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COMPARISON OF IMAGE RETARGETING ALGORITHMS 

WITH SEAM CARVING METHOD  

ABSTRACT  

The rise of social media has made sharing photos and pictures more important than 

ever, both for personal and marketing purposes. This situation also caused the problem 

of converting the photos taken with the camera in a square format, where the width is 

higher than the height. To address this need, a recent study explored the use of the 

Seam Carving method to convert images to a square format while preserving their 

essential parts. The study compared two algorithms, Greedy and Dijkstra, in terms of 

processing time and consistency using a supervised image. 

The consistency comparison was carried out on five images, three of which were 

obtained from NRID, and two were created for the study. The five images were used 

to calculate the average consistency of the Dijkstra algorithm. In addition, 23 more 

images from NRID were used to compute the average consistency of the Greedy 

algorithm, resulting in a total of 28 images used in the analysis. 

The results showed that the Greedy algorithm had an average consistency that was 

6.55% higher than the Dijkstra algorithm based on the five images. Furthermore, the 

Dijkstra algorithm took an average of 2,347% longer to process than the Greedy 

algorithm. 

The implications of these findings are significant for social media users and marketers 

alike. The Greedy algorithm can help maintain the essential elements of an image 

while making it suitable for different social media platforms. The study also highlights 

the importance of considering processing time when choosing an algorithm to use. 

Overall, this research demonstrates the potential of the Seam Carving method and 

provides valuable insights into the choice of algorithm for image manipulation. 

 

Keywords: Seam Carving, Dijkstra, Greedy, Image Retargeting, Image Resizing, 

Shortest Path
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SEAM CARVING YÖNTEMİ İLE GÖRÜNTÜ YENİDEN 

HEDEFLEME ALGORİTMALARININ KARŞILAŞTIRILMASI  

ÖZET  

Sosyal medyanın yükselişi, kişisel ve pazarlama amaçları için fotoğraf ve resim 

paylaşımını daha da önemli hale getirdi. Bu durum aynı zamanda, kamera ile çekilen 

ve genişliği yüksekliğinden daha fazla olan fotoğrafların kare formata dönüştürülmesi 

sorununu da beraberinde getirdi. Bu ihtiyacı karşılamak için son zamanlarda bir 

çalışma, resimleri özgün parçalarını koruyarak kare formata dönüştürmek için Seam 

Carving yönteminin kullanımını inceledi. Bu çalışmada, süpervize edilmiş bir görüntü 

üzerinde hem işlem süresi hem de tutarlılık açısından Greedy yaklaşım ve Dijkstra 

algoritması olmak üzere iki algoritma karşılaştırdı. 

Bu araştırmadaki tutarlılık karşılaştırmasında beş görüntü kullanıldı; üç tanesi 

NRID'den elde edilen ve iki tanesi bu çalışma için özel olarak oluşturulan beş görüntü 

üzerinde yapıldı. Beş görüntü, Dijkstra algoritmasının ortalama tutarlılığını 

hesaplamak için kullanıldı. Bunun yanı sıra, NRID'den 23 tane daha görüntü, Greedy 

algoritmasının ortalama tutarlılığını hesaplamak için kullanıldı. Bu araştırmanın 

analizinde toplamda 28 görüntü kullanıldı. 

Sonuçlar, beş farklı görüntüye dayanarak Greedy algoritmasının ortalama 

tutarlılığının Dijkstra algoritmasından %6,55 daha yüksek olduğunu gösterdi. Bunun 

yanı sıra, Dijkstra algoritmasına ait işlem süresinin Greedy algoritmasından %2.347 

daha uzun sürdüğü ortaya çıktı. 

Bu bulguların sosyal medya kullanıcıları ve pazarlamacılar için önemli sonuçları 

vardır. Greedy algoritması, bir görüntünün temel öğelerini koruyarak farklı sosyal 

medya platformlarına uygun hale getirmeye yardımcı olabilir. Bu çalışma, görüntü 

yeniden boyutlandırma yöntemlerinden olan Seam Carving yönteminde algoritma 

seçiminde işlem süresinin dikkate alınmasının önemini vurgulamaktadır. Genel 

olarak, bu araştırma, Seam Carving yönteminin potansiyelini göstermektedir ve 

görüntü manipülasyonu için algoritma seçimi konusunda değerli bilgiler 

sağlamaktadır. 
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CHAPTER 1 

1. INTRODUCTION 

Images are crucial in social media since they let you interact with your audience 

more. More of you is visible to your fans, who can also follow your actions. Images 

may convey a message or tell a narrative much more effectively than words ever could 

(Ellard, 2021).  

Most of social media web sites suggest square dimensional images (Arens, 

2022), although most of cameras take rectangle dimension photos (Must Photos 

Always Be Rectangular?, 2020). The proposed of image retargeting algorithms are 

meet needs of modern digital multimedia technologies improvements and solve 

different type of devices resolution and aspect ratio with that aim the retargeting 

process apply displaying images for obtain without distortion on media of these 

various sizes using different standards. Image retargeting technique resizes an input 

image to a given target resolution where the aspect ratio changes. For this aim so many 

retargeting techniques were found. These techniques can be classified with two 

directions, first one is brute force and second one is content-aware retargeting 

(Rubinstein et al., 2010). Most well-known brute force approaches are scaling and 

fixed window cropping and content-aware retargeting approaches are cropping based, 

segmentation based, patch based, seam carving, warping and multi-operator 

approaches (Rubinstein et al., 2010). 

