Kuzushiji-MNIST dataset is tailored to capture the distinct features of old
cursive Japanese handwriting. It consists of ten distinct hiragana classes. Each
hiragana character in cursive Japanese can have multiple variations since they are
derived from different kanji characters. As a result, each class in the dataset is
represented by several characters that exhibit entirely different writing styles. Due to
the substantial intraclass variations, this dataset poses a significant challenge in
contrast to the original MNIST dataset. The image counts for the training, validation,
and test sets in Kuzushiji-MNIST is identical to the original MNIST dataset. A
validation set is generated by randomly selecting and separating a portion from the
original training set. Consequently, both the training and validation sets exhibit an
imbalanced distribution of classes, with varying numbers of samples across different

classes.
5.3.4 Fashion-MNIST

Fashion-MNIST is a dataset designed as a substitute for MNIST, but with a
focus on fashion-related images. It comprises a training set containing 50000 images
and a distinct test set consisting of 10000 images. To ensure consistency with the
MNIST dataset, we follow the same procedure to partition the Fashion-MNIST

dataset into training, validation, and test sets.

5.4 Performance Metrics

Performance metrics accuracy, precision, recall, specificity and F1-score are
calculated with Equations 5.1-5.5. For calculating these metrics for a class c;, we use
the following definitions:

* True Positive (TP): the count of images belonging to class c; that are
accurately recognized as class c;;

* True Negative (TN): the count of images belonging to other classes and are
correctly identified as other classes;

« False Positive (FP): the count of images belonging to other classes but are

incorrectly identified as class c;;

44

» False Negative (FN): the count of images belonging to classes ci but
incorrectly identified as other classes.
In addition, we provide a comprehensive assessment by reporting the overall

accuracy of all the models.

TP+ TN 100 (5.1)

= X .

ACCUracY =Tp L TN + FP + FN
TP
sion = ———— 5.2
precision = s (5.2)
TP
e — 5.3
recall TPTFN (5.3)
TN
ficity = ———— 5.4
specificity TN T FP (5.4)
recall

F1 —score =2 X (5.5)

precision + recall

5.5 Experiment Details

To evaluate the performance of our proposed method, we run experiments by
using different values of similarity threshold. The similarity threshold value is chosen
within the range of [0, 1], representing the spectrum from dissimilar to exact match.
The threshold values are determined through a grid search process with steps of 0.1.
This approach restricts the search space to the specific values listed as: 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Performance is adversely affected when the similarity
threshold is set below 0.5, as setting the similarity threshold too low leads to a
considerable reduction in the number of filters obtained from the datasets. We
deliberately refrain from employing any preprocessing or data augmentation
techniques to evaluate our proposed algorithm in isolation. Each model type is used
for each dataset. A total of five training runs are conducted for each individual
model, and only the performance metrics of the top-performing CCNN model are

reported in the following sections.

45

CHAPTER 6

6. RESULTS

6.1 MNIST Experiment Results

Each model listed in Table 5.1 are evaluated using different combinations of
similarity thresholds. The experiments reveal that 5 x 5 filters yield higher accuracy
compared to smaller 3 x 3 filters. Among these models, Model A exhibits the highest
classification performance achieved on the MNIST dataset, achieving an accuracy of
99.19%, as presented in Table 6.1. The process of extracting filters for the
convolutional layers and the top-performing model is trained in a time frame of 30

minutes.

Table 6.1 Extracted filter counts and the test accuracy of individual models on

MNIST dataset.

Model Similarity Threshold (T)

Filter Count (FC)

Type T1 T2 T3 T4 FC1 FC2 FC3 FC4 Accuracy(%)
A 06 05 - - 97 54 - - 99.19
B 06 05 - - 97 117 - - 99.18
C 06 06 07 - 97 120 67 - 98.34
D 06 05 06 0.7 97 117 101 145 97.45

46

Table 6.2 The confusion matrix represents the performance of Model A on the MNIST

dataset.

Predicted Labels
0 1 2 3 4 5 6 7 8 9

0974 1 1 o 0 0 3 1 0 0
1 0o 1130 1 I 0 0 3 0 0 0
201 1 125 0 1 0 0 3 1 0
£3 0 0 0 1002 0 2 0 0 4 2
240 o 1 O 94 0 2 0 0 5
if s/ 2 0 0 4 0 88 2 1 0 0
“ 6| 3 3 0O 0 1 2 99 0 0 0
700 2 2 0o 0o 0 0 1022 1 |
s/ 1 0o 3 2 0 2 0 1 93 2
9o 0 2 1 > 3 1 0 2 1 997

Out of the 10000 test images, the model makes 81 incorrect predictions. The
confusion matrix, shown in Table 6.2, provides an overview of the model’s
performance. It is noteworthy that the digit class that is most accurately predicted by

the model is 1, while the most commonly confused class is 9.

47

Table 6.3 Performance metrics of Model type A for individual classes of MNIST
dataset.

Classes | Accuracy(%) Precision Recall Specificity F1-score
0 99.87 0.9929 0.9939 0.9992 0.9934
1 99.86 0.9921 0.9956 0.9990 0.9938
2 99.84 0.9913 0.9932 0.9990 0.9923
3 99.83 0.9911 0.9921 0.9990 0.9916
4 99.87 0.9949 0.9919 0.9995 0.9934
5 99.84 0.9921 0.9899 0.9992 0.9910
6 99.81 0.9896 0.9906 0.9989 0.9901
7 99.86 0.9922 0.9942 0.9991 0.9932
8 99.82 0.9928 0.9887 0.9992 0.9907
9 99.78 0.9901 0.9881 0.9989 0.9891

6.2 EMNIST-Digits Experiment Results

Similar to the results obtained in the MNIST experiments, employing a filter
size of 5 x 5 leads to improved accuracy for the EMNIST-Digit experiments. Once
again, Model type A remains the best performing model, achieving an accuracy of
99.39% as presented in Table 6.4.

48

Table 6.4 Extracted filter counts and the test accuracy of individual models on
EMNIST-Digits dataset.

Model Similarity Threshold (T) Filter Count (FC)

Type T1 T2 T3 T4 FC1 FC2 FC3 FC4 Accuracy(%)
A 06 05 - - 145 116 - - 99.39
B 05 05 - - 78 161 - - 99.38
C 06 05 07 - 145 116 101 - 99.11
D 05 05 06 0.5 78 161 148 114 98.94

Out of the 40000 test images, our model makes 244 incorrect predictions. The
corresponding confusion matrix can be found in Table 6.5. It is noteworthy that the
digit 6 is the class with the highest accuracy in predictions, while digit 8 poses the

most significant challenge for the model, as indicated in Table 6.6.

Table 6.5 The confusion matrix represents the performance of Model A on the
EMNIST-Digits dataset.

Predicted Labels

0 1 2 3 4 5 6 7 8 9
0| 3984 2 3 0 0 1 7 0 1 2
1 1 3083 8 0 1 0 3 3 1 0
2 3 3 3982 4 1 0 0 2 4 1
= 3 1 0 8 3962 0 14 0 4 6 5
S 4 2 1 1 0 3972 0 4 3 0 17
‘% 5 5 1 1 4 0 3970 9 0 5 5
< 6 6 1 0 0 5 3 3985 0 0 0
7 0 1 7 1 3 0 0 3981 0 7
8 0 7 8 3 2 3 5 1 3960 11
9 0 1 0 2 4 3 0 7 3 3980

49

Table 6.6 Performance metrics of Model type A for individual classes of EMNIST-
Digits dataset.

Classes | Accuracy(%) Precision Recall Specificity F1-score
0 99.92 0.9955 0.9960 0.9995 0.9958
1 99.92 0.9958 0.9958 0.9995 0.9958
2 99.87 0.9910 0.9955 0.9990 0.9933
3 99.87 0.9965 0.9905 0.9996 0.9935
4 99.89 0.9960 0.9930 0.9996 0.9945
5 99.87 0.9940 0.9925 0.9993 0.9933
6 99.89 0.9930 0.9963 0.9992 0.9946
7 99.90 0.9950 0.9953 0.9994 0.9951
8 99.85 0.9950 0.9900 0.9994 0.9925
9 99.83 0.9881 0.9950 0.9987 0.9915

6.3 Kuzushiji-MNIST Experiment Results

In the case of the Kuzushiji-MNIST dataset, a filter size of 3 x 3 proves to be
more effective compared to the use of a 5 x 5 filter size employed with the MNIST
and EMNIST-Digit datasets. The highest level of test accuracy is observed in model
type B with 95.03%, as presented in Table 6.7.

50

Table 6.7 Extracted filter counts and the test accuracy of individual models on
Kuzushiji-MNIST dataset.

Model Similarity Threshold (T) Filter Count (FC)

Type T1 T2 T3 T4 FC1 FC2 FC3 FC4 Accuracy(%)
A 06 05 - - 51 48 - - 94.62
B 06 05 - - 51 67 - - 95.03
C 06 06 05 - 51 133 43 - 94.90
D 06 05 05 0.4 51 67 140 193 93.55

In the test set predictions, a total of 497 errors are observed. The corresponding

confusion matrix for the best model can be found in Table 6.8.

Table 6.8 The confusion matrix represents the performance of Model B on the
Kuzushiji-MNIST dataset.

