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ENTITY-RELATIONSHIP DIAGRAM GENERATION WITH 

NATURAL LANGUAGE PROCESSING AND MACHINE 

LEARNING APPROACH 

ABSTRACT 

As software systems continue to grow in complexity, the need for efficient and 

accurate design methodologies becomes increasingly critical. Entity-Relationship 

Diagrams (ERDs) provide a powerful visual representation of system structures and 

dependencies, serving as a foundation for software engineering and database design. 

However, manually creating ERDs from textual requirements is time-consuming and 

manual. To address this challenge, this research explores the application of natural 

language processing (NLP) techniques to automatically extract relevant information 

from unstructured text and generate ERDs. The proposed approach leverages the 

strengths of rule-based techniques, semantic analysis, and machine learning algorithms 

to automatically identify entities, attributes, relationships, and cardinalities from 

natural language input. Our study offers practical insights into the utilization of 

linguistic and semantic analysis, and machine learning for efficient information 

extraction. The proposed system aims to streamline the ERD creation process and 

improve the accuracy and quality of the resulting diagrams. While the proposed 

approach shows promising results, the limitations in heuristic rule coverage and data 

dependencies are acknowledge. Furthermore, the evaluation results demonstrate in 

detecting entities, attributes, and relations, with f1-scores of 0.96, 0.93, and 0.92, and 

resolving the components specifications achieved accuracy of 0.87, 0.84, 0.91, 

respectively. The findings contribute to advancing ERD extraction from text and 

suggest future research directions for improving the robustness and usability of the 

solution. The fusion of NLP techniques with ERD creation highlights the potential for 

enhancing the software development lifecycle and opens new avenues for research in 

the realm of information extraction from natural language text.  

 

Keywords: Entity-Relationship Diagram, Natural Language Processing, Named 

Entity Recognition, Information Extraction. 
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DOĞAL DİL İŞLEME VE MAKİNE ÖĞRENMESİ 

YAKLAŞIMIYLA VARLIK-İLİŞKİ DİYAGRAM ÜRETİMİ 

ÖZET 

Yazılım sistemleri giderek karmaşıklık kazandıkça, verimli ve doğru tasarım 

yöntemlerine olan ihtiyaç artan bir şekilde kritik hale gelmektedir. Varlık İlişki 

Diyagramları (ERD), sistem yapılarını ve bağımlılıklarını güçlü bir görsel diyagram 

ile sunarak yazılım mühendisliği ve dahi veri tabanı tasarımının temelini oluştururlar. 

Ancak, metinsel gereksinimlerden ERD'lerin el ile oluşturulması zaman alıcı ve 

zahmet gerektirir iken, tasarım yapan kişinin öznel eleştirisine bağlıdır. Bu zorluğun 

üstesinden gelmek için bu tez, doğal dil işleme (NLP) tekniklerinin kullanımını ve 

metinden diyagram ile ilgili gerekli olan bilgileri otomatik olarak çıkarmak ve ERD'ler 

oluşturmak için incelemektedir. Önerilen bu yaklaşım, doğal dil girdilerinden varlık, 

varlıkların özniteliklerini ve ilişkilerini ve kardinalitelerini otomatik olarak belirlemek 

için kural tabanlı tekniklerin, anlamsal analizin ve makine öğrenimi algoritmalarının 

birleşimini kullanır. Bu çalışma, dilbilimsel ve anlamsal analiz ile makine öğreniminin 

verimli bilgi çıkarımı için kullanılmasına ilişkin araştırmaları sunarak deneyler yapar 

ve bu deney sonuçlarını karşılaştırması sonucu önerilen yöntemin eksikliklerini ve 

güçlü yönlerini bildirir. Önerilen bu sistem, ERD oluşturma sürecini basitleştirmeyi ve 

bilgi çıkarımı ile ERD’lerin doğru ve kaliteli üretimini amaçlar. Ek olarak, bu 

değerlendirme, varlık, öznitelik ve ilişkilerin tespitinde sırasıyla 0.96, 0.93 ve 0.92 f1 

puanı almış, bileşen özelliklerinin çözümlenmesinde ise doğru diyagram varlıklarının 

özelliklerini bulmada sırasıyla 0.87, 0.84 ve 0.91 doğruluk oranını elde etmiştir. Elde 

edilen bu bulgular, metinden ERD çıkarma konusunda ilerlemeye katkı sağlayıp ve 

dahi çözümün sağlamlığını ve kullanılabilirliğini artırmak için gelecekteki 

araştırmalar için yönergeler ve çözümler önerir. NLP tekniklerinin ERD oluşturma ile 

birleştirilmesi ve yazılım geliştirme yaşam döngüsünü geliştirmenin potansiyelini 

vurgulayarak metinden bilgi çıkarma alanına da yeni araştırma olanakları sunar. 

