

COMPARISON OF IMAGE RETARGETING ALGORITHMS

WITH SEAM CARVING METHOD

TAYLAN MİROĞLU

IŞIK UNIVERSITY

APRIL, 2023

COMPARISON OF IMAGE RETARGETING ALGORITHMS WITH

SEAM CARVING METHOD

TAYLAN MİROĞLU
Işık University, School of Graduate Studies, Computer Engineering Master's

Program,

2023

This thesis has been submitted to Işık University, Graduate Education Institute for a

Master's Degree (MA).

IŞIK UNIVERSITY

APRIL, 2023

ii

COMPARISON OF IMAGE RETARGETING ALGORITHMS

WITH SEAM CARVING METHOD

ABSTRACT

The rise of social media has made sharing photos and pictures more important than

ever, both for personal and marketing purposes. This situation also caused the problem

of converting the photos taken with the camera in a square format, where the width is

higher than the height. To address this need, a recent study explored the use of the

Seam Carving method to convert images to a square format while preserving their

essential parts. The study compared two algorithms, Greedy and Dijkstra, in terms of

processing time and consistency using a supervised image.

The consistency comparison was carried out on five images, three of which were

obtained from NRID, and two were created for the study. The five images were used

to calculate the average consistency of the Dijkstra algorithm. In addition, 23 more

images from NRID were used to compute the average consistency of the Greedy

algorithm, resulting in a total of 28 images used in the analysis.

The results showed that the Greedy algorithm had an average consistency that was

6.55% higher than the Dijkstra algorithm based on the five images. Furthermore, the

Dijkstra algorithm took an average of 2,347% longer to process than the Greedy

algorithm.

The implications of these findings are significant for social media users and marketers

alike. The Greedy algorithm can help maintain the essential elements of an image

while making it suitable for different social media platforms. The study also highlights

the importance of considering processing time when choosing an algorithm to use.

Overall, this research demonstrates the potential of the Seam Carving method and

provides valuable insights into the choice of algorithm for image manipulation.

Keywords: Seam Carving, Dijkstra, Greedy, Image Retargeting, Image Resizing,

Shortest Path

iii

SEAM CARVING YÖNTEMİ İLE GÖRÜNTÜ YENİDEN

HEDEFLEME ALGORİTMALARININ KARŞILAŞTIRILMASI

ÖZET

Sosyal medyanın yükselişi, kişisel ve pazarlama amaçları için fotoğraf ve resim

paylaşımını daha da önemli hale getirdi. Bu durum aynı zamanda, kamera ile çekilen

ve genişliği yüksekliğinden daha fazla olan fotoğrafların kare formata dönüştürülmesi

sorununu da beraberinde getirdi. Bu ihtiyacı karşılamak için son zamanlarda bir

çalışma, resimleri özgün parçalarını koruyarak kare formata dönüştürmek için Seam

Carving yönteminin kullanımını inceledi. Bu çalışmada, süpervize edilmiş bir görüntü

üzerinde hem işlem süresi hem de tutarlılık açısından Greedy yaklaşım ve Dijkstra

algoritması olmak üzere iki algoritma karşılaştırdı.

Bu araştırmadaki tutarlılık karşılaştırmasında beş görüntü kullanıldı; üç tanesi

NRID'den elde edilen ve iki tanesi bu çalışma için özel olarak oluşturulan beş görüntü

üzerinde yapıldı. Beş görüntü, Dijkstra algoritmasının ortalama tutarlılığını

hesaplamak için kullanıldı. Bunun yanı sıra, NRID'den 23 tane daha görüntü, Greedy

algoritmasının ortalama tutarlılığını hesaplamak için kullanıldı. Bu araştırmanın

analizinde toplamda 28 görüntü kullanıldı.

Sonuçlar, beş farklı görüntüye dayanarak Greedy algoritmasının ortalama

tutarlılığının Dijkstra algoritmasından %6,55 daha yüksek olduğunu gösterdi. Bunun

yanı sıra, Dijkstra algoritmasına ait işlem süresinin Greedy algoritmasından %2.347

daha uzun sürdüğü ortaya çıktı.

Bu bulguların sosyal medya kullanıcıları ve pazarlamacılar için önemli sonuçları

vardır. Greedy algoritması, bir görüntünün temel öğelerini koruyarak farklı sosyal

medya platformlarına uygun hale getirmeye yardımcı olabilir. Bu çalışma, görüntü

yeniden boyutlandırma yöntemlerinden olan Seam Carving yönteminde algoritma

seçiminde işlem süresinin dikkate alınmasının önemini vurgulamaktadır. Genel

olarak, bu araştırma, Seam Carving yönteminin potansiyelini göstermektedir ve

görüntü manipülasyonu için algoritma seçimi konusunda değerli bilgiler

sağlamaktadır.

iv

Anahtar Kelimeler: Seam Carving, Dijkstra, Greedy, Resim Yeniden Hedefleme,

Resim Boyutlandırma, En Kısa Yol

v

ACKNOWLEDGEMENTS

I would like to thank my family and instructors who have been with me throughout

this process.

Also

I would also like to thank my partner Özge Karaboğa, who played an active role in the

creation of this study.