Predicted Labels
0 1 2 3 4 5 6 7 8 9

0| 952 3 2 1 23 4 0 9 5 1

1 0 946 8 0 7 3 17 2 8 9

2 8 7 911 44 6 6 5 2 5 6
= 3 2 1 10 979 1 0 3 1 2 1
3 4| 11 11 1 10 939 3 7 4 9 5
E 5 1 6 23 5 943 6 1 5 7
<

1 94 2 1 1

L-T- -)
[—
—
o
[—
—_
o

51

Class 3 is the class with the highest accuracy in predictions, while class 2 poses
the most significant challenge for the model, as evidenced by a recall of 0.91, as
indicated in Table 6.9.

Table 6.9 Performance metrics of Model type B for individual classes of Kuzushiji-
MNIST dataset.

Classes | Accuracy(%) Precision Recall Specificity F1-score
0 99.16 0.9636 0.9520 0.9960 0.9578
1 98.99 0.9527 0.9460 0.9948 0.9493
2 98.40 0.9277 09110 0.9921 0.9193
3 98.99 0.9245 0.9790 0.9911 0.9510
4 98.71 0.9325 0.9390 0.9924 0.9357
5 99.23 0.9792 0.9430 0.9978 0.9608
6 99.11 0.9479 0.9640 0.9941 0.9559
7 99.36 0.9766 0.9590 0.9974 0.9677
8 99.10 0.9452 0.9660 0.9938 0.9555
9 99.01 0.9564 0.9440 0.9952 0.9502

6.4 Fashion-MNIST Experiment Results

In the Fashion-MNIST experiments, it is observed that utilizing a filter size of
3% 3 yields improved results compared to the use of 5 x 5 filters. Model type B
emerges as the top-performing model, achieving an accuracy of 90.11%, as depicted
in Table 6.10.

52

Table 6.10 Extracted filter counts and the test accuracy of individual models on
Fashion-MNIST dataset.

Model Similarity Threshold (T) Filter Count (FC)

Type T1 T2 T3 T4 FC1 FC2 FC3 FC4 Accuracy(%)
A 0.7 07 - - 92 48 - - 88.80
B 0.7 06 - - 92 40 - - 90.11
C 0.7 07 06 - 92 48 44 - 85.55
D 0.7 07 05 0.5 92 62 47 18 86.92

Table 6.11 The confusion matrix represents the performance of Model B on the
Fashion-MNIST dataset. The classes are assigned to numbers ranging from 0 to 9. In
order, the class labels correspond to Tshirt/top, Trouser, Pullover, Dress, Coat, San-
dal, Shirt, Sneaker, Bag, and Ankle boot.

Predicted Labels
0 1 2 3 4 5 6 7 8 9

0 | 877 1 6 21 1 1 87 0 5 1
1 3 976 0 14 2 0 3 0 2 0
2| 23 0 807 10 85 0 72 0 3 0
= 3| 23 7 9 918 22 0 17 0 4 0
E 4| 0 1 88 42 805 0 62 0 2 0
E 5/ 0 0 0 1 0o 977 0 17 0 5
“ 6 | 121 1 55 21 56 0 735 0 11 0
7] 0 0 0 0 0 8 0 972 0 20
8 1 0 3 7 1 0 2 4 982 0
9| 0 0 0 0 0 5 1 32 0 962

53

Table 6.12 Performance metrics of Model type B for individual classes of Fashion-
MNIST dataset.

Classes Accuracy(%) Precision Recall Specificity F1-score
Tshirt/top 97.06 0.8368 0.8770 0.9810 0.8565
Trouser 99.66 0.9899 0.9760 0.9989 0.9829
Pullover 96.46 0.8337 0.8070 0.9821 0.8201
Dress 98.02 0.8878 0.9180 0.9871 0.9027
Coat 96.38 0.8282 0.8050 0.9814 0.8164
Sandal 99.63 0.9859 0.9770 0.9984 0.9814
Shirt 94.91 0.7508 0.7350 0.9729 0.7428
Sneaker 99.19 0.9483 0.9720 0.9941 0.9600
Bag 99.55 0.9732 0.9820 0.9970 0.9776
Ankle boot 99.36 0.9737 0.9620 0.9971 0.9678

6.5 Filters Discovered via Proposed Unsupervised Process

6.5.1 MNIST Dataset

Figure 6.1 illustrates the filters obtained from the first layer of Model A trained
with MNIST dataset. The extracted filters demonstrate noticeable directed edges and
curves. These filters extracted through proposed algorithm effectively represent the
visual characteristics inherent in the dataset, as depicted in Figure 6.1.0ne intriguing
finding is that a number of our features exhibited convergence towards Gabor-like
filters, which have been extensively studied and employed in various research

studies.

54

" | i
L T
AF R RN
S P 1
(0 P L] T
|| =g = Pl LR] -
HAONINN

Figure 6.1 First layer filters of Model A trained with MNIST dataset.

L1

Fi
="
als
Ei

1 [lllL ™
Ll "1 i
]

=
=
-
=
=

L]
=
=
L
i
g

6.5.2 EMNIST-Digits Dataset

AL F b s P
YE i a1 0 o .]
[e N O P [ol P
T P
L0 e (L S i LY
= 1ol] % ||))Ll] T
F e | L [
Cadfmm Lo [P OIPNI fe],
RO LOERIIORESNEr X

P I L O (O

Figure 6.2 First layer filters of Model A trained with EMNIST-Digits dataset.

55

The EMNIST dataset serves as an extended version of the MNIST dataset,
which is why certain filters extracted from the training set of EMNIST-Digits (refer

to Figure 6.2) are either identical or highly similar to those depicted in Figure 6.1.
6.5.3 Kuzushiji-MNIST Dataset

In the experiments conducted on the Kuzushiji-MNIST dataset, utilizing 3 x 3
filters for filter extraction yields higher classification accuracy when compared to 5 x
5 filters. Figure 6.3 displays the filters obtained from the training set for the initial
convolutional layer. From the extracted filters, one can observe the presence of

directed edges and fragments of curved strokes.

e Y NV | oo || W %[0
] = e "] | el
B o P el I R O e 9 el
BN

Figure 6.3 First layer filters of Model B trained with Kuzushiji-MNIST dataset.

6.5.4 Fashion-MNIST Dataset

The filters obtained from the Fashion-MNIST dataset capture notable features
such as directed edges and corners. In comparison, the MNIST and EMNIST-Digits
datasets have a higher number of filters that effectively capture smooth curves,
reflecting the prevalence of curved characteristics in the digits as opposed to the
fashion items present in the Fashion-MNIST dataset. The extracted filters are
visually represented in Figure 6.4.

56

o e O ST PR O |)] =
| N 0l [|=] B |
- | Ml [[R N
)] PO I e P o S R
Cull ™ i IF | |G 8 P R e LS
%EEHWHHUE!EHHEE

Figure 6.4 First layer filters of Model B trained with Fashion-MNIST dataset.

6.5.5 Extracted Filters in Subsequent Layers

Visualizing the filters in the initial convolutional layer is straightforward since
their input weights correspond to specific features and can be easily reshaped to
reconstruct images. However, as we delve deeper into subsequent layers, the weights

no longer directly map to the input pixels. Therefore, a method is employed to

A=~ ACITTS 7 1] AT lal] S
= LA LAl A1 ™A S)
AV [PLEAT R EE -
| =ML

Figure 6.5 The visualization illustrates the collection of 54 features obtained from

the MNIST training images using Model type A in the second layer.

visualize the features in these deep layers, allowing for a more comprehensive
understanding of the features extracted by our algorithm.
Once the training process is completed, the trained model is employed to

generate feature maps for each image in the training set at a designated layer. For

57

every training image, the pixel with the highest value across all feature maps is
identified and marked. The coordinates of this pixel are then traced back to the
original training image, and the corresponding region containing the feature that
most strongly activates the specific filter is highlighted. This process is exemplified
in Figure 6.5 using the MNIST dataset. The visualization in Figure 6.5 implies that
the filters are specialized in detecting features that progressively evolve to represent
more intricate characteristics. These intricate features correspond to various parts of
the digits, such as closed loops and curves, which are prevalent in digit

representations.

6.6 Samples with Incorrect Classification

6.6.1 Incorrectly Classified MNIST Samples

Model type A demonstrates exceptional performance in correctly classifying
digit 1 samples from the MNIST dataset, with only 5 misclassifications out of 1135
digit 1 samples in the test set.

The misclassified digit 1 samples are displayed in Figure 6.6. The second,
fourth, and fifth images are erroneously labeled as digit 6. We can attribute this to the
slight angle and curvature of the digit strokes, as well as the presence of artifacts in
the samples, which may have caused confusion in the prediction. The first and third
misclassified images are relatively straightforward for human observers to identify
correctly; however, the trained model assigns the labels 2 and 3 to them,
correspondingly. It is worth noting that these misclassifications may stem from the
presence of certain fundamental features shared with other digit 2 samples, leading to
an incorrect classification. Upon examining the top-2 predictions for each of these
test samples, it is observed that the second most probable prediction is digit 1, with a

confidence level very close to the top-1 prediction.

58

Actual: 1 Actual: 1 Actual: 1 Actual: 1 Actual: 1
Predicted: 2 Predicted: 6 Predicted: 3 Predicted: 6 Predicted: 6

Figure 6.6 The test images belonging to digit class 1 from the MNIST dataset are

inaccurately classified by Model A. Among these images, the second, fourth, and
fifth samples are mistakenly labeled as 6, potentially due to the presence of artifacts

and curved elements within the images

Actual: 9 Actual: 9 Actual: 9 Actual: 9 Actual: 9
Predicted: 8 Predicted: 3 Predicted: 7 Predicted: 3 Predicted: 4

Actual: 9 Actual: 9 Actual: 9 Actual: 9 Actual: 9
Predicted: 2 Predicted: 1 Predicted: 4 Predicted:5 Predicted: 1

Actual: 9 Actual: 9
Predicted: 7 Predicted: 4

.