1.1 Application of Image Retargeting Algorithms 

Laplacian transform, and seam carving method with greedy approach and 

Dijkstra have been applied to an image. Laplacian is a derivative operator; it uses 

highlights gray level discontinuities and so diminishes one important region with 
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slowly varying gray levels (Abramowitz et al., 2013). Seam carving is one of the most 

famous image retargeting approaches which decreases an image’s width one pixel at a 

time with a seam which is a connected path with the crossing of lower energy pixels 

of an image top to the bottom or left to the right (Avidan et al., 2007). Part of the seam 

carving retargeting approach involves finding the shortest path, which brings along the 

greedy and Dijkstra algorithms. The greedy algorithm checks only the first neighbors 

of the pixel, although the Dijkstra algorithm checks all possible paths like brute force, 

but it's a faster version of brute force (Sniedovich et al., 2006); I will mention this in 

the next chapters. 

1.2 Contributions 

Default greedy approach, directly checks all the possible pixels. This process 

causes long image retargeting processing time and recalculation of unnecessary paths. 

For this reason, I made an optimization on the default greedy approach. According to 

this optimization process, only the 1-pixel width path with the lowest energy sum 

determined in the previous process, when deleted from the picture, the other paths that 

were affected are calculated. As a result, instead of the number of paths that will be 

calculated as the width of the picture in each process according to the default greedy 

approach, the optimized greedy approach calculates the number of paths as the height 

of the picture in the worst-case scenario. Also, it's only one path was recalculated in 

the best-case scenario. This causes the algorithm to use fewer resources and shorten 

the processing time considerably. I will explain the optimization I made, on the chapter 

3.2.4.1 First-level Greedy Approach.
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CHAPTER 2 

2. LITERATURE SURVEY 

Image retargeting has become increasingly important in recent years due to the 

rise of mobile devices with varying screen sizes and aspect ratios. This technique 

enables images to be resized without altering the important features or distorting the 

image's overall quality. Various methods have been proposed for this purpose, such as 

cropping, scaling, and seam carving. 

Seam carving, also known as content-aware image resizing, is a relatively new 

method that has gained popularity due to its ability to retain the essential features of 

an image while resizing it. The algorithm identifies and removes the least important 

seams from the image, resulting in a smaller but visually appealing image. A number 

of researchers have focused on developing and improving the seam carving algorithm. 

One of the most significant contributions to this field was made by Avidan and 

Shamir (Avidan et al., 2007), who proposed the first seam carving algorithm. Their 

method uses dynamic programming to identify and remove the least important seams 

from the image. They demonstrated that their method produced better results than 

cropping or scaling. 

Later, Rubinstein et al. (Rubinstein et al., 2008) proposed a modified version of 

the algorithm, which introduced a new energy function and made the method more 

efficient. They showed that their approach produced visually appealing results while 

reducing computation time. 

Another study by Chiang et al. (Chiang et al., 2009) proposed a GPU 

implementation of the seam carving algorithm. They demonstrated that the use of a 

GPU significantly improved the speed of the algorithm while maintaining the same 

level of accuracy. 
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In recent years, deep learning techniques have also been applied to image 

retargeting. For example, Wu et al. (Wu et al., 2019) proposed a deep convolutional 

neural network (CNN) for image retargeting. Their approach learns to map an input 

image to an output image of a different size while preserving the content of the original 

image. They demonstrated that their approach achieved better results than traditional 

methods. 

In another study, Singh et al. (Singh et al., 2020) proposed a novel method for 

image retargeting that uses a convolutional neural network with spatial attention 

mechanisms. They use a layer in the CNN to resize feature maps of the image, while 

ensuring that important regions are preserved during the resizing process. 

Overall, these studies demonstrate the importance of image retargeting and the 

various methods that have been proposed to achieve this goal. The development of 

seam carving algorithms, as well as the recent application of deep learning techniques, 

have significantly improved the accuracy and speed of image retargeting.
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CHAPTER 3 

3. METHODS & PROCESSES 

3.1 Auxiliaries, Libraries and Language 

Since it's powerful in image process Python 3.9 was used as a programming 

language and PyCharm was my preferred IDE for this research (Muhammad, 2021). 

A total of 4 Python files, two main .py files, two auxiliary .py files, and a total of four 

classes were used. Also, this project includes thirty-five class methods, twenty-one 

necessary methods, and four optional methods in the project. For reaching my aim I 

created my own methods for whole algorithm steps. Although the internet is used for 

help at some points, every line except Dijkstra has been specially written by me and I 

preferred to use built-in libraries of Python as much as I can, instead of using external 

libraries. Used libraries of the project are Matplotlib, NumPy, DateTime (optional), 

time(optional), sys, and copy. Also I used the Shapely library in a separate program I 

wrote to compare the results. 