Taylan MİROĞLU

vi

TABLE OF CONTENTS

APPROVAL PAGE .. i

ABSTRACT .. ii

ÖZET .. iii

ACKNOWLEDGEMENTS ... v

TABLE OF CONTENTS ... vii

LIST OF TABLES .. viii

LIST OF FIGURES .. ixx

CHAPTER 1 ... 1

1. INTRODUCTION .. 1

1.1 Application of Image Retargeting Algorithms .. 1

1.2 Contributions ... 2

CHAPTER 2 ... 3

2. LITERATURE SURVEY .. 3

CHAPTER 3 ... 5

3. METHODS & PROCESSES .. 5

3.1 Auxiliaries, Libraries and Language .. 5

3.2 Steps ... 5

3.2.1 Preparing the Dataset ... 6

3.2.2 3-Dimensional Colored Image to 2-Dimensional Grayscale Image 6

3.2.3 Laplacian Transform .. 7

3.2.4 Finding The Lowest Energy Points – The Shortest Path 9

 3.2.4.1 First-level Greedy Approach ... 10

 3.2.4.2 Dijkstra Algorithm .. 13

3.2.5 Marking Red – Removing Pixels ... 14

 3.2.5.1 Process Sequence for First-level Greedy Approach 14

 3.2.5.2 Process Sequence for Dijkstra Algorithm 16

CHAPTER 4 ... 21

vii

4. RESULTS & COMPARISON .. 21

4.1 Visual Results .. 21

4.2 Intersection over Union (IoU) ... 25

4.3 Mean Results and Comparison .. 33

4.4 Visual Comparison with Other Methods ... 38

CHAPTER 5 ... 43

5. CONCLUSION AND RECOMMENDATIONS ... 43

REFERENCES ... 45

CURRICULUM VITAE .. 47

viii

LIST OF TABLES

Table 3.2.3.1 Compared Laplacian filters .. 8

Table 3.2.4.1.1 Comparison of Optimized and Classical Greedy Approach 11

Table 3.2.4.2.1 The logic of Dijkstra Algorithm.. 14

Table 4.2.1 IoU of first-level greedy approach photo .. 28

Table 4.2.2 IoU of Dijkstra photo .. 28

Table 4.2.3 IoU of first-level greedy approach image ... 29

Table 4.2.4 IoU of Dijkstra image ... 29

Table 4.2.5 IoU of first-level greedy approach image in NRID (ours_11_aaa) 30

Table 4.2.6 IoU of Dijkstra image in NRID (ours_11_aaa) 30

Table 4.2.7 IoU of first-level greedy approach image in NRID (ours_14_aaa) 31

Table 4.2.8 IoU of Dijkstra image in NRID (ours_14_aaa) 31

Table 4.2.9 IoU of first-level greedy approach image in NRID (ours_16_aaa) 32

Table 4.2.10 IoU of Dijkstra image in NRID (ours_16_aaa) 32

Table 4.2.11 IoU of greedy approach... 33

Table 4.2.12 IoU of Dijkstra .. 33

Table 4.3.1 Mean accuracy (IoU) of the all the image ... 34

Table 4.3.2 Run time and accuracy comparison of greedy approach and Dijkstra

algorithm on photo ... 34

Table 4.3.3 Run time and accuracy comparison of greedy approach and Dijkstra

algorithm on image .. 35

Table 4.3.4 Run time and accuracy comparison of greedy approach (v1 & v2) and

Dijkstra algorithm on the image in NRID (ours_11_aaa) ... 35

Table 4.3.5 Run time and accuracy comparison of greedy approach (v1 & v2) and

Dijkstra algorithm on the image in NRID (ours_14_aaa) ... 36

Table 4.3.6 Run time and accuracy comparison of greedy approach (v1 & v2) and

Dijkstra algorithm on the image in NRID (ours_16_aaa) ... 36

Table 4.3.7 Run time and accuracy comparison of greedy approach (v2) and Dijkstra

algorithm on the mean of all the images .. 37

ix

LIST OF FIGURES

Figure 3.2.3.1 The 2-D Laplacian function (researchgate.net) 7

Figure 3.2.3.2 The original and Laplacian filtered photos ... 8

Figure 3.2.3.3 The original and Laplacian filtered images .. 8

Figure 3.2.3.4 The original and Laplacian filtered images in NRID (ours_11_aaa)... 9

Figure 3.2.3.5 The original and Laplacian filtered images in NRID (ours_14_aaa)... 9

Figure 3.2.3.6 The original and Laplacian filtered images in NRID (ours_16_aaa)... 9

Figure 3.2.4.1.1 Greedy approach .. 10

Figure 3.2.4.1.2 Greedy approach (Next Step) ..12

Figure 3.2.4.2.1 The logic of Dijkstra Algorithm..14

Figure 3.2.5.1.1 Red marks on the original and Laplacian filtered photos with using

greedy approach ... 15

Figure 3.2.5.1.2 Red marks on the original and Laplacian filtered images with using

greedy approach ...15

Figure 3.2.5.1.3 Red marks on the original and Laplacian filtered images in NRID

(ours_11_aaa) with using greedy approach ..16

Figure 3.2.5.2.1 Why algorithm needs adjusting process before marking pixels –Step

1 ..17

Figure 3.2.5.2.2 Why algorithm needs adjusting process before marking pixels –Step

2 ..17

Figure 3.2.5.2.3 Why algorithm needs adjusting process before marking pixels –Step

3 ..18

Figure 3.2.5.2.4 Red marks on the original and Laplacian filtered photos with using

Dijkstra algorithm ...18

Figure 3.2.5.2.5 Red marks on the original and Laplacian filtered images with using

Dijkstra algorithm ...19

Figure 3.2.5.2.6 Red marks on the original and Laplacian filtered images in NRID

(ours_11_aaa) with using Dijkstra algorithm ...19

Figure 3.2.5.2.7 Flowchart of the Algorithm ...20

Figure 4.1.1 The original and retargeted photo with greedy approach 21

Figure 4.1.2 The original and retargeted photo with Dijkstra algorithm 22

x

Figure 4.1.3 The original and retargeted image with greedy approach 22

Figure 4.1.4 The original and retargeted image with Dijkstra algorithm 22

Figure 4.1.5 The original and retargeted image with Greedy algorithm in NRID

(ours_11_aaa) .. 23

Figure 4.1.6 The original and retargeted image with Dijkstra algorithm in NRID

(ours_11_aaa) .. 23

Figure 4.1.7 The original and retargeted image with Greedy algorithm in NRID

(ours_14_aaa) .. 23

Figure 4.1.8 The original and retargeted image with Dijkstra algorithm in NRID

(ours_14_aaa) .. 24

Figure 4.1.9 The original and retargeted image with Greedy algorithm in NRID

(ours_16_aaa) .. 24

Figure 4.1.10 The original and retargeted image with Dijkstra algorithm in NRID

(ours_16_aaa) .. 24

Figure 4.2.1 Supervised photo ... 25

Figure 4.2.2 Supervised image ... 26

Figure 4.2.3 Supervised image in NRID (ours_11_aaa) ... 26

Figure 4.2.4 Supervised image in NRID (ours_14_aaa) ... 26

Figure 4.2.5 Supervised image in NRID (ours_16_aaa) ... 27

Figure 4.2.6 Creating Polylines in AutoCAD for Getting Coordinates 27

Figure 4.2.7 Visual representation of IoU of photo ... 28

Figure 4.2.8 Visual representation of IoU of image .. 29

Figure 4.2.9 Visual representation of IoU of image in NRID (ours_11_aaa) 30

Figure 4.2.10 Visual representation of IoU of image in NRID (ours_14_aaa) 31

Figure 4.2.11 Visual representation of IoU of image in NRID (ours_16_aaa) 32

Figure 4.4.1 Cropped photo and image .. 38

Figure 4.4.2 Stretched photo and image... 38

Figure 4.4.3 Cropped vs Stretched vs Greedy seam carving of photo 39

Figure 4.4.4 Cropped vs Stretched vs Greedy seam carving of image 39

Figure 4.4.5 Cropped vs Stretched vs Dijkstra seam carving of photo 39

Figure 4.4.6 Cropped vs Stretched vs Dijkstra seam carving of image 40

Figure 4.4.7 Cropped vs Stretched vs Greedy seam carving of photo 40

Figure 4.4.8 Cropped vs Stretched vs Dijkstra seam carving of photo 40

Figure 4.4.9 Cropped vs Stretched vs Greedy seam carving of image 41

Figure 4.4.10 Cropped vs Stretched vs Dijkstra seam carving of image 41

Figure 4.4.11 Greedy vs Dijkstra seam carving of photo .. 41

Figure 4.4.12 Greedy vs Dijkstra seam carving of image .. 42

1

CHAPTER 1

1. INTRODUCTION

Images are crucial in social media since they let you interact with your audience

more. More of you is visible to your fans, who can also follow your actions. Images

may convey a message or tell a narrative much more effectively than words ever could

(Ellard, 2021).