Figure 6.7 The test images belonging to digit class 9 from the MNIST dataset are
inaccurately labeled by Model A.

59

The model’s weakest performance is observed in the classification of digit 9 in
the MNIST test set. The model demonstrates a tendency to assign varying labels in
accordance with distinct writing styles. For images with a small loop diameter, the
model tends to assign labels of either digit 1 or 7, determined by the length of the
loop, as the loop feature becomes less distinguishable or entirely obscured during the
convolution and pooling operations. The first image in the second row presents an
intriguing case where the lower half of the digit is clipped, leading to an image that is
unidentifiable. All predictions for digit 4 are assigned to unconventional digit 9
samples. Among these, only one is correctly identified as digit 9 by a human

observer.
6.6.2 Incorrectly Classified EMNIST-Digits Samples

Our model achieves the highest prediction accuracy when classifying samples
from the EMNIST-Digits test set that belong to the digit 6. However, there are

Actual: 6 Actual: 6 Actual: 6 Actual: 6 Actual: 6
Predicted: 5 Predicted: 0 Predicted: 0 Predicted: 4 Predicted: 4

Actual: 6 Actual: 6 Actual: 6 Actual: 6 Actual: 6
Predicted: 0 Predicted: 1 Predicted: 5 Predicted: 4 Predicted: 4

Actual: 6 Actual: 6 Actual: 6 Actual: 6 Actual: 6
Predicted: 0 Predicted: 4 Predicted: 0 Predicted: 0 Predicted: 5

Figure 6.8 Misclassified images from the digit class 6 in the EMNIST-Digits
dataset, as predicted by Model A.

instances where our model incorrectly predicts the labels, as depicted in Figure 6.8.

Out of the 4000 test samples consisting of the digit 6, our model makes 15 incorrect

60

predictions. Interestingly, some of these mispredicted samples bear no resemblance
to the digit 6 at all. In fact, one of the samples even contains a two-digit number 66
instead of a single digit 6. The presence of rotation and missing parts, caused by
cropping, influence the model to favor predicting digit 4. Additionally,
mispredictions of digit 0 are also common. Upon analyzing the top-2 predictions, we
observe that digit 6 is the subsequent prediction in 12 out of 15 cases.

The digit class 8 exhibits the poorest prediction performance, as Model A

Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8

Predicted: 4 Predicted: 1 Predicted: 4 Predicted: 1 Predicted: 6 Predicted: 1 Predicted: 3 Predicted: 2 Predicted: 9 Predicted: 2
Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: B
Predicted: 2 Predicted: 9 Predicted: 2 Predicted: 9 Predicted: & Predicted: 9 Predicted: 2 Predicted: 6 Predicted: 5 Predicted: 9

N
&)

Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8
Predicted: 5 Predicted: 5 Predicted: 1 Predicted: 9 Predicted: 6 Predicted: 3 Predicted: 3 Predicted: 1 Predicted: 2 Predicted: 9

Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8 Actual: 8
Predicted: 2 Predicted: 2 Predicted: 9 Predicted: & Predicted: 9 Predicted: 9 Predicted: 7 Predicted: 1 Predicted: 1 Predicted: 9

Figure 6.9 The test images belonging to digit class 8 from the EMNIST-Digits

M

)
~
0
~
N\
~
\0

dataset are inaccurately labeled by Model A.

incorrectly labels 40 out of 4000 digit 8 images from the EMNIST-Digits test set. In
Figure 6.9, we can observe several mispredicted images that lack crucial parts of the
digit, making correct classification challenging. Notably, digit 8 is frequently
misclassified as digit 9. Upon closer inspection, it becomes evident that 4 of these
mispredicted images lack a loop in the lower half of the digit 8. This absence of a
prominent curve in the expected location is a common characteristic of these
inaccurate predictions. Moreover, some of the misclassified samples do not even
resemble digit 8 in any discernible way. Interestingly, when considering the top 2
predictions, digit 8 emerges as the second most likely prediction for 22 out of the

mispredicted images.

61

6.6.3 Incorrectly Classified Kuzushiji-MNIST Samples

Among all the classes, our best model attains the highest classification
performance on class 3 with only 21 prediction errors. However, there is a frequent
confusion between class 3 and class 2, leading to mislabeling during testing. The
images depicted in Figure 6.10 exhibit features that bear resemblance to other
classes, which further complicates the prediction process. Class 3 emerges as the

runner-up prediction for 13 of the misclassified images.

Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3
Predicted: 6 Predicted: 1 Predicted: 7 Predicted: 8 Predicted: 0 Predicted: 2 Predicted: 2 Predicted: 0 Predicted: 2 Predicted: 9
—_ i 3 ' - j
Iﬂ.] 'H 9 | 1‘ 5’
i L
f : £
| [3 | : f [
JB{ 3 ;
Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3 Actual: 3

Predicted: 6 Predicted: 2 Predicted: 2 Predicted: 2 Predicted: 2 Predicted: 2 Predicted: 8 Predicted: 2 Predicted: 4 Predicted: 6
"

Actual: 3
Predicted: 2

U

Figure 6.10 Misclassified images from the class 3 in the Kuzushiji-MNIST

dataset, as predicted by Model B.

Class 2 poses the greatest confusion for the model, as it frequently
misclassifies class 2 images as class 3. Upon closer examination of the mislabeled
images, it becomes apparent that many of them exhibit features reminiscent of class
2 samples (Figure 6.11). It is worth noting that for 55 of these samples, the second

most accurate prediction corresponds to the correct class.

62

Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2
Predicted: 3 Predicted: 5 Predicted: 3 Predicted: 3 Predicted: 3 Predicted: 3 Predicted: 3 Predicted: 3 Predicted: 1 Predicted: 3

i«:;i

2

Actual: 2

; c’%- 2 EX

Actual: 2 Actual: 2 Actual: 2 Art 12 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2

Predicted: 3 Predicted: 3 Predicted: 1 Predicted: 3 Pred\cted 9 Predicted: 3 Predicted: 4 Predicted: 3 Predicted: 1 Predicted: 3
- - F
F -
] — —da
E] ™
-
i "I‘] 5

Actual: 2 Actual: 2 Actual: 2 Actual: 2
Predicted: 3 Predicted: 5 Predicted: 9 Predicted: 3

Actual: 2 Actual: 2 Actual: 2 Actua\ 2 Actual: 2
Predicted: 5 Predicted: 3 Predicted: 6 Predicted: 1 F’red\cred 9

y

Actual: 2
Predicted: 0

o

E

£y
Actual 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2
Predicted: 4 Predicted: 8 Predicted: 8 Predicted: 1 Predicted: 3 Predicted: 3 Predicted: 3 Predicted: 5 Predicted: 0 Predicted: 0
- ; ' A .
Jé) 4 f ' .
- - r
Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2

Predicted: 8 Predicted: 8 Pred\cted 3 Predicted: 7

Predicted: 4 Predicted: 9 Predicted: 3
.

Predicted: 9 Predicted: 0

J

Actual: 2 Actual: 2
Predicted: 7 Predicted: 3

Actual: 2 Actual: 2 Actual: 2

. A= 1 A

[-
Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2
Predicted: & Predicted: 3 Predicted: 3 Predlrted 3 Predicted: 3 Predicted: 3

R % ”

Actual: 2 Actual: 2 AL[Ud| 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2
Predicted: 8 Predicted: 0 Predicted: 1 Predicted: 3 Predicted: 4 Predicted: 5 Predlcted 3 Predicted: 3 Predicted: 0 Predicted: 3

N 13

Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2
Predicted: 5 Predicted: 9 Predicted: 3 Predicted: 6 Predicted: 3 Predicted: 3 Predicted: 4 FrEdl(tEd 3 Predicted: 3 Predicted: 3

E! %

Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2 Actual: 2
Pred\[ted 3 Predicted: 6 Predicted: 3 Predicted: 4 Predicted: 0 Predicted: 0 Predl(ted 3 Predicted: 1

BRHEASAREEE

Figure 6.11 The test images belonging to digit class 2 from the Kuzushiji-MNIST

[
E

1

A

(2

R

-

ﬁ

3
o5+
:;;

E
Pa)
S‘r

" o
o
o
5
a
m
ik
o

dataset are inaccurately labeled by Model B.

6.6.4 Incorrectly Classified Fashion-MNIST Samples

The model achieves its best performance when encountering samples from the
Bag class. Out of the 1000 test images of bags, 18 are misclassified. Figure 6.12
displays some of these mislabeled test samples belonging to the Bag class. For
instance, in the first row, the second image is incorrectly predicted as a Pullover. The
bag image contains two elements that resemble long sleeves, which could have led to
the misleading prediction in this particular case. The model frequently confuses Bag

class images with Dress class images. Upon examining the second-best predictions

63

for these images, only 2 are correctly identified. Since the Fashion-MNIST images
are derived by downsampling colored fashion articles into the MNIST format, many
details and features of the objects are lost. The utilization of higher-resolution images

could potentially alleviate some of the errors observed in the tests.

Actual: Bag Actual: Bag Actual Actual: Bag Actual: Bag
Predicted: Shirt Prex n cte u P Jiove Pre ress predicted: Dress Predicted: D fos prediied Ta h riftop Prex colcted: Dres Ped Leu D oss F‘ed teu sl i Predicted: Sneaker

NENONOINHEHHEERD

i‘-ci e\ Bau z«u a\ Daq A L al Bars nct al Beu Actual: Bag A
ker = Pradicted: Dress Predict

: Bag Acl a\ Ban. Actual; Bag
o Snesker ker Predicted: Pullov

8] - B

Figure 6.12 The test images belonging to the Bag class that were misclassified.