3.2 Steps 

After the dataset prepared, the basic process steps of the project are: Selected 3-

dimensional colored image is converted to 2-dimensional gray level image and this 

gray leveled image is used as input for Laplacian transform algorithm. The energy 

points of the image are determined by this algorithm and marked on a Python list that 

is the same length as the 2D version of the original image. The process after this step 

will fork towards two separate points, then they will merge again. One of the processes 

uses greedy approach for determining shortest path by using energy points, and the 
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other process tries to do same thing with using Dijkstra algorithm. The pixels of the 

shortest paths of both methods are marked with the RGB color value of 255.0.0, which 

represents full red. After that these marked points are removed from the image to 

complete retargeting process. 

3.2.1 Preparing the Dataset  

Preparing the dataset involved selecting suitable images for the project from the 

National Tsing Hua University image retargeting dataset (NRID). A total of 26 images 

with longer widths than heights were selected from a pool of 35. I selected 3 of these 

26 images for optimization to reduce the Dijkstra run-time. To optimize these 3 images 

of the dataset, Adobe Photoshop was used to reduce the width and height of three of 

the images while maintaining their aspect ratios due to the long runtime of the Dijkstra 

retargeting algorithm. In addition to these images, a personal photo with the author's 

brother and two cats was also included, as well as a digital artwork created specifically 

for this project. These images formed the basis of the dataset used in the project, 

allowing for accurate and comprehensive testing of the Dijkstra retargeting algorithm. 

These 5 images (3 of them from NRID, 2 of which I created) were run with both 

Dijkstra and Greedy. Run-time comparison was made according to the average run-

time of 5 pictures. Also, Dijkstra's accuracy was determined from the average accuracy 

of these 5 images. Apart from this, the remaining 23 images out of 26 selected from 

NRID were run only with Greedy. The accuracy of these 23 images and the other 5 

images was averaged, thus determining Greedy's average accuracy. 

3.2.2 3-Dimensional Colored Image to 2-Dimensional Grayscale Image  

A color image can be read using several methods and one of these methods is 

reading as RGB with 3-dimensional list (Raguramanet et al., 2021). The length of the 

first dimension equals to image’s height, the second one equals to image’s width, and 

the third one equals three, which presents red, green, and blue values of the pixel. After 

we achieve RGB values of the pixel, there are three main methods to convert it to 

greyscale, which are lightness, average, and luminosity (Antoniadis et al., 2022). 

Green appears around ten times brighter to human eyes than blue does (Brandon, 

2019). Researchers in psychology have discovered how differently we interpret the 

luminance of red, green, and blue through numerous iterations of carefully planned 
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tests (Brandon, 2019). They gave us a unique set of weights to use with our channel 

averaging to calculate overall luminance (Brandon, 2019). According to this, we sum 

the RGB values with calculation using the following formula: 

  

As a result, we get a 2-dimensional list which refers to a grayscale image. 

3.2.3 Laplacian Transform 

To apply the Laplacian filter, we get the grayscale image from the previous 

method. The Laplacian I(x,y) of an image with pixel intensity J(x,y) is ; 

 

               I(x,y) =  ∂2J / ∂2x + ∂2J / ∂2y 

 
The x and y axes are marked in standard deviation 

Figure 3.2.3.1 The 2-D Laplacian function (researchgate.net) 

For obtaining Laplacian image, I compared two commonly used discrete 

approximation Laplacian filters then I decided to use first of them since its more 

appropriate (Abramowitz et al., 2013). Related Laplace filters are shown in Table 

3.2.3.1.
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Table 3.2.3.1 Compared Laplacian filters 

1 1 1  0 1 0 

1 -8 1  1 -4 1 

1 1 1  0 1 0 

This was used 

for the project 
  

Most important parts of the image can be detectable easily by computers when 

comparing the original image (Haralick et al., 1993). 

  

The original photo Laplacian filter applied photo 

Figure 3.2.3.2 The original and Laplacian filtered photos 

  

The original image Laplacian filter applied image 

Figure 3.2.3.3 The original and Laplacian filtered images 
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The original image Laplacian filter applied image 

Figure 3.2.3.4 The original and Laplacian filtered images in NRID (ours_11_aaa) 

  

The original image Laplacian filter applied image 

Figure 3.2.3.5 The original and Laplacian filtered images in NRID (ours_14_aaa) 

  

The original image Laplacian filter applied image 

Figure 3.2.3.6 The original and Laplacian filtered images in NRID (ours_16_aaa) 

3.2.4 Finding The Lowest Energy Points – The Shortest Path 

After we apply the Laplacian filter to the grayscale image, we get all the energy 

points of the pixels. Based on these energy points, the sum of the lowest energy point 
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route is calculated. There are several algorithms to calculate the shortest path (Baum, 

2020). I compare 2 different algorithms which are first-level greedy approach search 

and Dijkstra. 

3.2.4.1 First-level Greedy Approach 

The algorithm starts from all of the top pixels separately, then it’s going down 

by comparing the energy points of their first neighbors which are left, center, and right 

choosing the lowest energy pixels. It can be exactly under or right cross under or left 

cross under till I reach from the first row to the last row of an image. 

After that calculation, the algorithm gets multiple routes as many as the number 

of the image width. Total energy points were calculated for each route while routes 

were created. A new row is added at the bottom of the image and the total points that 

are calculated for each start point pixel are written on that new row. 

 
         

 

 

 

 

Figure 3.2.4.1.1 Greedy approach 

The extra row contains the total scores of all routes and according to this 

information; the starting point with the lowest total energy point will be selected. The 

selected route will be saved in a variable so it can be used to mark the selected route 

with a red marker. 