Most of social media web sites suggest square dimensional images (Arens,

2022), although most of cameras take rectangle dimension photos (Must Photos

Always Be Rectangular?, 2020). The proposed of image retargeting algorithms are

meet needs of modern digital multimedia technologies improvements and solve

different type of devices resolution and aspect ratio with that aim the retargeting

process apply displaying images for obtain without distortion on media of these

various sizes using different standards. Image retargeting technique resizes an input

image to a given target resolution where the aspect ratio changes. For this aim so many

retargeting techniques were found. These techniques can be classified with two

directions, first one is brute force and second one is content-aware retargeting

(Rubinstein et al., 2010). Most well-known brute force approaches are scaling and

fixed window cropping and content-aware retargeting approaches are cropping based,

segmentation based, patch based, seam carving, warping and multi-operator

approaches (Rubinstein et al., 2010).

1.1 Application of Image Retargeting Algorithms

Laplacian transform, and seam carving method with greedy approach and

Dijkstra have been applied to an image. Laplacian is a derivative operator; it uses

highlights gray level discontinuities and so diminishes one important region with

2

slowly varying gray levels (Abramowitz et al., 2013). Seam carving is one of the most

famous image retargeting approaches which decreases an image’s width one pixel at a

time with a seam which is a connected path with the crossing of lower energy pixels

of an image top to the bottom or left to the right (Avidan et al., 2007). Part of the seam

carving retargeting approach involves finding the shortest path, which brings along the

greedy and Dijkstra algorithms. The greedy algorithm checks only the first neighbors

of the pixel, although the Dijkstra algorithm checks all possible paths like brute force,

but it's a faster version of brute force (Sniedovich et al., 2006); I will mention this in

the next chapters.

1.2 Contributions

Default greedy approach, directly checks all the possible pixels. This process

causes long image retargeting processing time and recalculation of unnecessary paths.

For this reason, I made an optimization on the default greedy approach. According to

this optimization process, only the 1-pixel width path with the lowest energy sum

determined in the previous process, when deleted from the picture, the other paths that

were affected are calculated. As a result, instead of the number of paths that will be

calculated as the width of the picture in each process according to the default greedy

approach, the optimized greedy approach calculates the number of paths as the height

of the picture in the worst-case scenario. Also, it's only one path was recalculated in

the best-case scenario. This causes the algorithm to use fewer resources and shorten

the processing time considerably. I will explain the optimization I made, on the chapter

3.2.4.1 First-level Greedy Approach.

3

CHAPTER 2

2. LITERATURE SURVEY

Image retargeting has become increasingly important in recent years due to the

rise of mobile devices with varying screen sizes and aspect ratios. This technique

enables images to be resized without altering the important features or distorting the

image's overall quality. Various methods have been proposed for this purpose, such as

cropping, scaling, and seam carving.

Seam carving, also known as content-aware image resizing, is a relatively new

method that has gained popularity due to its ability to retain the essential features of

an image while resizing it. The algorithm identifies and removes the least important

seams from the image, resulting in a smaller but visually appealing image. A number

of researchers have focused on developing and improving the seam carving algorithm.

One of the most significant contributions to this field was made by Avidan and

Shamir (Avidan et al., 2007), who proposed the first seam carving algorithm. Their

method uses dynamic programming to identify and remove the least important seams

from the image. They demonstrated that their method produced better results than

cropping or scaling.

Later, Rubinstein et al. (Rubinstein et al., 2008) proposed a modified version of

the algorithm, which introduced a new energy function and made the method more

efficient. They showed that their approach produced visually appealing results while

reducing computation time.

Another study by Chiang et al. (Chiang et al., 2009) proposed a GPU

implementation of the seam carving algorithm. They demonstrated that the use of a

GPU significantly improved the speed of the algorithm while maintaining the same

level of accuracy.

4

In recent years, deep learning techniques have also been applied to image

retargeting. For example, Wu et al. (Wu et al., 2019) proposed a deep convolutional

neural network (CNN) for image retargeting. Their approach learns to map an input

image to an output image of a different size while preserving the content of the original

image. They demonstrated that their approach achieved better results than traditional

methods.

In another study, Singh et al. (Singh et al., 2020) proposed a novel method for

image retargeting that uses a convolutional neural network with spatial attention

mechanisms. They use a layer in the CNN to resize feature maps of the image, while

ensuring that important regions are preserved during the resizing process.

Overall, these studies demonstrate the importance of image retargeting and the

various methods that have been proposed to achieve this goal. The development of

seam carving algorithms, as well as the recent application of deep learning techniques,

have significantly improved the accuracy and speed of image retargeting.

5

CHAPTER 3

3. METHODS & PROCESSES

3.1 Auxiliaries, Libraries and Language

Since it's powerful in image process Python 3.9 was used as a programming

language and PyCharm was my preferred IDE for this research (Muhammad, 2021).

A total of 4 Python files, two main .py files, two auxiliary .py files, and a total of four

classes were used. Also, this project includes thirty-five class methods, twenty-one

necessary methods, and four optional methods in the project. For reaching my aim I

created my own methods for whole algorithm steps. Although the internet is used for

help at some points, every line except Dijkstra has been specially written by me and I

preferred to use built-in libraries of Python as much as I can, instead of using external

libraries. Used libraries of the project are Matplotlib, NumPy, DateTime (optional),

time(optional), sys, and copy. Also I used the Shapely library in a separate program I

wrote to compare the results.

3.2 Steps

After the dataset prepared, the basic process steps of the project are: Selected 3-

dimensional colored image is converted to 2-dimensional gray level image and this

gray leveled image is used as input for Laplacian transform algorithm. The energy

points of the image are determined by this algorithm and marked on a Python list that

is the same length as the 2D version of the original image. The process after this step

will fork towards two separate points, then they will merge again. One of the processes

uses greedy approach for determining shortest path by using energy points, and the

6

other process tries to do same thing with using Dijkstra algorithm. The pixels of the

shortest paths of both methods are marked with the RGB color value of 255.0.0, which

represents full red. After that these marked points are removed from the image to

complete retargeting process.