The Shirt class poses the greatest challenge for the model, with 265 test
samples misclassified. Figure 6.13 displays some of the incorrectly predicted Shirt
images. The model often confuses Shirt samples with those from the T-shirt/Top

Figure 6.13 The mislabeled test images from the Shirt class, which were incorrectly

classified as similar classes by Model B.

class. Upon closer inspection, it becomes apparent that the model has learned to
associate fashion articles lacking sleeves or with shorter sleeves with the T-shirt/Top
category. Analyzing the top-2 predictions reveals that 196 out of the 265

misclassified samples are correctly identified as Shirts.

64

CHAPTER 7

7. DISCUSSION

Our method employs a unique training approach for the convolutional layers,
utilizing unsupervised learning without the use of backpropagation. In contrast, the
fully connected layers are trained using a supervised approach. Unlike previous
studies that either trained the network entirely in a supervised manner, or relied on
unsupervised learning with pseudo-label backpropagation, or a combination of
unsupervised feature learning for initialization with supervised backpropagation, our
method offers distinct advantages. In comparison to supervised methods, our
approach does not require any labels for training the convolutional layers since we do
not employ backpropagation in the training process. Moreover, our method has the
advantage of extracting filters without the need for prior domain knowledge. This
sets it apart from self-supervised learning methods that rely on the crafting of pretext
tasks, which necessitates domain knowledge for satisfactory performance. While our
method may resemble unsupervised pre-training, which is typically used for weight
initialization, we do not utilize the extracted filters for initialization. This is because

we steer clear of supervised training in the convolutional layers.

65

Table 7.1 Comparison between previous works and our method for the number of
epochs of training needed for convolutional filters, whether data augmentation and

ensemble of networks are used. The legend of the table: v: applied, x : not applied,

NA: no information available.

Method Data Augmentation Ensemble Backpropagation Epochs
HVC (Byerly, Kalganova, Dear, 2021) v v v 300
DropConnect (Wan, Zeiler, Zhang, LeCun,, Fergus, 2013) v v v 1000
MCDNN (Ciresan, Meier, Schmidhuber, 2012) v v v 800
OptConv+Log+Perc (Pad et al., 2020) v X v 1000
CAMNet3 (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019) v v v NA
SAM (Foret, Kleiner, Mobahi, Neyshabur, 2021) v X v NA
CAE (Masci, Meier, Cires,an, Schmidhuber, 2011) X X N NA
Deep k-Sparse AE + F.T. (Makhzani, Frey, 2014) NA X v 200
SPC-best ensemble(Mahon, Lukasiewicz, 2021) X v v NA
SPC-best single (Mahon, Lukasiewicz, 2021) X X v NA
k-Sparse AE (Makhzani, Frey, 2014) NA X v 5000
Disentangled (Agarap, Azcarraga, 2020) X X v 50
Ours X X X 1
Ours ensemble X N X 1
Ours init. + train X X X(init.) + V/(train) 1 (init.) + 50 (train)

7.1 Comparison of Performance Against Other Studies

We evaluate the performance of our proposed method and compare it with un-
supervised (Table 7.2), mixed (Table 7.3), and supervised (Table 7.4) approaches. In
contrast to our method, other approaches utilize data augmentation, ensembles, and
substantial number of training epochs combined with backpropagation to improve

their results. A summary of these methods can be found in Table 7.1.
7.1.1 Comparison of Performance Against Unsupervised Studies

The highest reported classification accuracy achieved by unsupervised methods
for the MNIST dataset is 99.21% (Mahon, Lukasiewicz, 2021), as indicated in Table
7.2. This accuracy is obtained by leveraging an ensemble of 15 AEs which form
clusters. These clusters are associated with k-sets of pseudo-labels, and a consensus
function picks the points that are assigned the same pseudo-label in all k-sets for
training a Multilayer Perceptron (MLP) using pseudo-labels. The potency of this
technique resides in the combined force of the AEs in the ensemble. However, when

a single AE is used instead of an ensemble, the accuracy drops to 98.02%, which is

66

inferior to our proposed method. To ensure a fair comparison, we construct an
ensemble comprising the top-3 performing Model type A networks obtained from our
proposed method. This ensemble achieves a higher accuracy of 99.28% on the test
set compared to (Mahon, Lukasiewicz, 2021).

A different unsupervised approach, known as the k-sparse AE (Makhzani, Frey,
2014), explores a training method where the extracted features are held constant, and
a logistic regression classifier is trained based on these features. Nonetheless, this
method achieves a comparatively lower accuracy of only 98.65% on the MNIST

dataset.

Table 7.2 Comparison of the proposed method with other unsupervised studies.

Method MNIST F-MNIST

SPC-best ensemble (Mahon, Lukasiewicz, 2021) 99.21 67.94

SPC-best single (Mahon, Lukasiewicz, 2021) 98.02 59.23
k-sparse AE (Makhzani, Frey, 2014) 98.65 -

Ours 99.19 90.11
Ours ensemble 99.28 90.43

SPC-best achieves the highest unsupervised classification accuracy of 67.94%
on the Fashion-MNIST dataset. Other unsupervised methods, which yield lower
accuracy, are not included in Table 7.2.

As far as our knowledge extends, there are no existing unsupervised studies
conducted on the EMNIST-Digits or Kuzushiji-MNIST datasets in the literature.

7.1.2 Comparison of Performance Against Mixed Studies

Masci et al. (Masci et al., 2011) employ a CAE to extract features in an
unsupervised manner, which are then utilized to initialize a CNN. Subsequently, the
CNN undergoes end-to-end training in a supervised manner, achieving a
classification accuracy of 99.29%. Although there are similarities between this
method and our proposed approach, we differ in the utilization of extracted features.

Unlike Masci et al., we neither use the features for initialization nor subject them to

67

further training. Another related method (Makhzani, Frey, 2014) achieves an
accuracy of 99.03% by extracting features using a sparsity constraint on the AE,

followed by fine-tuning in a supervised manner.

Table 7.3 Comparison of the proposed method with other mixed studies.

Method MNIST F-MNIST
CAE (Masci, Meier, Ciresan, Schmidhuber, 2011) 99.29 -
Deep k-Sparse AE + F.T. (Makhzani, Frey, 2014) 99.03 -
Disentangled (Agarap, Azcarraga, 2020) 96.20 85.60
Ours 99.19 90.11
Ours init. + train 99.43 91.93

To ensure a fair comparison between our algorithm and the mixed studies
(Makhzani, Frey, 2014; Masci et al., 2011), we employ the filters obtained from our
algorithm to initialize the convolutional filters. Subsequently, we fine-tune the CNN
model A (as shown in Table 5.1) using backpropagation. The performance of this
model, referred to as “Ours init. + train,” is reported in Table 7.3. We achieve a
higher accuracy than the mixed studies, attaining an accuracy of 99.43% on the
MNIST test set.

The top performance among the mixed methods on the Fashion-MNIST dataset
is documented in (Agarap, Azcarraga, 2020). They achieve an accuracy of 85.60% by
training an AE and employing k-means clustering with a soft nearest neighbor loss,
which relies on data labels. In comparison, our “Ours init. + train” model achieves a
performance that surpasses (Agarap, Azcarraga, 2020) by 6.33% without utilizing

data augmentation.
7.1.3 Comparison of Performance Against Supervised Studies

The current highest accuracy achieved for the MNIST dataset is 99.83%,
accomplished through the supervised training of capsule networks (Byerly,
Kalganova, Dear, 2021). We mention this result to highlight the highest classification

accuracy attained among all methods for MNIST. However, our architecture differs

68

from (Byerly et al., 2021) and does not involve capsules, making a direct comparison
inappropriate. Similar in architecture, DropConnect (Wan, Zeiler, Zhang, LeCun,
Fergus, 2013) and MCDNN (Ciresan, Meier, Schmidhuber, 2012) methods both
present outcomes achieved by utilizing ensembles of networks with the aid of data
augmentation. In the absence of data augmentation, the performance of
DropConnect’s 5-network ensemble decreases to 99.43% after training for 1000
epochs. In contrast, our model offers a compelling alternative with a simpler
architecture, omitting the need for an ensemble. It trains much faster, requiring just a
single epoch to train the convolutional layers, while still achieving an accuracy of
99.19%.

Table 7.4 Comparison of the proposed method with other supervised studies.

Method MNIST EMNIST-Digits K-MNIST F-MNIST
HVC (Byerly, Kalganova, Dear, 2021) 99.83 - - 93.89
DropConnect (Wan, Zeiler, Zhang, LeCun, Fergus, 2013) 99.79

DropConnect no aug. (Wan, Zeiler, Zhang, LeCun, Fergus, 2013) 99.43

MCDNN 35-net (Ciresan, Meier, Schmidhuber, 2012) 99.77

MCDNN 1-net (Ciresan, Meier, Schmidhuber, 2012) 99.53

OptConv+Log+Perc (Pad et al., 2020) - 99.43

CAMNet3 (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019) 99.78 - 99.05 94.34
CAMNet3 no aug. (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019) 99.47 - 97.48 93.00
SAM (Foret, Kleiner, Mobahi, Neyshabur, 2021) - - - 96.41
Ours 99.19 99.39 95.03 90.11
Ours init. + train 99.43 99.63 96.48 91.93

The current highest performance achieved on the EMNIST-Digits dataset is
reported by the supervised OptConv+Log+Perc method (Pad et al., 2020), achieving
an accuracy of 99.43%. This method applies a large optical convolution with
logarithmic activation followed by perceptron training on the images. The study
presented in (Pad et al., 2020) relies on a specialized camera setup to attain its
optimal performance, in contrast to our study which utilizes the raw dataset images.
Unlike our approach, data augmentation is applied during training in (Pad et al.,
2020). Our highest-performing model attains an accuracy of 99.39% on the
EMNIST-Digits test set, as demonstrated in Table 6.4. This accuracy value is on par
with the current leading performance. To ensure a fair comparison, when we continue
training the extracted filters, we notice that our model achieves a higher accuracy of

99.63%, surpassing the accuracy of (Pad et al., 2020).