In this step, although both of two 

neighbors have the equal value, 

algorithm selects left in this project. 
Sample image size 7x5 (width x height) 
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After the initial marking is complete, the width of the image can be reduced by 

1 pixel. If the image wants to be reduced by more than 1 pixel, the algorithm will re-

search for energy points for specific routes since I made an optimization in the greedy 

approach instead of using classical greedy approach. Based on this optimization, when 

a path marked/removed, the algorithm detects which routes had been affected and 

calculate only these paths’ energy points, this optimized greedy approach is working 

~91,93% faster than classical greedy approach. 

Table 3.2.4.1.1 Comparison of Optimized and Classical Greedy Approach 

Greedy Approach without Optimization  Greedy Approach with Optimization 

Image Name Run Time  Image Name Run Time 

ours_11_aaa 0:02:06  ours_11_aaa 0:00:11 

ours_14_aaa 0:02:06  ours_14_aaa 0:00:09 

ours_16_aaa 0:02:05  ours_16_aaa 0:00:10 

TOTAL 0:06:14  TOTAL 0:00:30 

AVERAGE 0:02:04  AVERAGE 0:00:10 

   PERCENTAGE -~91.93% 

Also, algorithm will skip the marked pixels while searching for the lowest energy 

point. This means: 

 First, the algorithm detects which routes should be recalculated 

(DetermineRecalculationPixels). To do that, it checks the previous 

selected/marked pixels that was stored in a variable (usedPixels), and starts 

searching in the calculated paths (routeAndSumOfEnergyPoints) on the 

previous 1-pixel image retargeting process. If it finds that the pixel was already 

used in the previous processes, it adds it to a list (recalculationStartPixels) for 

the recalculation process. 

 After recalculation paths were determined, the algorithm starts to find the 

lowest energy point path without using selected/marked pixels (usedPixels): If 

the algorithm determines that the left neighbor pixel is marked red, it goes left 

in the same row and checks if it is marked or not. This search process continues 

until the algorithm finds an unmarked pixel. If there is no unmarked pixel on 
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left, the algorithm acts like there is no pixel on the left side and tries to compare 

center and right neighbors. 

 If the algorithm determines that the center neighbor pixel is marked red, it acts 

like there is no center neighbor and tries to compare left and right neighbors. 

 If the algorithm determines that the right neighbor pixel is marked red, it goes 

right in the same row and checks if it is marked or not. This search process 

continues until the algorithm finds an unmarked pixel. If there is no unmarked 

pixel on right, the algorithm acts like there is no pixel on the right side and tries 

to compare left and center neighbors. 

Total energy point calculations are made based on this method and override the 

old total energy points on the last extra row of image. 

 
 

 

 

 

 

Figure 3.2.4.1.2 Greedy approach (Next Step) 

These processes are repeated until the algorithm reaches the desired retarget 

number. When the marking process is completed, a method removes the marked pixels 

from the original image. I will mention the marking and removing process with details 

in the Chapter 3.2.5. 

There are two equal lowest total 

energy points. In this situation, the 

algorithm will select the first lowest 

route which is the left one. 

Sample image’s routes after first 

marking process on Figure 3.2.4.1.1 
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3.2.4.2 Dijkstra Algorithm 

In 1959, Edsger Dijkstra, a Dutch computer scientist, presented an algorithm that 

may be used with a weighted graph. The graph must embrace a non-negative value on 

each of its edges in order to be considered directed or undirected. This algorithm was 

given his name, "Dijkstra's Algorithm" (Tyagi, 2020).  

The energy points of the image we already calculated will be used as weight or 

cost in Dijkstra as we used in the greedy approach. Based on these weights, Dijkstra 

will determine the shortest path on the directed graph which represent the Laplacian 

filtered 2-dimensional list of the image. As I mention on Chapter 2, first Dijkstra 

calculates the lowest energy path. After Dijkstra calculates the lowest energy path, the 

path is saved in a variable. Unlike our other algorithm, this 1 pixel-wide path is deleted 

directly from the Laplacian filtered image and the original image, without waiting for 

the desired other pixel width to be reduced. As in the other algorithm, the relevant path 

is recorded to be marked with a red marker, but no marking is made at that time: When 

the desired shrink pixel width is reached, marking with red will be performed. In 

addition to this situation, since the 2-dimensional list given to Dijkstra's algorithm for 

the second shortest path selection process will now have a width of 1 pixel less, the 

new shortest path of the Dijkstra won't give us the actual right way for us to mark on 

the original image. Because now the pixel indexes have been changed. At this point, 

we will provide editing via a helper pre-process method (adjustDijPaths) before saving 

the shortest path in the second loop to our list. I will explain this method in the next 

chapter. For each pixel wide to be deleted, the algorithm will re-search for energy 

points for all routes but will skip the marked pixels while searching for the lowest 

energy point. Because these pixels are already deleted from the Laplacian image, 

which includes the energy points (weights) and Dijkstra calculates the shortest path 

using the Laplacian image. A method for marking the used pixels from the original 

and the Laplacian image follows the deletion process. In the next chapter, I will go 

into more detail on marking. 
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Figure 3.2.4.2.1 The logic of Dijkstra Algorithm (sciencedirect.com) 

Table 3.2.4.2.1 The logic of Dijkstra Algorithm (sciencedirect.com) 

 

3.2.5 Marking Red – Removing Pixels 

Both two algorithms work differently; although the greedy approach deletes the 

selected pixels from the original and the Laplacian image when all the desired width 

is finished, Dijkstra’s part deletes the selected pixels right after the 1-pixel wide path 

detected. However, marking with red process works the same way with a minor 

difference for both two algorithms. 