3.2.1 Preparing the Dataset

Preparing the dataset involved selecting suitable images for the project from the

National Tsing Hua University image retargeting dataset (NRID). A total of 26 images

with longer widths than heights were selected from a pool of 35. I selected 3 of these

26 images for optimization to reduce the Dijkstra run-time. To optimize these 3 images

of the dataset, Adobe Photoshop was used to reduce the width and height of three of

the images while maintaining their aspect ratios due to the long runtime of the Dijkstra

retargeting algorithm. In addition to these images, a personal photo with the author's

brother and two cats was also included, as well as a digital artwork created specifically

for this project. These images formed the basis of the dataset used in the project,

allowing for accurate and comprehensive testing of the Dijkstra retargeting algorithm.

These 5 images (3 of them from NRID, 2 of which I created) were run with both

Dijkstra and Greedy. Run-time comparison was made according to the average run-

time of 5 pictures. Also, Dijkstra's accuracy was determined from the average accuracy

of these 5 images. Apart from this, the remaining 23 images out of 26 selected from

NRID were run only with Greedy. The accuracy of these 23 images and the other 5

images was averaged, thus determining Greedy's average accuracy.

3.2.2 3-Dimensional Colored Image to 2-Dimensional Grayscale Image

A color image can be read using several methods and one of these methods is

reading as RGB with 3-dimensional list (Raguramanet et al., 2021). The length of the

first dimension equals to image’s height, the second one equals to image’s width, and

the third one equals three, which presents red, green, and blue values of the pixel. After

we achieve RGB values of the pixel, there are three main methods to convert it to

greyscale, which are lightness, average, and luminosity (Antoniadis et al., 2022).

Green appears around ten times brighter to human eyes than blue does (Brandon,

2019). Researchers in psychology have discovered how differently we interpret the

luminance of red, green, and blue through numerous iterations of carefully planned

7

tests (Brandon, 2019). They gave us a unique set of weights to use with our channel

averaging to calculate overall luminance (Brandon, 2019). According to this, we sum

the RGB values with calculation using the following formula:

As a result, we get a 2-dimensional list which refers to a grayscale image.

3.2.3 Laplacian Transform

To apply the Laplacian filter, we get the grayscale image from the previous

method. The Laplacian I(x,y) of an image with pixel intensity J(x,y) is ;

 I(x,y) = ∂2J / ∂2x + ∂2J / ∂2y

The x and y axes are marked in standard deviation

Figure 3.2.3.1 The 2-D Laplacian function (researchgate.net)

For obtaining Laplacian image, I compared two commonly used discrete

approximation Laplacian filters then I decided to use first of them since its more

appropriate (Abramowitz et al., 2013). Related Laplace filters are shown in Table

3.2.3.1.

8

Table 3.2.3.1 Compared Laplacian filters

1 1 1 0 1 0

1 -8 1 1 -4 1

1 1 1 0 1 0

This was used

for the project

Most important parts of the image can be detectable easily by computers when

comparing the original image (Haralick et al., 1993).

The original photo Laplacian filter applied photo

Figure 3.2.3.2 The original and Laplacian filtered photos

The original image Laplacian filter applied image

Figure 3.2.3.3 The original and Laplacian filtered images

9

The original image Laplacian filter applied image

Figure 3.2.3.4 The original and Laplacian filtered images in NRID (ours_11_aaa)

The original image Laplacian filter applied image

Figure 3.2.3.5 The original and Laplacian filtered images in NRID (ours_14_aaa)

The original image Laplacian filter applied image

Figure 3.2.3.6 The original and Laplacian filtered images in NRID (ours_16_aaa)

3.2.4 Finding The Lowest Energy Points – The Shortest Path

After we apply the Laplacian filter to the grayscale image, we get all the energy

points of the pixels. Based on these energy points, the sum of the lowest energy point

10

route is calculated. There are several algorithms to calculate the shortest path (Baum,

2020). I compare 2 different algorithms which are first-level greedy approach search

and Dijkstra.

3.2.4.1 First-level Greedy Approach

The algorithm starts from all of the top pixels separately, then it’s going down

by comparing the energy points of their first neighbors which are left, center, and right

choosing the lowest energy pixels. It can be exactly under or right cross under or left

cross under till I reach from the first row to the last row of an image.

After that calculation, the algorithm gets multiple routes as many as the number

of the image width. Total energy points were calculated for each route while routes

were created. A new row is added at the bottom of the image and the total points that

are calculated for each start point pixel are written on that new row.

Figure 3.2.4.1.1 Greedy approach

The extra row contains the total scores of all routes and according to this

information; the starting point with the lowest total energy point will be selected. The

selected route will be saved in a variable so it can be used to mark the selected route

with a red marker.

In this step, although both of two

neighbors have the equal value,

algorithm selects left in this project.
Sample image size 7x5 (width x height)

11

After the initial marking is complete, the width of the image can be reduced by

1 pixel. If the image wants to be reduced by more than 1 pixel, the algorithm will re-

search for energy points for specific routes since I made an optimization in the greedy

approach instead of using classical greedy approach. Based on this optimization, when

a path marked/removed, the algorithm detects which routes had been affected and

calculate only these paths’ energy points, this optimized greedy approach is working

~91,93% faster than classical greedy approach.

Table 3.2.4.1.1 Comparison of Optimized and Classical Greedy Approach

Greedy Approach without Optimization Greedy Approach with Optimization

Image Name Run Time Image Name Run Time

ours_11_aaa 0:02:06 ours_11_aaa 0:00:11

ours_14_aaa 0:02:06 ours_14_aaa 0:00:09

ours_16_aaa 0:02:05 ours_16_aaa 0:00:10

TOTAL 0:06:14 TOTAL 0:00:30

AVERAGE 0:02:04 AVERAGE 0:00:10

 PERCENTAGE -~91.93%

Also, algorithm will skip the marked pixels while searching for the lowest energy

point. This means:

 First, the algorithm detects which routes should be recalculated

(DetermineRecalculationPixels). To do that, it checks the previous

selected/marked pixels that was stored in a variable (usedPixels), and starts

searching in the calculated paths (routeAndSumOfEnergyPoints) on the

previous 1-pixel image retargeting process. If it finds that the pixel was already

used in the previous processes, it adds it to a list (recalculationStartPixels) for

the recalculation process.

 After recalculation paths were determined, the algorithm starts to find the

lowest energy point path without using selected/marked pixels (usedPixels): If

the algorithm determines that the left neighbor pixel is marked red, it goes left

in the same row and checks if it is marked or not. This search process continues

until the algorithm finds an unmarked pixel. If there is no unmarked pixel on

12

left, the algorithm acts like there is no pixel on the left side and tries to compare

center and right neighbors.

 If the algorithm determines that the center neighbor pixel is marked red, it acts

like there is no center neighbor and tries to compare left and right neighbors.