69

Model B achieves the highest performance on the Kuzushiji-MNIST dataset,
with an accuracy of 95.03% (refer to Table 6.7). This accuracy is comparable to the
performance of a simple CNN, which achieves 95.12% accuracy as reported in the
original Kuzushiji-MNIST paper (Clanuwat et al., 2018). Unlike the MNIST dataset,
Kuzushiji-MNIST exhibits significant intraclass variations, where samples belonging
to the same class may not resemble each other. This inherent variation poses a
challenge for classification, especially without data augmentation. The current state-
of-the-art accuracy on the Kuzushiji-MNIST dataset is 99.05%, achieved by
CAMNet3 (Tissera, Kahatapitiya, Wijesinghe, Fernando, Rodrigo, 2019). However,
CAM-Net3 differs significantly from our architecture. It is a multipath CNN that
dynamically routes data flow to different parallel networks based on image content.
This unique design of CAMNet3 allows it to better capture the intraclass variation
present in Kuzushiji-MNIST compared to the conventional CNN architecture used in
our experiments. By utilizing the filters extracted from the unsupervised training
phase to initialize the convolutional layers and then applying backpropagation, we
achieve a performance boost in the model, resulting in an accuracy of 96.48%
without the need for data augmentation.

In contrast to MNIST, the Fashion-MNIST dataset presents more intricate
features, greater intraclass variations, and similarities between classes. Consequently,
we anticipate a decline in classification performance compared to that of MNIST.
The current state-of-the-art accuracy achieved on the Fashion-MNIST dataset is
attained by a supervised network, reaching an accuracy of 96.41% (Foret, Kleiner,
Mobahi, Neyshabur, 2021). The approach in (Foret et al., 2021) incorporates Wide-
Res-Net-28-10 (Zagoruyko, Komodakis, 2016) and Shake-Shake (Gastaldi, 2017)

regularization techniques, along with data augmentation methods.

7.2 Proof of Linear Independence of the Extracted Filters

The proposed algorithm claims to extract enough number of filters that are
necessary to cover the feature space spanned by the given dataset. To prove this
claim, it is important to analyze the extracted filters. It can be proved that the set of
the extracted filters span the dataset’s feature space by proving that the filters are

linearly independent.

70

Gram-Schmidt orthogonalization process is defined over linearly independent
set of vectors to form an orthogonal basis. Whenever there exist an unnecessary (i.e.,
linearly dependent) vector in a given set, Gram-Schmidt orthogonalization process
outputs zero vector. The goal of the Gram-Schmidt process is to construct an
orthogonal set. Thus, a linearly dependent vector does not contribute to the
orthogonal basis because it lies in the subspace spanned by the previous vectors. In
practical terms, if there exist a set of linearly independent vectors {v,, v,, ..., v, }, and
one of the vectors v, is linearly dependent on the previous vectors, the Gram-
Schmidt process would produce an orthogonal set {u;,usy, ..., Ug—1, Ugs1s -er Un s

where u,,,; corresponds to the vector that was originally after v.

Uy * U

Il |2

Uy (7.2)

After obtaining the filters through Algorithm 4.2, we apply Gram-Schmidt
orthogonalization process by using Equation 7.1 for each convolutional layer. The
orthogonal basis formed by applying the process does not omit any of the original
filters. Thus, we conclude that the set of filters obtained by running Algorithm 4.2 is
linearly independent. The absence of a zero-vector output from the process proves

that our claims are correct.

7.3 Proof of Independence over the Order of Candidate Processing for Filter

Extraction

Algorithm 4.2 takes each candidate from the candidates set and compares its
similarity against the filters of the current layer. One might ask whether the order of
processing the candidates can impact the filter extraction and overall performance of
the proposed algorithm. To alleviate this concern, we designed further experiments
where the candidates set is shuffled just after the set is obtained from the input
images. To do this, we integrated a shuffle mechanism into the Algorithm 4.2
between step 5 and 6. For each image, we obtain the candidates set and then shuffle
the contents of the set. Thus, the order of the candidates that are processed at each

run of the algorithm is now random.

71

Table 7.5 Comparison of best performing model filter counts and test accuracy
before and after addition of candidate shuffling. The median of the 50 runs of the

experiments is also presented.

Without Candidate Shuffling With Candidate Shuffling
Datasets Filter Counts Filter Counts Median
Accuracy Accuracy
Convl Conv2 Convl Conv2 Convl Conv2
MNIST 97 54 99.19 92 53 99.18 96.34 5232
EMNIST-Digits 145 116 99.39 135 107 99.44 140,48 110.24
Kuzushiji-MNIST 51 67 95.03 48 58 95.13 48.88 6052
Fashion MNIST 9 40 90.11 26 37 90.46 9L.16 39.88

After adding shuffling of the candidates to the Algorithm 4.2, we repeat the
best performing experiment 50 times for each dataset mentioned in Section 5.3 to

observe whether there is a significant impact on the outcome due to the order of

W Conva1 filter count [T Conv2 filter count

120

°105

100 102
+§§75
90

80

60 58

40

20

Figure 7.1 Boxplot of the number of filters extracted from MNIST dataset for both
layers of Model A with candidate shuffling.

72

processing the candidates. We represent the distribution of the number of filters
extracted for each layer as a boxplot in Figure 7.1, 7.2, 7.3 and 7.4 for MNIST,
EMNIST-Digits, Kuzushiji MNIST and Fashion MNIST datasets respectively. The
number of filters for each layer in the best performing models per dataset is very
close to median of the shuffled candidate set experiments as shown in Table 7.5. We
also observed that the test accuracy of the models does not fluctuate much as shown
in Figure 7.5, 7.6, 7.7, 7.8. The variation in test accuracy across 50 runs with
candidate shuffling is insignificant. Thus, we conclude that the impact of order of
processing the candidates for filter extraction is negligible due to similar results
obtained in the experiments.

M Convi filter count Conv2 filter count

160

120 119
114
110.24 189
100 102
80
60

40

20

Figure 7.2 Boxplot of the number of filters extracted from EMNIST-Digits dataset
for both layers of Model A with candidate shuffling.

73

M Convi filter count [Conv?2 filter count

80

70 T 71

63.25
60 %60.52 61

SU SU
51 |
——an

40

30
20

10

Figure 7.3 Boxplot of the number of filters extracted from Kuzushiji-MNIST dataset
for both layers of Model B with candidate shuffling.

W Convi filter count [Conv2 filter count

120

105
100
6
1
87.75
— 82

80

60

T 45

20

Figure 7.4 Boxplot of the number of filters extracted from Fashion MNIST dataset
for both layers of Model B with candidate shuffling.

74

99.2
©99.18

99.15 99.15

99.1

09.05 99.0625

9.025

99
8.9875

98.95 98.94

98.9
98.85 ©98.86
98.8

98.75

98.7

Figure 7.5 Boxplot of the test accuracy distribution of Model A over 50 runs on
MNIST dataset with candidate shuffling.

99.45

99.4

99.35

99.3

99.25

99.2

Figure 7.6 Boxplot of the test accuracy distribution of Model A over 50 runs on
EMNIST-Digits dataset with candidate shuffling.

75

95.2

95.13

95

4.8525
94.8
4.76
94.6 4.6175
94.4
94.35

94.2

94
93.8

Figure 7.7 Boxplot of the test accuracy distribution of Model B over 50 runs on
Kuzushiji-MNIST dataset with candidate shuffling.

91

90.5 ©90.46
90.28
90
9.8725
9.73
89.5 9.5275
89.35
89
®88.7
88.5
88
87.5

Figure 7.8 Boxplot of the test accuracy distribution of Model B over 50 runs on
Fashion MNIST dataset with candidate shuffling.

76

7.4 Comparison to Low-Capacity CNN

To gauge the performance of a low-capacity CNN against our proposed
models, we used lower similarity thresholds of 0.3 and 0.4. With these lower
threshold values, the number of filters extracted from the datasets dramatically drops.
For MNIST dataset, with 0.4 similarity threshold on Model A produces 23 and 21
filters for the convolutional layers respectively. The test accuracy of the model drops
to 98.95%. A CNN model which has the same architecture and parameter count is
constructed as the low-capacity CNN and trained in supervised manner with MNIST
dataset for 50 epochs. The low-capacity CNN achieved 99.21% test accuracy. When
we repeat the same comparison procedure on the other datasets, we again observed
that low-capacity CNN to perform 1 - 1.3% better than our method. The self-
organization of the filters in the proposed method relies on higher similarity
thresholds to capture more distinct features as we have already discussed them in
Chapter 6. Thus, it was expected to observe a drop in the classification performance
in our models. Low-capacity CNN models we trained seem to benefit from the fully
supervised training scheme but still there is not a huge performance margin between

the two approaches.