3.2.5.1 Process Sequence for First-level Greedy Approach  

When the lowest energy (weight) path detected by greedy approach, this path is 

added to a list variable (usedPixels). Before the next shortest path is detected, the 

algorithm passes the currently selected path to a method (paintRedForGreedySearch) 

for marking with red. This method loops through the image’s height and change in the 

third depth of the image with using  each selected path’s value. The length of the third 

depth of the image is three and these represent red, green, and blue values. Since we 

would like to mark it red along the selected path, we change the [0] to 255, [1] to 0, 

and [2] to 0. As a result, the selected path’s pixels’ colors on the image are changed to 

red color. 
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After all of the desired pixel width loops are finished and all the selected paths 

are marked as red, the list which includes all these selected paths (usedPixels) is sent 

to another method (removeMarkedPixels) to retarget (resize) the image. The most 

important part of this method is; to present and match the same list indexes of the 

image and the selected path list, the method sorts each row of the selected pixels list 

as descending. Then it starts removing the first index of the sorted list; which is caused 

the pixels to be started to delete from the end of each row of the image. If we don’t do 

that sorting before the removing process, when a pixel from near of the start of the row 

is deleted, the whole selected pixel list’s indexes show the wrong (shifted) indexes on 

the resized image. 

  

Red marks on the original photo Red marks on the Laplacian filter applied 

photo 

Figure 3.2.5.1.1 Red marks on the original and Laplacian filtered photos with using 

greedy approach 

  

Red marks on the original image Red marks on the Laplacian filter applied 

image 

Figure 3.2.5.1.2 Red marks on the original and Laplacian filtered images with using 

greedy approach 
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Red marks on the original image Red marks on the Laplacian filter applied 

image 

Figure 3.2.5.1.3 Red marks on the original and Laplacian filtered images in NRID 

(ours_11_aaa) with using greedy approach 

3.2.5.2 Process Sequence for Dijkstra Algorithm  

The path that has the lowest energy is added to a list variable (dijPaths) when it 

is found by the Dijkstra algorithm. Before the algorithm passes the found shortest path 

to the method that deletes these pixels, firstly the found shortest path is sent to another 

pre-process algorithm (adjustDijPaths) to adjust the indexes of the path. Contrary to 

the greedy approach, this kind of operation is needed because, unlike the greedy 

approach, before each shortest path detection loop in the Dijkstra process, the path 

detected in the previous loop is deleted and the new shortest path proceeds over the 

image reduced to 1 pixel width. The way the harmonization (adjustment) process 

works is as follows: 

 The method behaves as if all indexes are affected as much as possible. That 

means it adds the number of the previously selected shortest paths to all 

currently selected path indexes. 

 Then it tries to find how many pixels of the previous shortest paths don’t affect 

the current shortest path and subtract 1 for each one. 

 To find which pixels don’t affect, a loop starts from the length of the previously 

selected paths and goes through by subtracting 1. 

 In this loop, it checks if the selected path index is bigger or equal to the 

currently selected path index. If it’s true, subtract 1 from the currently selected 

path index. 
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 After the loop is completed, the adjusted currently selected path is added to the 

list variable which stores all the shortest paths. 

 

 
Dijkstra selected [1, 0, 0, 0, 0, 1] as the lowest weighted path on the first loop. It will mark  [1, 0, 0, 0, 

0, 1]. 

Figure 3.2.5.2.1 Why algorithm needs adjusting process before marking pixels –Step 

1 

 
Dijkstra selected [2, 3, 3, 3, 4, 4] as the lowest weighted path from 1-pixel wide deleted image. If it 

directly marked red without adjusting, it will mark [2, 3, 3, 3, 4, 4] although it should mark [3, 4, 4, 4, 

5, 5] on the original image.  

Figure 3.2.5.2.2 Why algorithm needs adjusting process before marking pixels –Step 

2 
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If we see the marked original image, we can easily see that list must be shifted before marking again.  

Figure 3.2.5.2.3 Why algorithm needs adjusting process before marking pixels –Step 

3 

Then, the algorithm sends the currently chosen both adjusted and raw (not 

adjusted) paths to a method (completeRetargetProcessForDijkstra) for removing the 

chosen path from both the original image and the Laplacian image before the next 

shortest path is found. This method also paints red using the adjusted selected path. 

For painting red, the method uses the same way with greedy approach. 