 If the algorithm determines that the right neighbor pixel is marked red, it goes

right in the same row and checks if it is marked or not. This search process

continues until the algorithm finds an unmarked pixel. If there is no unmarked

pixel on right, the algorithm acts like there is no pixel on the right side and tries

to compare left and center neighbors.

Total energy point calculations are made based on this method and override the

old total energy points on the last extra row of image.

Figure 3.2.4.1.2 Greedy approach (Next Step)

These processes are repeated until the algorithm reaches the desired retarget

number. When the marking process is completed, a method removes the marked pixels

from the original image. I will mention the marking and removing process with details

in the Chapter 3.2.5.

There are two equal lowest total

energy points. In this situation, the

algorithm will select the first lowest

route which is the left one.

Sample image’s routes after first

marking process on Figure 3.2.4.1.1

13

3.2.4.2 Dijkstra Algorithm

In 1959, Edsger Dijkstra, a Dutch computer scientist, presented an algorithm that

may be used with a weighted graph. The graph must embrace a non-negative value on

each of its edges in order to be considered directed or undirected. This algorithm was

given his name, "Dijkstra's Algorithm" (Tyagi, 2020).

The energy points of the image we already calculated will be used as weight or

cost in Dijkstra as we used in the greedy approach. Based on these weights, Dijkstra

will determine the shortest path on the directed graph which represent the Laplacian

filtered 2-dimensional list of the image. As I mention on Chapter 2, first Dijkstra

calculates the lowest energy path. After Dijkstra calculates the lowest energy path, the

path is saved in a variable. Unlike our other algorithm, this 1 pixel-wide path is deleted

directly from the Laplacian filtered image and the original image, without waiting for

the desired other pixel width to be reduced. As in the other algorithm, the relevant path

is recorded to be marked with a red marker, but no marking is made at that time: When

the desired shrink pixel width is reached, marking with red will be performed. In

addition to this situation, since the 2-dimensional list given to Dijkstra's algorithm for

the second shortest path selection process will now have a width of 1 pixel less, the

new shortest path of the Dijkstra won't give us the actual right way for us to mark on

the original image. Because now the pixel indexes have been changed. At this point,

we will provide editing via a helper pre-process method (adjustDijPaths) before saving

the shortest path in the second loop to our list. I will explain this method in the next

chapter. For each pixel wide to be deleted, the algorithm will re-search for energy

points for all routes but will skip the marked pixels while searching for the lowest

energy point. Because these pixels are already deleted from the Laplacian image,

which includes the energy points (weights) and Dijkstra calculates the shortest path

using the Laplacian image. A method for marking the used pixels from the original

and the Laplacian image follows the deletion process. In the next chapter, I will go

into more detail on marking.

14

Figure 3.2.4.2.1 The logic of Dijkstra Algorithm (sciencedirect.com)

Table 3.2.4.2.1 The logic of Dijkstra Algorithm (sciencedirect.com)

3.2.5 Marking Red – Removing Pixels

Both two algorithms work differently; although the greedy approach deletes the

selected pixels from the original and the Laplacian image when all the desired width

is finished, Dijkstra’s part deletes the selected pixels right after the 1-pixel wide path

detected. However, marking with red process works the same way with a minor

difference for both two algorithms.

3.2.5.1 Process Sequence for First-level Greedy Approach

When the lowest energy (weight) path detected by greedy approach, this path is

added to a list variable (usedPixels). Before the next shortest path is detected, the

algorithm passes the currently selected path to a method (paintRedForGreedySearch)

for marking with red. This method loops through the image’s height and change in the

third depth of the image with using each selected path’s value. The length of the third

depth of the image is three and these represent red, green, and blue values. Since we

would like to mark it red along the selected path, we change the [0] to 255, [1] to 0,

and [2] to 0. As a result, the selected path’s pixels’ colors on the image are changed to

red color.

15

After all of the desired pixel width loops are finished and all the selected paths

are marked as red, the list which includes all these selected paths (usedPixels) is sent

to another method (removeMarkedPixels) to retarget (resize) the image. The most

important part of this method is; to present and match the same list indexes of the

image and the selected path list, the method sorts each row of the selected pixels list

as descending. Then it starts removing the first index of the sorted list; which is caused

the pixels to be started to delete from the end of each row of the image. If we don’t do

that sorting before the removing process, when a pixel from near of the start of the row

is deleted, the whole selected pixel list’s indexes show the wrong (shifted) indexes on

the resized image.

Red marks on the original photo Red marks on the Laplacian filter applied

photo

Figure 3.2.5.1.1 Red marks on the original and Laplacian filtered photos with using

greedy approach

Red marks on the original image Red marks on the Laplacian filter applied

image

Figure 3.2.5.1.2 Red marks on the original and Laplacian filtered images with using

greedy approach

16

Red marks on the original image Red marks on the Laplacian filter applied

image

Figure 3.2.5.1.3 Red marks on the original and Laplacian filtered images in NRID

(ours_11_aaa) with using greedy approach

3.2.5.2 Process Sequence for Dijkstra Algorithm

The path that has the lowest energy is added to a list variable (dijPaths) when it

is found by the Dijkstra algorithm. Before the algorithm passes the found shortest path

to the method that deletes these pixels, firstly the found shortest path is sent to another

pre-process algorithm (adjustDijPaths) to adjust the indexes of the path. Contrary to

the greedy approach, this kind of operation is needed because, unlike the greedy

approach, before each shortest path detection loop in the Dijkstra process, the path

detected in the previous loop is deleted and the new shortest path proceeds over the

image reduced to 1 pixel width. The way the harmonization (adjustment) process

works is as follows:

 The method behaves as if all indexes are affected as much as possible. That

means it adds the number of the previously selected shortest paths to all

currently selected path indexes.

 Then it tries to find how many pixels of the previous shortest paths don’t affect

the current shortest path and subtract 1 for each one.

 To find which pixels don’t affect, a loop starts from the length of the previously

selected paths and goes through by subtracting 1.

 In this loop, it checks if the selected path index is bigger or equal to the

currently selected path index. If it’s true, subtract 1 from the currently selected

path index.

17

 After the loop is completed, the adjusted currently selected path is added to the

list variable which stores all the shortest paths.

Dijkstra selected [1, 0, 0, 0, 0, 1] as the lowest weighted path on the first loop. It will mark [1, 0, 0, 0,

0, 1].

Figure 3.2.5.2.1 Why algorithm needs adjusting process before marking pixels –Step

1

Dijkstra selected [2, 3, 3, 3, 4, 4] as the lowest weighted path from 1-pixel wide deleted image. If it

directly marked red without adjusting, it will mark [2, 3, 3, 3, 4, 4] although it should mark [3, 4, 4, 4,

5, 5] on the original image.

Figure 3.2.5.2.2 Why algorithm needs adjusting process before marking pixels –Step

2

18

If we see the marked original image, we can easily see that list must be shifted before marking again.