77

CHAPTER 8

8. CONCLUSION

Convolutional Neural Networks have become an indispensable tool for image
classification, computer vision and deep learning tasks in the last decade. This can be
attributed to how they are designed. CNN architecture is built around imitating the
mammal visual system. This architecture is made up from convolutional layers,
pooling layers, and fully connected layers which are developed based on the findings
on the visual cortex of mammals. The combination of these layers enabled automatic
extraction of the features from inputs to detect patterns in the data which eliminated
the need for an expert to extract the features. However, training a CNN relies on the
availability of a carefully constructed large labeled dataset because the training
process involves the exposure of labeled images to the network, followed by a
comparison of its predictions with the ground truth labels which is then used to
update the weights of the network via propagating the error signal backward in the
network. This process is iteratively repeated for a substantial number of epochs to
continuously update the weights until the desired performance is achieved. Thus, the
CNN gradually learns from the labeled data via backpropagation of errors to
recognize the patterns and to make correct predictions. However, it has not been
proved that the brain learns through backpropagation. Even though we build layers
based on the visual cortex structures, we rely on an unnatural learning procedure.
Backpropagation implies that the individual neurons in the visual cortex must store
the input data of the forward pass and then wait for the input data to move through all
neurons in the brain so that the connections to other neurons can be updated based on

backward pass of the derivatives of the errors.

78

Even though the supervised training of CNNs is allowing state-of-the-art
results, its success depends on the availability of a large labeled dataset. There are a
couple of risks related to the usage of labeled datasets. The presence of biased or
mislabeled data in labeled datasets is a huge concern in the successful training of the
network. If there are mislabeled data in the dataset, the propagated error would be
incorrect and this would lead to improper updates on the network parameters,
negatively impacting the network performance via erroneous predictions. Similarly,
if the dataset contains bias in the representation of the classes, the network could
learn the bias between the classes which would lead to biased predictions.
Furthermore, gathering a large labeled dataset is a time-consuming and expensive. It
is also prone to labeling errors. Another risk that should be mentioned is not having a
sufficient number of samples in the labeled dataset. This could easily be a bottleneck
for the training of the network which could prevent the network from generalizing
well. Gradient based backpropagation algorithm requires large amount of data to
effectively train the network. These risks might be alleviated by carefully curating
the data to prevent biases or mislabeled data which would require a domain expert.
However, it is not easy to deploy domain experts to curate a large labeled dataset due
to monetary costs. Moreover, applicability of labels could not be possible in every
domain. Thus, it is imperative to search for alternative unsupervised learning
paradigms to remove the dependence on labeled data and backpropagation. Recently,
Hinton also pointed out that the backpropagation should be replaced with another
learning algorithm that is plausible with how the brain works. His alternative
approach to backpropagation removes the backward pass of the backpropagation
training with two forward passes by using the data labels as positive or negative for
weight updates. However, his proposal still uses derivatives and labels. This
dissertation introduces an alternative algorithm for unsupervised training of CNNs
(Erkog, Eskil, 2023), specifically targeting the convolutional layers, without relying
on backpropagation. In Chapter 4, we proposed our algorithm. The training process
of the algorithm involves extracting novel features from a training set and iteratively
adjusting their weights, all in a single pass through the training set, without the need
for data labels. The entire filter extraction process is unsupervised and does not
require backpropagation. Each convolutional layer is assumed empty (i.e., no filters)
at the start of the process. The process starts with obtaining a set of filter candidates

from a given image dataset. Following the formation of candidates set, the first

79

candidate is selected as the first discovered filter for the current convolutional layer
because there are not any filters to compare against. The remaining filters are
subsequently identified from the pool of candidates using a similarity metric. The
similarity metric is calculated as the dot product of the candidates against the already
discovered filters of the current convolutional layer. The calculated similarity is then
compared against a similarity threshold which is a value from [0 — 1] which
corresponds to not similarity to identical scale. If the calculated similarity is lower
than the similarity threshold, then we accept this candidate as a new filter because
there is a feature in the candidate that is not similar to any discovered filters.
However, if the calculated similarity is higher than the similarity threshold, the
candidate is not a new observation. Thus, we find the filter that has the highest
similarity score to this candidate and update the weights of this filter with the
candidate’s. This process is repeated until the algorithm consumes all training
images. We showed that the proposed unsupervised algorithm alleviates the need for
labeled data to train the convolutional layers.

In supervised approaches, it is imperative to provide the number of filters of a
convolutional layer and initialize them appropriately before the training starts. After
the initialization of the filters, the backpropagation training for a large number of
epochs commences. However, the determined number of filters might not be enough
for representing the features in the dataset. In this case, hyperparameter optimization
techniques are typically utilized to determine the appropriate number of filters for the
convolutional layers. However, our proposed algorithm does not need the number of
filters hyperparameter to be set before the training because this hyperparameter value
is automatically determined by the filter extraction process. The self-discovery of the
filters with the proposed algorithm also eliminates the need to initialize the filter
weights with a proper weight initialization method. Furthermore, since the filter
weights are not initialized with random values from a distribution, they do not
require weight updates through backpropagation on multiple epochs. The proposed
algorithm only looks at the images in the dataset once to obtain candidates so
multiple forward and backward passes of the same data is no longer required to train
the convolutional layers.

The experiments outlined in Chapter 5 reveal encouraging outcomes on diverse
datasets without relying on data preprocessing, augmentation, or intricate

architectures. These findings highlight the possibility of training convolutional layers

80

using an unsupervised backpropagationless approach, where the training set images
are processed in a single pass, eliminating the need for extensive iterations as
required by supervised approaches. Moreover, the obtained results are on par with
the state-of-the-art achieved through supervised learning, employing a simpler and
more straightforward model that is easier to train.

Backpropagation alternatives for training neural networks is a novel research
area that is gaining interest. Currently, our proposed algorithm is the only method
which both omits data labels and backpropagation to train CNNs. Most of the
research in this area is based on the recent forward-forward algorithm by Hinton
(Geoffrey E. Hinton, 2022) which is still calculating derivatives based on data labels.
We showed that it is possible to train the feature extractor part of the CNN
architecture with a backpropagation free approach that does not use any labels.
However, there are still open issues that needs to be solved in the future. As a future
work, we should investigate how we can improve the classification performance
when there are too many intraclass variations. Another future direction that can be
investigated is the detection of anomalies in an unsupervised setting. Currently, the
proposed algorithm produces good results with grayscale images, and it is an
important direction for this research to extend this work to color images.
Furthermore, we only applied grid search for similarity threshold optimization. It
would be interesting to investigate the impact of hyperparameter optimization on
hyperparameters like filter_size and number of layers over the proposed CCNN
architecture.

81

REFERENCES

Agarap, A. F., Azcarraga, A. P. (2020) Improving k-means clustering performance
with disentangled internal representations. In 2020 international joint
conference on neural networks (ijenn) (pp. 1-8) doi:
10.1109/1JCNN48605.2020.9207192.

Ak, K. K. E., Erkoc,, T., Eskil, M. T. (2017). Subset selection for tuning of hyper-
parameters in artificial neural networks. In 2017 24th ieee international
conference on electronics, circuits and systems (icecs) (pp. 144-147).

Albus, J. S. (1971). A theory of cerebellar function. Mathematical biosciences, 10(1-
2), 25-61.

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep
architectures. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7700
LECTU, 437-478. doi:10.1007/978-3-642-35289-8-26. arXiv: 1206.5533

Byerly, A., Kalganova, T., Dear, I. (2021). No routing needed between capsules.
Neurocomputing, 463, 74-80. doi:10.1016/j.neucom.2021.08.064

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P. (2016).
Infogan: Interpretable representation learning by information maximizing
generative adversarial nets. In D. D. Lee, U. Luxburg, R. Garnett, M.
Sugiyama, and I. Guyon (Eds.), Nips’'16: Proc. 30th int. conf. neural inf.
process. syst. (pp. 2180- 2188). Red Hook, NY, USA: Curran Associates.

Ciresan, D., Meier, U., Schmidhuber, J. (2012). Multi-column deep neural networks
for image classification. In proceedings of the 25th ieee conference on
computer vision and pattern recognition (cvpr) (pp. 3642—3649).

Ciresan, D. C., Meier, U., Gambardella, L. M., Schmidhuber, J. (2010). Deep, big,
simple neural nets for handwritten digit recognition. Neural Computation,
22(12), 3207-3220. doi:10.1162/neco_a_ 00052

Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M., Schmidhuber, J. (2011).
Flexible, high performance convolutional neural networks for image
classification. In Proceedings of the twenty-second international joint
conference on artificial intelligence — volume two (pp. 1237-1242). Barcelona,
Catalonia, Spain: AAAL.

82

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.
(2018). Deep learning for classical japanese literature. CoRR,
abs/1812.01718.arXiV:1812.01718.

Cohen, G., Afshar, S., Tapson, J., van Schaik, A. (2017). Emnist: Extending mnist to
handwritten letters. In 2017 int. joint conf. neural netw. (ijcnn) (pp. 2921-
2926). Anchorage, AK, USA: IEEE.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y. (2014).
Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, K. Q. Weinberger (Eds.), Advances in neural information
processing systems 27 (pp. 2933-2941). Curran Associates.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 ieee conference on computer
vision and pattern recognition (pp. 248—
255).d0i:10.1109/CVPR.2009.5206848

Denker, J., R. Gardner, W., Graf, H., Henderson, D., E. Howard, R., Hubbard, W.,
Jackel, L. D., Baird, H, Guyon, I. (1988). Neural network recognizer for hand-
written zip code digits. In D. Touretzky (Ed.), Advances in neural information
processing systems, 1 (pp. 323-331), Morgan-Kaufmann.