  

Red marks on the original photo Red marks on the Laplacian filter applied 

photo 

Figure 3.2.5.2.4 Red marks on the original and Laplacian filtered photos with using 

Dijkstra algorithm 
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Red marks on the original image Red marks on the Laplacian filter applied 

image 

Figure 3.2.5.2.5 Red marks on the original and Laplacian filtered images with using 

Dijkstra algorithm 

  

Red marks on the original image Red marks on the Laplacian filter applied 

image 

Figure 3.2.5.2.6 Red marks on the original and Laplacian filtered images in NRID 

(ours_11_aaa) with using Dijkstra algorithm 
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Figure 3.2.5.2.7 Flowchart of the Algorithm
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CHAPTER 4 

4. RESULTS & COMPARISON 

4.1 Visual Results 

As a result, although both algorithms shrink the images to a square shape, they 

give very different results visually due to the methods they use and the shortest paths 

they choose. Especially when we look at the red-marked pictures given by the greedy 

approach, we can observe that as a human being the red line pass over many objects 

that we can define as "important". As a result, pixels that we don't want to be removed 

from the picture are also removed, causing the components of important objects to 

deteriorate, although not as much as cropping or stretching. 

  

The original photo Retargeted photo with greedy approach 

Figure 4.1.1 The original and retargeted photo with greedy approach
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The original photo  Retargeted photo with Dijkstra 

algorithm  

Figure 4.1.2 The original and retargeted photo with Dijkstra algorithm 

  

The original image Retargeted image with greedy approach  

Figure 4.1.3 The original and retargeted image with greedy approach 

  

The original image Retargeted image with Dijkstra algorithm 

Figure 4.1.4 The original and retargeted image with Dijkstra algorithm 
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The original image Retargeted image with Greedy algorithm 

Figure 4.1.5 The original and retargeted image with Greedy algorithm in NRID 

(ours_11_aaa) 

  

The original image Retargeted image with Dijkstra algorithm 

Figure 4.1.6 The original and retargeted image with Dijkstra algorithm in NRID 

(ours_11_aaa) 

  

The original image Retargeted image with Greedy algorithm 

Figure 4.1.7 The original and retargeted image with Greedy algorithm in NRID 

(ours_14_aaa) 
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The original image Retargeted image with Dijkstra algorithm 

Figure 4.1.8 The original and retargeted image with Dijkstra algorithm in NRID 

(ours_14_aaa) 

  

The original image Retargeted image with Greedy algorithm 

Figure 4.1.9 The original and retargeted image with Greedy algorithm in NRID 

(ours_16_aaa) 

  

The original image Retargeted image with Dijkstra algorithm 

Figure 4.1.10 The original and retargeted image with Dijkstra algorithm in NRID 

(ours_16_aaa) 
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4.2 Intersection over Union (IoU) 

Intersection over Union (IoU) is a widely used evaluation metric in computer 

vision, particularly in the field of object detection and segmentation (Redmon et al., 

2016). IoU measures the similarity between two bounding boxes or regions of interest 

by calculating the overlap between them. The IoU score ranges from 0 to 1, where 1 

indicates a perfect overlap between the two regions, and 0 indicates no overlap at all 

(Everingham et al., 2010). 

The IoU score is calculated as follows: 

IoU = (Area of Intersection) / (Area of Union) 

Where the Area of Intersection is the overlap between the two regions, and the 

Area of Union is the total area covered by both regions. 

IoU is commonly used as an evaluation metric for object detection models, 

where it is used to measure the accuracy of the model's predictions (Ronneberger et 

al., 2015). A high IoU score indicates that the predicted bounding box closely matches 

the ground truth bounding box. 

 

Figure 4.2.1 Supervised photo
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Figure 4.2.2 Supervised image 

 

Figure 4.2.3 Supervised image in NRID (ours_11_aaa) 

 

Figure 4.2.4 Supervised image in NRID (ours_14_aaa)
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Figure 4.2.5 Supervised image in NRID (ours_16_aaa) 

Both of supervised image and the retargeted image (by either the greedy 

approach or Dijkstra) are given to another Python file (comparer.py) which can be run 

separately from the main image retargeting program. In this study, supervised images 

were used to create polygons in AutoCAD 2021. The coordinates of these polygons 

were then exported and utilized in a Python file. The Shapely library was employed to 

recreate the polygons in Python, and to calculate the intersection, union, and IoU of 

the polygons. These calculations were essential for evaluating the accuracy of the 

important objects in the images. In addition, the Matplotlib library was used to plot the 

polygons, providing a visual representation of the results. Overall, the combination of 

AutoCAD, Python, Shapely, and Matplotlib enabled thorough analysis of the polygons 

and the accuracy of their representation in the images. 

 

Figure 4.2.6 Creating Polylines in AutoCAD for Getting Coordinates 
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Table 4.2.1 IoU of first-level greedy approach photo 

Retarget method: First-level greedy approach 

Image dimensions: 150 x 200 

Total pixels: 30,000 

 Intersection 4125 

Union 6331 

IoU ~0.6515 

Table 4.2.2 IoU of Dijkstra photo 

Retarget method: Dijkstra 

Image dimensions: 150 x 200 

Total pixels: 30,000 

 Intersection 4668 

Union 6454 

IoU ~0.7232 

 

  

Figure 4.2.7 Visual representation of IoU of photo
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Table 4.2.3 IoU of first-level greedy approach image 

Retarget method: First-level greedy approach 

Image dimensions: 50 x 75 

Total pixels: 3,750 

 Intersection 653 

Union 732 

IoU ~0.8920 

Table 4.2.4 IoU of Dijkstra image 

Retarget method: Dijkstra 

Image dimensions: 50 x 75 

Total pixels: 3,750 

 Intersection 569 

Union 792 

IoU ~0.7184 

 