Figure 3.2.5.2.3 Why algorithm needs adjusting process before marking pixels –Step

3

Then, the algorithm sends the currently chosen both adjusted and raw (not

adjusted) paths to a method (completeRetargetProcessForDijkstra) for removing the

chosen path from both the original image and the Laplacian image before the next

shortest path is found. This method also paints red using the adjusted selected path.

For painting red, the method uses the same way with greedy approach.

Red marks on the original photo Red marks on the Laplacian filter applied

photo

Figure 3.2.5.2.4 Red marks on the original and Laplacian filtered photos with using

Dijkstra algorithm

19

Red marks on the original image Red marks on the Laplacian filter applied

image

Figure 3.2.5.2.5 Red marks on the original and Laplacian filtered images with using

Dijkstra algorithm

Red marks on the original image Red marks on the Laplacian filter applied

image

Figure 3.2.5.2.6 Red marks on the original and Laplacian filtered images in NRID

(ours_11_aaa) with using Dijkstra algorithm

20

Figure 3.2.5.2.7 Flowchart of the Algorithm

21

CHAPTER 4

4. RESULTS & COMPARISON

4.1 Visual Results

As a result, although both algorithms shrink the images to a square shape, they

give very different results visually due to the methods they use and the shortest paths

they choose. Especially when we look at the red-marked pictures given by the greedy

approach, we can observe that as a human being the red line pass over many objects

that we can define as "important". As a result, pixels that we don't want to be removed

from the picture are also removed, causing the components of important objects to

deteriorate, although not as much as cropping or stretching.

The original photo Retargeted photo with greedy approach

Figure 4.1.1 The original and retargeted photo with greedy approach

22

The original photo Retargeted photo with Dijkstra

algorithm

Figure 4.1.2 The original and retargeted photo with Dijkstra algorithm

The original image Retargeted image with greedy approach

Figure 4.1.3 The original and retargeted image with greedy approach

The original image Retargeted image with Dijkstra algorithm

Figure 4.1.4 The original and retargeted image with Dijkstra algorithm

23

The original image Retargeted image with Greedy algorithm

Figure 4.1.5 The original and retargeted image with Greedy algorithm in NRID

(ours_11_aaa)

The original image Retargeted image with Dijkstra algorithm

Figure 4.1.6 The original and retargeted image with Dijkstra algorithm in NRID

(ours_11_aaa)

The original image Retargeted image with Greedy algorithm

Figure 4.1.7 The original and retargeted image with Greedy algorithm in NRID

(ours_14_aaa)

24

The original image Retargeted image with Dijkstra algorithm

Figure 4.1.8 The original and retargeted image with Dijkstra algorithm in NRID

(ours_14_aaa)

The original image Retargeted image with Greedy algorithm

Figure 4.1.9 The original and retargeted image with Greedy algorithm in NRID

(ours_16_aaa)

The original image Retargeted image with Dijkstra algorithm

Figure 4.1.10 The original and retargeted image with Dijkstra algorithm in NRID

(ours_16_aaa)

25

4.2 Intersection over Union (IoU)

Intersection over Union (IoU) is a widely used evaluation metric in computer

vision, particularly in the field of object detection and segmentation (Redmon et al.,

2016). IoU measures the similarity between two bounding boxes or regions of interest

by calculating the overlap between them. The IoU score ranges from 0 to 1, where 1

indicates a perfect overlap between the two regions, and 0 indicates no overlap at all

(Everingham et al., 2010).

The IoU score is calculated as follows:

IoU = (Area of Intersection) / (Area of Union)

Where the Area of Intersection is the overlap between the two regions, and the

Area of Union is the total area covered by both regions.

IoU is commonly used as an evaluation metric for object detection models,

where it is used to measure the accuracy of the model's predictions (Ronneberger et

al., 2015). A high IoU score indicates that the predicted bounding box closely matches

the ground truth bounding box.

Figure 4.2.1 Supervised photo

26

Figure 4.2.2 Supervised image

Figure 4.2.3 Supervised image in NRID (ours_11_aaa)

Figure 4.2.4 Supervised image in NRID (ours_14_aaa)

27

Figure 4.2.5 Supervised image in NRID (ours_16_aaa)

Both of supervised image and the retargeted image (by either the greedy

approach or Dijkstra) are given to another Python file (comparer.py) which can be run

separately from the main image retargeting program. In this study, supervised images

were used to create polygons in AutoCAD 2021. The coordinates of these polygons

were then exported and utilized in a Python file. The Shapely library was employed to

recreate the polygons in Python, and to calculate the intersection, union, and IoU of

the polygons. These calculations were essential for evaluating the accuracy of the

important objects in the images. In addition, the Matplotlib library was used to plot the

polygons, providing a visual representation of the results. Overall, the combination of

AutoCAD, Python, Shapely, and Matplotlib enabled thorough analysis of the polygons

and the accuracy of their representation in the images.

Figure 4.2.6 Creating Polylines in AutoCAD for Getting Coordinates

28

Table 4.2.1 IoU of first-level greedy approach photo

Retarget method: First-level greedy approach

Image dimensions: 150 x 200

Total pixels: 30,000

 Intersection 4125

Union 6331

IoU ~0.6515

Table 4.2.2 IoU of Dijkstra photo

Retarget method: Dijkstra

Image dimensions: 150 x 200

Total pixels: 30,000

 Intersection 4668

Union 6454

IoU ~0.7232

Figure 4.2.7 Visual representation of IoU of photo

29

Table 4.2.3 IoU of first-level greedy approach image

Retarget method: First-level greedy approach

Image dimensions: 50 x 75

Total pixels: 3,750

 Intersection 653

Union 732

IoU ~0.8920

Table 4.2.4 IoU of Dijkstra image

Retarget method: Dijkstra

Image dimensions: 50 x 75

Total pixels: 3,750

 Intersection 569

Union 792

IoU ~0.7184

Figure 4.2.8 Visual representation of IoU of image

30

Table 4.2.5 IoU of first-level greedy approach image in NRID (ours_11_aaa)

Retarget method: First-level greedy approach

Image dimensions: 152 x 200

Total pixels: 30,400

 Intersection 4945

Union 6488

IoU ~0.7621

Table 4.2.6 IoU of Dijkstra image in NRID (ours_11_aaa)

Retarget method: Dijkstra

Image dimensions: 152 x 200

Total pixels: 30,400

 Intersection 3387

Union 7070

IoU ~0.4791

Figure 4.2.9 Visual representation of IoU of image in NRID (ours_11_aaa)

31

Table 4.2.7 IoU of first-level greedy approach image in NRID (ours_14_aaa)

Retarget method: First-level greedy approach

Image dimensions: 152 x 200

Total pixels: 30,400

 Intersection 6258

Union 8337

IoU ~0.7507

Table 4.2.8 IoU of Dijkstra image in NRID (ours_14_aaa)