Doersch, C., Gupta, A., Efros, A. A. (2015). Unsupervised visual representation
learning by context prediction. In L. O’Conner (Ed.), Proc. 2015 ieee int. conf.
comput. vis. (iccv) (pp. 1422-1430). Los Alamitos, CA, USA: IEEE Comput.
Soc.

Dosovitskiy, A., Springenberg, J. T., Riedmiller, M., Brox, T. (2014). Discriminative
unsupervised feature learning with convolutional neural networks. In Z.
Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger (Eds.),
Proc. 27th int. conf. neural inf. process. syst., 1, (pp. 766-774). Cambridge,
MA, USA: MIT.

Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12(61), 2121-2159.

Erkog, T., Eskil, M. T. (2022). Unsupervised similarity based convolutions for hand-
written digit classification. In 2022 30th signal process. commun. appl. conf.
(siu) (pp. 1-4). doi:10.1109/S1U55565.2022.9864689

Erkog, T., Eskil, M. T. (2023). A novel similarity based unsupervised technique for
training convolutional filters. IEEE Access, 11, 49393-49408. doi:10.1109/
ACCESS.2023.3277253

Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B. (2021). Sharpness-aware
minimization for efficiently improving generalization. Paper presented at the
meeting of 10th int. conf. learn. representations (iclr 2021), Vienna, Austria.

83

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36, 193-202.

Fukushima, K. (2003). Neocognitron for handwritten digit recognition.
Neurocomputing, 51, 161-180. doi:10.1016/S0925-2312(02)00614-8

Fukushima, K. (2013). Training multi-layered neural network neocognitron. Neural
Networks, 40, 18-31. doi:10.1016/j.neunet.2013.01.001

Fukushima, K. (2016). Margined winner-take-all: New learning rule for pattern
recognition. In 2016 international joint conference on neural networks (ijcnn)
(pp. 977-984). doi:10.1109/1JCNN.2016.7727304

Fukushima, K., Hayashi, I., Léveillé, J. (2014). Neocognitron trained by winner-Kkill-
loser with triple threshold. Neurocomputing, 129, 78-84.
doi:10.1016/j.neucom. 2012.05.038

Fukushima, K., Wake, N. (1991). Handwritten alphanumeric character recognition by
the neocognitron. IEEE Transactions on Neural Networks, 2(3), 355-365.
d0i:10.1109/72.97912

Gastaldi, X. (2017). Shake-shake regularization. CoRR, abs/1705.07485. arXiv:
1705.07485.

Gidaris, S., Singh, P., Komodakis, N. (2018). Unsupervised representation learning
by predicting image rotations. Paper presented at the meeting of 6th int. conf.
learn. representations (iclr 2018), Vancouver, Canada.

Glorot, X., Bengio, Y. (2010). Understanding the difficulty of training deep feed-
forward neural networks. Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics (AISTATS), 9, 249-256.
doi:10.1.1.207.2059

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Bengio, Y. (2014). Generative adversarial nets. In Z. Ghahramaniln Z.
Ghahramani, M. Welling, C. Cortes, N. Lawrence, K. Q. Weinberger (Eds.),
Nips’14: Proc. 27th int. conf. neural inf. process. syst., 2, pp. 2672—2680).
Cambridge, MA, USA:MIT

He, K., Zhang, X., Ren, S., Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the
2015 ieee international conference on computer vision (iccv) (pp. 1026-1034).
doi:10. 1109/1CCV.2015.123

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image
recognition. In 2016 ieee conference on computer vision and pattern
recognition (cvpr) (pp. 770-778). doi:10.1109/CVPR.2016.90

Hebb, D. (1949). The Organization of Behavior. A neuropsychological theory. The
Organization of Behavior, 911(1), 335. doi:10.2307/1418888

84

Hinton, G. E., Dayan, P., J Frey, B., M Neal, R. (1995) The “wake-sleep” algorithm
for unsupervised neural networks. Science, 268, 1158-61.
doi:10.1126/science.7761831

Hinton, G. E. (2002) Training products of experts by minimizing contrastive
divergence. Neural Computation, 14(8), 1771-1800. doi:10 . 1162 /
089976602760128018

Hinton, G. E. (2010) A Practical Guide to Training Restricted Boltzmann Machines A
Practical Guide to Training Restricted Boltzmann Machines. Computer, 9(3), 1.
d0i:10.1007/978-3-642-35289-8 32

Hinton, G. E. (2022). The forward-forward algorithm: Some preliminary
investigations. doi:10.48550/ARXIV.2212.13345

Hinton, G. E., Osindero, S., Teh, Y.-W. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7), 1527-1554. do0i:10.1162/
neco.2006.18.7.1527

Hochreiter, J. (1991). Untersuchungen zu dynamischen neuronalen Netzen, (Doctoral
dissertation), Institut fir Informatik, Tech. Univ. Munich, Munich.

Hou, B., Yan, R. (2018). Convolutional auto-encoder based deep feature learning for
finger-vein verification. In 2018 ieee int. symp. med. meas. appl. (memea) (pp.
1-5). doi:10.1109/MeMeA.2018.8438719

Hubel, D. H., Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s
striate cortex. Journal of Physiology, 148, 574-591. doi:10.1113/jphysiol.2009.
174151

Hutter, F. (2009). Automated Configuration of Algorithms for Solving Hard
Computational Problems (Doctoral dissertation), The Faculty of Graduate
Studies, The University = Of British Columbia, = Vancouver.
d0i:10.14288/1.0051652.

Ito, M., Sakurai, M., Tongroach, P. (1982). Climbing fibre induced depression of
both mossy fibre responsiveness and glutamate sensitivity of cerebellar
purkinje cells. The Journal of Physiology, 324(1), 113-134.

Jaehoon, C., Kim, Y., Jung, H., Oh, C., Youn, J., Sohn, K. (2018). Multi-task self-
supervised visual representation learning for monocular road segmentation. In
L. O’Conner (Ed.), 2018 ieee int. conf. multimedia expo (icme) (pp. 1-6). Los
Alamitos, CA, USA: IEEE Comput. Soc.

Kaneko, H., Funatsu, K. (2015). Fast optimization of hyperparameters for support
vector regression models with highly predictive ability. Chemometrics and
Intelligent Laboratory Systems, 142, 64-69.
doi:10.1016/j.chemolab.2015.01.001

Keerthi, S. S., Lin, C.-J. (2003). Asymptotic Behaviors of Support Vector Machines
with Gaussian Kernel. Neural Computation, 15(7), 1667-1689. doi:10 . 1162 /
089976603321891855

85

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.
Technical Report TR-2009, University of Toronto, Toronto.

Krizhevsky, A., Sutskever, 1., Geoffrey E., H. (2012). ImageNet Classification with
Deep Convolutional Neural Networks. Advances in Neural Information
Processing Systems 25 (NIPS2012), 1-9. doi:10.1109/5.726791. arXiv:
1102.0183

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y. (2007). An empirical
evaluation of deep architectures on problems with many factors of variation.
Proceedings of the 24th international conference on Machine learning - ICML
'07, (2006), 473-480. d0i:10.1145/1273496.1273556

Larsson, G., Maire, M., Shakhnarovich, G. (2016). Learning representations for
automatic colorization. In B. Leibe, J. Matas, N. Sebe, and M. Welling (Eds.),
Comput. vis. - eccv 2016 Vol. LNCS 9910, (pp. 577-593). Cham: Springer In-
ternational.

Larsson, G., Maire, M., Shakhnarovich, G. (2017). Colorization as a proxy task for
visual understanding. In L. O’Conner (Ed.), 2017 ieee conf. comput. vis.
pattern recognit. (cvpr) (pp. 840-849). Los Alamitos, CA, USA: IEEE
Comput. Soc.

LeCun, Y., Bengio, Y., Hinton, G. E. (2015). Deep learning. Nature, 521, 436-44.
doi:10.1038/nature14539

Lecun, Y., Boser, B., Denker, J., Henderson, D., E. Howard, R., Hubbard, W., Jackel,
L. (1989). Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1, 541-551. doi:10.1162/nec0.1989.1.4.541

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2323.
d0i:10.1109/5.726791. arXiv: 1102.0183

LeCun, Y., Cortes, C. (2010). MNIST handwritten digit database. [Dataset] Retrieved
from http://yann.lecun.com/exdb/mnist/

Liao, R., Schwing, A., Zemel, R., Urtasun, R. (2016). Learning deep parsimonious
representations. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, R. Garnett
(Eds.), Nips’16: Proc. 30th int. conf. neural inf. process. syst. (pp. 5083-5091).
Red Hook, N, USA: Curran Associates Inc.

Liu, X., Weijer, J., Bagdanov, A. D. (2019). Exploiting unlabeled data in cnns by
self-supervised learning to rank. IEEE Trans. Pattern Anal. and Mach. Intell.,
41, 1862-1878. doi:10.1109/TPAMI.2019.2899857

Lomo, T. (1966). Frequency potentiation of excitatory synaptic activity in dentate
area of hippocampal formation. In Acta physiologica scandinavica (p. 128).
Blackwell Science; Oxford, UK.

Maas, A. L., Hannun, A. Y., Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. Paper presented at the meeting of icml workshop on

86

deep learning for audio, speech and language processing, Atlanta, Georgia,
USA.