  

Figure 4.2.8 Visual representation of IoU of image
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Table 4.2.5 IoU of first-level greedy approach image in NRID (ours_11_aaa) 

Retarget method: First-level greedy approach 

Image dimensions: 152 x 200 

Total pixels: 30,400 

 Intersection 4945 

Union 6488 

IoU ~0.7621 

Table 4.2.6 IoU of Dijkstra image in NRID (ours_11_aaa) 

Retarget method: Dijkstra 

Image dimensions: 152 x 200 

Total pixels: 30,400 

 Intersection 3387 

Union 7070 

IoU ~0.4791 

 

  

Figure 4.2.9 Visual representation of IoU of image in NRID (ours_11_aaa)
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Table 4.2.7 IoU of first-level greedy approach image in NRID (ours_14_aaa) 

Retarget method: First-level greedy approach 

Image dimensions: 152 x 200 

Total pixels: 30,400 

 Intersection 6258 

Union 8337 

IoU ~0.7507 

Table 4.2.8 IoU of Dijkstra image in NRID (ours_14_aaa) 

Retarget method: Dijkstra 

Image dimensions: 152 x 200 

Total pixels: 30,400 

 Intersection 5302 

Union 8600 

IoU ~0.6164 

 

  

Figure 4.2.10 Visual representation of IoU of image in NRID (ours_14_aaa)
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Table 4.2.9 IoU of first-level greedy approach image in NRID (ours_16_aaa) 

Retarget method: First-level greedy approach 

Image dimensions: 152 x 200 

Total pixels: 30,400 

 Intersection 7285 

Union 10461 

IoU ~0.6964 

Table 4.2.10 IoU of Dijkstra image in NRID (ours_16_aaa) 

Retarget method: Dijkstra 

Image dimensions: 152 x 200 

Total pixels: 30,400 

 Intersection 5949 

Union 10809 

IoU ~0.5504 

 

  

Figure 4.2.11 Visual representation of IoU of image in NRID (ours_16_aaa)
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Table 4.2.11 IoU of greedy approach 

  

Retarget 

method: 

First-level greedy approach 

Image 

dimensions: 

150 x 200 50 x 75 152 x 200 152 x 200 152 x 200 

Accuracy 0.6515 0.8920 0.7621 0.7507 0.6964 

Table 4.2.12 IoU of Dijkstra 

  

Retarget 

method: 

Dijkstra 

Image 

dimensions: 

150 x 200 50 x 75 152 x 200 152 x 200 152 x 200 

Accuracy 0.7232 0.7184 0.4791 0.6164 0.5504 

4.3 Mean Results and Comparison 

When it comes to accuracy and execution time, the greedy algorithm 

outperforms Dijkstra's algorithm. Moreover, it can be said by observing in a supervised 

manner that the greedy technique is more accurate on a variety of colored backgrounds 

compared to images with a single or fairly similar colored background. Based on this 

inference, we can put forward the thesis that the reason why Dijkstra's algorithm gives 

worse accuracy is related to the detection of important objects in the picture and the 

evaluation of the values of energy points, rather than the algorithm itself.
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Table 4.3.1 Mean accuracy (IoU) of the all the image 

 
Average results of all the images* 

Retarget method: Greedy approach  Dijkstra algorithm 

Image dimensions: 150 x 200 and 50 x 75 

Accuracy (IoU) 0.6598 0.6175 

* The IoU average of 5 images for Dijkstra, and the IoU average of 23 

additional images of these 5 images (28 images in total) for Greedy 

The Dijkstra algorithm gives worse mean accuracy than the greedy approach, as 

well as works much slower than the greedy approach since the time complexity of 

Dijkstra is O(E*logV) and first-level greedy approach is O(Nm). To understand and 

compare easier, I run the code on exact same powerful computer. The machine has 

Intel i9-10900K CPU, 64GB 4880MHz RAM, RTX 3090 24GB graphic card. 

Table 4.3.2 Run time and accuracy comparison of greedy approach and Dijkstra 

algorithm on photo 

  

Retarget method: Greedy approach  Dijkstra algorithm 

Image dimensions: 150 x 200 150 x 200 

Accuracy 0.6515 0.7232 

Time duration 0:00:07.538000 15:03:24.744456 
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Table 4.3.3 Run time and accuracy comparison of greedy approach and Dijkstra 

algorithm on image 

  

Retarget method: Greedy approach  Dijkstra algorithm 

Image dimensions: 50 x 75 50 x 75 

Accuracy 0.8920 0.7184 

Time duration 0:00:00.401485 0:09:10.639831 

 

Table 4.3.4 Run time and accuracy comparison of greedy approach (v1 & v2) and 

Dijkstra algorithm on the image in NRID (ours_11_aaa) 

  

Retarget method: Greedy approach  Dijkstra algorithm 

Image dimensions: 152 x 200 152 x 200 

Accuracy (IoU) 0.7622 0.4791 

Time duration 

(Greedy v2*) 

0:00:11.481114 14:15:04.679344 

Time duration 

(Greedy v1**) 

0:02:06.419997 

* Optimized Greedy Algorithm ** Classic Greedy Algorithm 
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Table 4.3.5 Run time and accuracy comparison of greedy approach (v1 & v2) and 