Retarget method: Dijkstra

Image dimensions: 152 x 200

Total pixels: 30,400

 Intersection 5302

Union 8600

IoU ~0.6164

Figure 4.2.10 Visual representation of IoU of image in NRID (ours_14_aaa)

32

Table 4.2.9 IoU of first-level greedy approach image in NRID (ours_16_aaa)

Retarget method: First-level greedy approach

Image dimensions: 152 x 200

Total pixels: 30,400

 Intersection 7285

Union 10461

IoU ~0.6964

Table 4.2.10 IoU of Dijkstra image in NRID (ours_16_aaa)

Retarget method: Dijkstra

Image dimensions: 152 x 200

Total pixels: 30,400

 Intersection 5949

Union 10809

IoU ~0.5504

Figure 4.2.11 Visual representation of IoU of image in NRID (ours_16_aaa)

33

Table 4.2.11 IoU of greedy approach

Retarget

method:

First-level greedy approach

Image

dimensions:

150 x 200 50 x 75 152 x 200 152 x 200 152 x 200

Accuracy 0.6515 0.8920 0.7621 0.7507 0.6964

Table 4.2.12 IoU of Dijkstra

Retarget

method:

Dijkstra

Image

dimensions:

150 x 200 50 x 75 152 x 200 152 x 200 152 x 200

Accuracy 0.7232 0.7184 0.4791 0.6164 0.5504

4.3 Mean Results and Comparison

When it comes to accuracy and execution time, the greedy algorithm

outperforms Dijkstra's algorithm. Moreover, it can be said by observing in a supervised

manner that the greedy technique is more accurate on a variety of colored backgrounds

compared to images with a single or fairly similar colored background. Based on this

inference, we can put forward the thesis that the reason why Dijkstra's algorithm gives

worse accuracy is related to the detection of important objects in the picture and the

evaluation of the values of energy points, rather than the algorithm itself.

34

Table 4.3.1 Mean accuracy (IoU) of the all the image

Average results of all the images*

Retarget method: Greedy approach Dijkstra algorithm

Image dimensions: 150 x 200 and 50 x 75

Accuracy (IoU) 0.6598 0.6175

* The IoU average of 5 images for Dijkstra, and the IoU average of 23

additional images of these 5 images (28 images in total) for Greedy

The Dijkstra algorithm gives worse mean accuracy than the greedy approach, as

well as works much slower than the greedy approach since the time complexity of

Dijkstra is O(E*logV) and first-level greedy approach is O(Nm). To understand and

compare easier, I run the code on exact same powerful computer. The machine has

Intel i9-10900K CPU, 64GB 4880MHz RAM, RTX 3090 24GB graphic card.

Table 4.3.2 Run time and accuracy comparison of greedy approach and Dijkstra

algorithm on photo

Retarget method: Greedy approach Dijkstra algorithm

Image dimensions: 150 x 200 150 x 200

Accuracy 0.6515 0.7232

Time duration 0:00:07.538000 15:03:24.744456

35

Table 4.3.3 Run time and accuracy comparison of greedy approach and Dijkstra

algorithm on image

Retarget method: Greedy approach Dijkstra algorithm

Image dimensions: 50 x 75 50 x 75

Accuracy 0.8920 0.7184

Time duration 0:00:00.401485 0:09:10.639831

Table 4.3.4 Run time and accuracy comparison of greedy approach (v1 & v2) and

Dijkstra algorithm on the image in NRID (ours_11_aaa)

Retarget method: Greedy approach Dijkstra algorithm

Image dimensions: 152 x 200 152 x 200

Accuracy (IoU) 0.7622 0.4791

Time duration

(Greedy v2*)

0:00:11.481114 14:15:04.679344

Time duration

(Greedy v1**)

0:02:06.419997

* Optimized Greedy Algorithm ** Classic Greedy Algorithm

36

Table 4.3.5 Run time and accuracy comparison of greedy approach (v1 & v2) and

Dijkstra algorithm on the image in NRID (ours_14_aaa)

Retarget method: Greedy approach Dijkstra algorithm

Image dimensions: 152 x 200 152 x 200

Accuracy (IoU) 0.7507 0.6165

Time duration

(Greedy v2*)

0:00:09.344086 14:14:45.383034

Time duration

(Greedy v1**)

0:02:06.141000

* Optimized Greedy Algorithm ** Classic Greedy Algorithm

Table 4.3.6 Run time and accuracy comparison of greedy approach (v1 & v2) and

Dijkstra algorithm on the image in NRID (ours_16_aaa)

Retarget method: Greedy approach Dijkstra algorithm

Image dimensions: 152 x 200 152 x 200

Accuracy (IoU) 0.6964 0.5504

Time duration

(Greedy v2*)

0:00:10.062097 14:22:53.173311

Time duration

(Greedy v1**)

0:02:05.993500

* Optimized Greedy Algorithm ** Classic Greedy Algorithm

37

Table 4.3.7 Run time and accuracy comparison of greedy approach (v2) and Dijkstra

algorithm on the mean of all the images

 Average results of all the images

Retarget method: Greedy approach Dijkstra algorithm

Image

dimensions:

150 x 200 | 50 x 75 | 152 x 200

 Change

Accuracy* 0.658 +6.55% 0.6175

Time duration**

(milliseconds)

(hh:mm:ss)

1,726,797

00:28:46 + 2,347%

42,261,000

11:44:21

* The IoU average of 5 images for Dijkstra, and the IoU average of 23 additional images

of these 5 images (28 images in total) for Greedy

** The run-time average of 5 images. Optimized Greedy run-time used.

First-level greedy approach gives ~6.55% better accuracy than the Dijkstra

algorithm, as well as spends much less time; to be exact, the Dijkstra algorithm spends

~2,347% more time.

38

4.4 Visual Comparison with Other Methods

There are a lot of image-resizing methods, and crop & stretch are the most

popular of these today. I use the same photo and image to show the differences between

seam carving method.