Macqueen, J. (1967). Some methods for classification and analysis of multivariate
observations. In 5th berkeley symp. math. statist. probability (pp. 281-297).

Mahon, L., Lukasiewicz, T. (2021). Selective pseudo-label clustering. In Edelkamp,
S., Méller, R. Rueckert, E. (Eds.), Ki 2021: Advances in artif. intell. Vol. LNAI
12873, (pp. 158-178). Cham: Springer International.

Makhzani, A., Frey, B. J. (2014). K-sparse autoencoders. In Bengio, Y. and LeCun, Y.
(Eds.), 2nd int. conf. learn. representations, iclr 2014, banff, ab, canada, april
14-16, 2014, conf. track proc. Retrieved from http://arxiv.org/abs/1312.5663

Masci, J., Meier, U., Cires,an, D., Schmidhuber, J. (2011). Stacked convolutional
auto-encoders for hierarchical feature extraction. In Honkela, T., Duch, W.,,
Girolami, M., and Kaski, S. (Eds.), Artif. neural netw. mach. learn. — icann
2011 Vol. LNCS 6791, (pp. 52-59). Berlin, Heidelberg: Springer Berlin
Heidelberg.

McCulloch, W. S., Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133.
doi:10. 1007/BF02478259. arXiv: arXiv:1011.1669v3

Minsky, M., Papert, S. (1969). Perceptrons: An introduction to computational
geometry. Cambridge, MA, USA: MIT.

Misra, 1., Zitnick, C. L., Hebert, M. (2016). Shuffle and learn: Unsupervised learning
using temporal order verification. In Leibe, B., Matas, J., Sebe, N., and
Welling, M. (Eds.), Comput. vis. - eccv 2016 Vol. LNCS 9910, (pp. 527-544).
Cham: Springer International.

Nair, V., E. Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of ICML 27, 807-814.

Noroozi, M., Favaro, P. (2016). Unsupervised learning of visual representations by
solving jigsaw puzzles. In Leibe, B., Matas, J., Sebe, N., and Welling, M.
(Eds.), Comput. vis. - eccv 2016 Vol. LNCS 9910, (pp. 69-84). Cham: Springer
Inter- national.

Pad, P., Narduzzi, S., Kiindig, C., Turetken, E., Bigdeli, S. A., Dunbar, L. A. (2020).
Efficient neural vision systems based on convolutional image acquisi- tion. In
O’Conner, L. (Ed.), 2020 ieee/cvf conf. comput. vis. pattern recognit. (cvpr)
(pp. 12282-12291). doi:10.1109/CVPR42600.2020.01230

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A. A. (2016). Context
encoders: Feature learning by inpainting. In O’Conner, L. (Ed.), 2016 ieee
conf. comput. vis. pattern recognit. (cvpr) (pp. 2536-2544). Los Alamitos, CA,
USA: IEEE Comput. Soc.

87

Qian, N. (1999). On the momentum term in gradient descent learning algorithms.
Neural Networks, 12(1), 145-151. doi:https:// doi. org/ 10 . 1016 / S0893 -
6080(98) 00116-6

Radford, A., Metz, L., Chintala, S. (2016). Unsupervised representation learning with
deep convolutional generative adversarial networks. In Bengio, Y. and LeCun,
Y. (Eds.), 4th int. conf. learn. representations, iclr 2016, san juan, puerto rico,
may 2-4, 2016, conf. track proc. Retrieved from
http://arxiv.org/abs/1511.06434

Ren, Z., Lee, Y. (2018). Cross-domain self-supervised multi-task feature learning
using synthetic imagery. In 2018 ieee/cvf conf. comput. vis. pattern recognit.
(cvpr) (pp. 762—771). Los Alamitos, CA, USA: IEEE Comput. Soc.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6), 386—408. doi:10 .
1037/h0042519

Rumelhard, D., Zipser, D. (1985). Feature discovery by competitive learning.
Cognitive Science, 9, 75-112. doi:10.1016/S0010-4825(96)00018-2

Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533-536. d0i:10.1038/323533a0.
arXiv: arXiv:1011.1669v3

Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. CoRR, abs/1409.1556. arXiv: 1409 . 1556. Retrieved
from http://arxiv.org/abs/1409.1556

Smolensky, P. (1986). Information processing in dynamical systems: Foundations of
harmony theory. Parallel Distributed Processing Explorations in the
Microstructure of Cognition, 1(1), 194-281.

Snoek, J., Larochelle, H., Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms. In Proceedings of the 25th international
conference on neural information processing systems (pp. 2951-2959). Lake
Tahoe, Nevada: Curran Associates.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56), 1929-1958.

Srivastava, R. K., Greff, K., Schmidhuber, J. (2015a). Highway networks. arXiv:
1505.00387

Srivastava, R. K., Greff, K., Schmidhuber, J. (2015b). Training very deep networks.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M. and Garnett, R.
(Eds.), Advances in neural information processing systems 28 (pp. 2377-2385).
Curran Associates.

Sutskever, I., Martens, J., Dahl, G., Hinton, G. E. (2013). On the importance of
initialization and momentum in deep learning. In Dasgupta, S. McAllester, D.

88

(Eds.), Proceedings of the 30th international conference on machine learning,
28, (pp. 1139-1147). Atlanta, Georgia, USA: PMLR.

Theano Development Team. (2016). Theano: A python framework for fast
computation of mathematical expressions. CoRR, abs/1605.02688. arXiv:
1605.02688

Tissera, D., Kahatapitiya, K., Wijesinghe, R., Fernando, S., Rodrigo, R. (2019).
Context-aware multipath networks. Preprint at http://arxiv.org/abs/1907.11519.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P. (2010). Stacked
denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of Machine Learning Research,
11(110), 3371-3408.

Wan, L., Zeiler, M., Zhang, S., LeCun, Y., Fergus, R. (2013). Regularization of
neural networks using dropconnect. Icml, 1, 109-111. arXiv: 1509.08985

Wang, X., He, K., Gupta, A. K. (2017). Transitive invariance for self-supervised
visual representation learning. In L. O’Conner (Ed.), 2017 ieee int. conf.
comput. vis. (iccv) (pp. 1338-1347). Los Alamitos, CA, USA: IEEE Comput.
Soc.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the
behavioral sciences, Ph.D. Dissertation, Harvard University, Cambridge.

Werbos, P. J. (1982). Applications of advances in nonlinear sensitivity analysis. In
Drenick, R. F. Kozin, F. (Eds.), System modeling and optimization (pp. 762—
770). Berlin, Heidelberg: Springer Berlin Heidelberg.

Xiao, H., Rasul, K., Vollgraf, R. (2017). Fashion-mnist: A novel image dataset for
benchmarking machine learning algorithms. CoRR, abs/1708.07747. arXiv:
1708.07747. Retrieved from https://arxiv.org/abs/ 1708.07747.

Xie, J., Girshick, R., Farhadi, A. (2016). Unsupervised deep embedding for
clustering analysis. In Balcan, M. F. and Weinberger, K. Q. (Eds.), Proc. 33rd
int. conf. mach. learn., 48, (pp. 478-487). New York, NY, USA: PMLR.

Xu, Y., McCord, R. (2021). Costa: Unsupervised convolutional neural network
learning for spatial transcriptomics analysis. BMC Bioinformatics, 22. Article
number: 397. doi:10.1186/s12859-021-04314-1

Yan, X., Misra, |., Gupta, A., Ghadiyaram, D., Mahajan, D. (2020). Clusterfit:
Improving generalization of visual representations. In 2020 ieee/cvf conf.
comput. vis. pattern recognit. (cvpr) (pp. 6508-6517). Los Alamitos, CA, USA:
IEEE Comput. Soc.

Yang, J., Parikh, D., Batra, D. (2016). Joint unsupervised learning of deep repre-

sentations and image clusters. In 2016 ieee conf. comput. vis. pattern recognit.
(cvpr) (pp. 5147-5156). Los Alamitos, CA, USA: IEEE Comput. Soc.

89

Yann, L., Bottou, L., Orr, G. B., Muller, K.-R. (1998). Efficient BackProp. In:
Montavon, G., Orr, G. B., Miiller, K. R. (eds) Neural Networks: Tricks of the
Trade. Lecture Notes in Computer Science, vol 7700, pp 9-48. Springer, Berlin,
Heidelberg.

Zagoruyko, S., Komodakis, N. (2016). Wide residual networks. Wide residual
networks. In Richard, E. R. H., Wilson, C. and Smith, W. A. P. (Eds.),
Proceedings of the british machine vision conference (bmvc) (pp. 87.1-87.12).

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method. CoRR,
abs/1212.5701. arXiv: 1212.5701. Retrieved from http://arxiv.org/abs/1212.
5701

Zeiler, M. D., Fergus, R. (2014). Visualizing and understanding convolutional net-
works. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 8689
LNCS(PART 1), 818-833. do0i:10.1007/978-3-319-10590-1 53. arXiv:
1311.2901

Zhang, R., Isola, P., Efros, A. A. (2016). Colorful image colorization. In B. Leibe, B.,
Matas, J., Sebe, N. Welling, M. (Eds.), Comput. vis. - eccv 2016 Vol. LNCS
9910, (pp. 649-666). Cham: Springer International

90

CURRICULUM VITAE

91

* 5689 Sayih Kigisel Verilerin Korunmasi Kanunu Hiikiimlerine Gore Cevrimigi Yayin Dosyasinda Bulunan Kigisel Veriler Ve Islak imzalar Silinmistir.”