Dijkstra algorithm on the image in NRID (ours_14_aaa) 

  

Retarget method: Greedy approach  Dijkstra algorithm 

Image dimensions: 152 x 200 152 x 200 

Accuracy (IoU) 0.7507 0.6165 

Time duration 

(Greedy v2*) 

0:00:09.344086 14:14:45.383034 

Time duration 

(Greedy v1**) 

0:02:06.141000 

* Optimized Greedy Algorithm ** Classic Greedy Algorithm 

Table 4.3.6 Run time and accuracy comparison of greedy approach (v1 & v2) and 

Dijkstra algorithm on the image in NRID (ours_16_aaa) 

  

Retarget method: Greedy approach  Dijkstra algorithm 

Image dimensions: 152 x 200 152 x 200 

Accuracy (IoU) 0.6964 0.5504 

Time duration 

(Greedy v2*) 

0:00:10.062097 14:22:53.173311 

Time duration 

(Greedy v1**) 

0:02:05.993500 

* Optimized Greedy Algorithm ** Classic Greedy Algorithm 
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Table 4.3.7 Run time and accuracy comparison of greedy approach (v2) and Dijkstra 

algorithm on the mean of all the images 

 Average results of all the images 

Retarget method: Greedy approach   Dijkstra algorithm 

Image 

dimensions: 

150 x 200   |   50 x 75   |   152 x 200 

  Change  

Accuracy* 0.658 +6.55% 0.6175 

Time duration** 

(milliseconds) 

(hh:mm:ss) 

1,726,797 

00:28:46 + 2,347% 

42,261,000 

11:44:21 

* The IoU average of 5 images for Dijkstra, and the IoU average of 23 additional images 

of these 5 images (28 images in total) for Greedy 

** The run-time average of 5 images. Optimized Greedy run-time used. 

First-level greedy approach gives ~6.55% better accuracy than the Dijkstra 

algorithm, as well as spends much less time; to be exact, the Dijkstra algorithm spends 

~2,347% more time.
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4.4 Visual Comparison with Other Methods 

There are a lot of image-resizing methods, and crop & stretch are the most 

popular of these today. I use the same photo and image to show the differences between 

seam carving method. 

  

Figure 4.4.1 Cropped photo and image 

  

Figure 4.4.2 Stretched photo and image
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Cropped Stretched Greedy seam carving 

Figure 4.4.3 Cropped vs Stretched vs Greedy seam carving of photo 

 
Cropped 

 
Stretched 

 
Greedy seam carving 

Figure 4.4.4 Cropped vs Stretched vs Greedy seam carving of image 

 
Cropped 

 
Stretched 

 
Dijkstra seam carving 

Figure 4.4.5 Cropped vs Stretched vs Dijkstra seam carving of photo 
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Cropped 

 

Stretched 

 

Dijkstra seam carving 

Figure 4.4.6 Cropped vs Stretched vs Dijkstra seam carving of image 

  

Original photo Greedy seam carving 

Figure 4.4.7 Cropped vs Stretched vs Greedy seam carving of photo 

  

Original photo Dijkstra seam carving 

Figure 4.4.8 Cropped vs Stretched vs Dijkstra seam carving of photo
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Original image Greedy seam carving 

Figure 4.4.9 Cropped vs Stretched vs Greedy seam carving of image 

  

Original image Dijkstra seam carving 

Figure 4.4.10 Cropped vs Stretched vs Dijkstra seam carving of image 

  

Greedy seam carving Dijkstra seam carving 

Figure 4.4.11 Greedy vs Dijkstra seam carving of photo 
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Greedy seam carving Dijkstra seam carving 

Figure 4.4.12 Greedy vs Dijkstra seam carving of image 
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CHAPTER 5 

5. CONCLUSION AND RECOMMENDATIONS 

Based on this dataset I used, the Greedy approach provides higher accuracy than 

Dijkstra when averaging all of the images. The Greedy approach is more advantageous 

when using the seam carving method as the image retargeting method, since it achieves 

a ~6.55% better result than the Dijkstra and the Dijkstra algorithm has a ~2,347% 

longer processing time. 

In order to develop the program, it is necessary to improve the shortest path 

algorithm. There can be several ways to do this. As used in the Greedy approach, in 

the Dijkstra algorithm, only the pixels affected in the previous iteration can be 

calculated, rather than going through the entire template in each iteration. Similarly, 

based on the width of the picture, the maximum distance it can travel from the selected 

pixel can be calculated, and in this way only the energy points of the necessary places 

can be calculated. Since Dijkstra is one of the best-known shortest path finding 

algorithms (Tyagi, 2020), there may be no need to use another method. Only the 

development of the algorithm can be achieved in a way that is more adaptable to this 

situation. Thus, the Dijkstra algorithm can be optimized for the seam carving method 

and its duration can be shortened. 

In addition, a different approach can be taken for the detection of energy points 

in the image. The Laplacian filter we applied has difficulty in accurately identifying 

the important object in the foreground in complex and colorful images with a mixed 

background. Today, especially deep learning techniques provide great success in 

detecting important objects in the picture. First, the important objects in the picture are 

detected with deep learning, and after the Laplacian filter is applied, an algorithm can 
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be developed to not use the pixels where the important objects are while performing 

image retargeting, no matter how low the energy points of those regions are. 
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