Figure 4.4.1 Cropped photo and image

Figure 4.4.2 Stretched photo and image

39

Cropped Stretched Greedy seam carving

Figure 4.4.3 Cropped vs Stretched vs Greedy seam carving of photo

Cropped

Stretched

Greedy seam carving

Figure 4.4.4 Cropped vs Stretched vs Greedy seam carving of image

Cropped

Stretched

Dijkstra seam carving

Figure 4.4.5 Cropped vs Stretched vs Dijkstra seam carving of photo

40

Cropped

Stretched

Dijkstra seam carving

Figure 4.4.6 Cropped vs Stretched vs Dijkstra seam carving of image

Original photo Greedy seam carving

Figure 4.4.7 Cropped vs Stretched vs Greedy seam carving of photo

Original photo Dijkstra seam carving

Figure 4.4.8 Cropped vs Stretched vs Dijkstra seam carving of photo

41

Original image Greedy seam carving

Figure 4.4.9 Cropped vs Stretched vs Greedy seam carving of image

Original image Dijkstra seam carving

Figure 4.4.10 Cropped vs Stretched vs Dijkstra seam carving of image

Greedy seam carving Dijkstra seam carving

Figure 4.4.11 Greedy vs Dijkstra seam carving of photo

42

Greedy seam carving Dijkstra seam carving

Figure 4.4.12 Greedy vs Dijkstra seam carving of image

43

CHAPTER 5

5. CONCLUSION AND RECOMMENDATIONS

Based on this dataset I used, the Greedy approach provides higher accuracy than

Dijkstra when averaging all of the images. The Greedy approach is more advantageous

when using the seam carving method as the image retargeting method, since it achieves

a ~6.55% better result than the Dijkstra and the Dijkstra algorithm has a ~2,347%

longer processing time.

In order to develop the program, it is necessary to improve the shortest path

algorithm. There can be several ways to do this. As used in the Greedy approach, in

the Dijkstra algorithm, only the pixels affected in the previous iteration can be

calculated, rather than going through the entire template in each iteration. Similarly,

based on the width of the picture, the maximum distance it can travel from the selected

pixel can be calculated, and in this way only the energy points of the necessary places

can be calculated. Since Dijkstra is one of the best-known shortest path finding

algorithms (Tyagi, 2020), there may be no need to use another method. Only the

development of the algorithm can be achieved in a way that is more adaptable to this

situation. Thus, the Dijkstra algorithm can be optimized for the seam carving method

and its duration can be shortened.

In addition, a different approach can be taken for the detection of energy points

in the image. The Laplacian filter we applied has difficulty in accurately identifying

the important object in the foreground in complex and colorful images with a mixed

background. Today, especially deep learning techniques provide great success in

detecting important objects in the picture. First, the important objects in the picture are

detected with deep learning, and after the Laplacian filter is applied, an algorithm can

44

be developed to not use the pixels where the important objects are while performing

image retargeting, no matter how low the energy points of those regions are.

45

REFERENCES

Abramowitz, M., Stegun, I. A. (2013). Laplace Transforms. Ch. 29 in Handbook of

Mathematical Functions with Formulas, Graphs, and Mathematical Tables (9th

Printing). New York: Dover.

Antoniadis, P. (2022, November 6). How to Convert an RGB Image to a Grayscale. Retrieved

November 10, 2022 from https://www.baeldung.com/cs/convert-rgb-to-grayscale

Arens, E. (2022, June 05). Always up-to-date guide to social media image sizes. Retrieved

October 30, 2022, from https://sproutsocial.com/insights/social-media-image-sizes-

guide

Avidan, S., & Shamir, A. (2007). Seam carving for content-aware image resizing. In ACM

Transactions on Graphics. Association for Computing Machinery (ACM). doi:

10.1145/1276377.1276390

Baum, J. (2020, 7 February). 5 Ways to Find the Shortest Path in a Graph. Retrieved November

15, 2022 from https://betterprogramming.pub/5-ways-to-find-the-shortest-path-in-a-

graph-88cfefd0030f

Brandon. (2019, 14 November). How to Convert an RGB Image to Grayscale. Retrieved

November 10 , 2022 from https://e2eml.school/convert_rgb_to_grayscale.html

Chen-Kuo Chiang, Shu-Fan Wang, Yi-Ling Chen, & Shang-Hong Lai. (2009, November).

Fast JND-Based Video Carving With GPU Acceleration for Real-Time Video

Retargeting. IEEE Transactions on Circuits and Systems for Video Technology, vol.

19, pp. 1588–1597. doi: 10.1109/tcsvt.2009.2031462

Ellard, N. (2021, 24 February). The Importance of Images in Social Media Part 1. Retrieved

October 30, 2022, from https://www.urbanelement.com/insights/the-importance-of-

images-in-social-media

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010, June). The

PASCAL Visual Object Classes (VOC) Challenge. International Journal of Computer

Vision, pp. 303-308. doi: 10.1007/s11263-009-0275-4

Haralick, R. M., & Shapiro, L. G. (1991). Computer and Robot Vision: v.1. London: Addison

Wesley.

Muhammad, A. (2021, 2 October). Which programming language to use for Image

Processing. Retrieved November 1, 2022, from

https://medium.com/@abdullah1621997/which-programming-language-to-use-for-

image-processing-864d0110e695

46

Must Photos Always Be Rectangular? (2020, 19 September). Retrieved October 30, 2022,

from https://www.moneymakerphotography.com/must-photos-always-rectangular

Raguraman, P., Meghana, A., Navya, Y., Karishma, Sk., & Iswarya, S. (2021, January). Color

Detection of RGB Images Using Python and OpenCv. International Journal of

Scientific Research in Computer Science, Engineering and Information Technology,

pp. 109–112. doi: https://doi.org/10.32628/cseit217119

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified,

real-time object detection. Proceedings of the IEEE conference on computer vision

and pattern recognition, Las Vegas, 27 June- 30 June 2016, pp. 779-788, IEEE.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for

biomedical image segmentation. Proceedings of the International Conference on

Medical image computing and computer-assisted intervention, Munich, 5 October- 9

October 2015, pp. 234-241. Springer, Cham.

Rubinstein, M., Gutierrez, D., Sorkine, O., & Shamir, A. (2010). A comparative study of image

retargeting. Presented at the ACM SIGGRAPH Asia 2010 papers. doi:

10.1145/1882262.1866186

Rubinstein, M., Shamir, A., & Avidan, S. (2008, August). Improved seam carving for video

retargeting. ACM Transactions on Graphics, pp. 1-9. doi: 10.1145/1360612.1360615

Singh, V. V., & Kambhamettu, C. (2020). Feature Map Retargeting to Classify Biomedical

Journal Figures. In Advances in Visual Computing, pp. 728–741. Berlin: Springer

International Publishing. doi: 10.1007/978-3-030-64559-5_58

Sniedovich, M. (2006). Dijkstra’s algorithm revisited: the dynamic programming connexion.

Control and Cybernetics Vol. 35, pp. 599-620. http://eudml.org/doc/209437

Tyagi, N. (2020, 14 December). Dijkstra’s Algorithm: The Shortest Path Algorithm. Retrieved

November 18, 2022 from https://www.analyticssteps.com/blogs/dijkstras-algorithm-

shortest-path-algorithm

Wu, J., Xie, R., Song, L., & Liu, B. (2019). Deep Feature Guided Image Retargeting.

Proceedings of the 2019 IEEE Visual Communications and Image Processing (VCIP),

Sydney, 1 December- 4 December, pp. 1-4. doi: 10.1109/vcip47243.2019.8966008

47

CURRICULUM VITAE