 

Anahtar Kelimeler: Varlık-İlişki Diyagramı, Doğal Dil İşleme, Adlandırılmış Varlık 

Tanıma, Bilgi Çıkarımı. 
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CHAPTER 1  

1. INTRODUCTION 

Modeling plays a significant role in developing software systems at various 

stages of the development life cycle with different aims. In requirements engineering, 

the analysis models aim to represent the captured requirements given in natural 

language form from different perspectives, i.e., structural, behavioral. Analysis models 

use only the existing information, requirements, where the audiences who are the 

stakeholders are expected to communicate via the models to validate the requirements 

in terms of consistency, completeness, correctness, unambiguity. On the contrary, in 

architectural design activity where the target is the software development 

professionals, to satisfy the requirements the solution domain objects are modeled as 

interacting components. 

With a thorough analysis of the different points of view regarding the 

requirements, creating analysis models plays a crucial role. To effectively represent the 

overall structure, it is beneficial to employ a class diagram, which captures the 

relationships and attributes of different classes within the system. Additionally, 

dynamic models are essential for modeling system behaviors, highlighting the flow of 

information and interactions between various components. However, when it comes to 

representing the data requirements, the Enhanced Entity Relationship (EER) model 

stands out as the most suitable choice as a high-level conceptual data model. While 

different modeling methods exist in system modeling, it is important to note that in the 

absence of an object-oriented structures and models, the EER model remains 

consistently relevant for accurately representing the data components and their 

relationships. Therefore, considering the diverse modeling options available, the EER 

model consistently emerges as the foundation for a robust conceptual data model. 
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Despite the importance of EERD, the process of construction from text is still 

largely manual, which can be time-consuming. Existing approaches for generating 

EERD from text typically rely on either syntactic or semantic analysis. Although the 

manual based approach is restricted to specific understanding of input and hand-crafted 

rules, the solution method is based on natural language processing (NLP) to automate 

this task. 

The use of NLP techniques to extract information from unstructured text has 

gained significant attention in recent years. One of the key challenges in NLP is to 

retrieve information from text. The subject of our study is focusing on extracting 

relevant information to find out the relationship between entities and their attributes. 

Thus, this essential information leads to understanding and modeling complex systems’ 

data requirements to generate various diagrams. The actual problem comes from the 

need of domain specific knowledge when it comes to understanding related 

information. There are such NLP methods in information extraction, such common 

examples are text summarization, named entity recognition (NER), sentiment analysis, 

and topic modelling. However, those methods need to be utilized and build problem 

domain of our study. 

When it comes to extracting information in relation extraction for requirement 

analysis, there are several methods provided by NLP. Although the methods are 

focusing on generalized extracting relevant information from the text, that information 

could be used to utilize generation of different conceptual diagrams. The common 

approach when it comes to generation of diagram is the rule-based diagram generation. 

The information to be extracted is set on rules which have been defined and according 

to that information the diagrams have been created. The rule-based diagram generation 

approach can be categorized into two main categories: manual rules and automated 

techniques. In the manual approach, human experts define a set of explicit rules and 

guidelines to guide the diagram generation process. These rules are typically based on 

domain knowledge and expertise, allowing for customization, and fine-tuning of the 

generated diagrams. However, this approach can be time-consuming and subjective, as 

it heavily relies on human judgment and may lack scalability, yet the most common. 

On the other hand, automated techniques aim to generate diagrams automatically 

by leveraging algorithms, like machine learning (ML). These methods analyze the 

underlying data or input specifications and use predefined algorithms to infer the 

relationships and structures necessary for generating the diagram. Automated 
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approaches offer the advantage of scalability and consistency, as they can manage large 

datasets efficiently and consistently apply the generation rules. However, they may 

require extensive preprocessing and datasets to achieve accurate and reliable results. 

While automated based tool of (S. Btoush & M. Hammad, 2015) have been 

successful in experimental cases. However, this tool is often limited by lack of 

contextual understanding. Approach also requires a significant amount of domain-

specific knowledge. As such, with the development of NLP, recent researchers have 

focused on improving information extraction to overcome this issue. 

Moreover, ML techniques require annotated data, which there are no available 

labeled data on the field for this purpose. Therefore, in our proposed work have created 

its own dataset and its labeling system according to the syntactical features of the input 

text. NLP methods used throughout our study, such features like part of speech (POS) 

taggers, sentence segmentation, tokenizers, and NER to label the input data. 

Our study gathered its own dataset from textbooks and web sources. One of the 

modules has been responsible for generating its set by labeling entities, attributes, and 

relations with their synonyms. Another module is to prepare numerical vectors with 

each word’s syntactic attributes to feed custom NER. ML model used to create custom 

NER which provide with labeled tokens as if a token is an entity, attribute, or relation. 

In our study, we propose a novel approach to extract relations and automatically 

generate Entity Relationship Diagrams (ERD) from text that combines custom NER 

with syntactic features of sentences. Our approach leverages the strengths of both 

methods to overcome the limitations of existing approaches and produce more accurate 

and comprehensive ERDs. 

1.1 Problem Definition 

The problem addressed in our study is the extraction of corresponding 

relationships to build relational diagrams. Our study used that extracted information to 

generate EERD from data requirements given as natural language text in English. 

EERD are commonly used in producing software systems and database design to 

represent the relationships between entities and attributes in a system. The specific 

challenge addressed in this proposed thesis is how to accurately identify and label 

entities, attributes, and relationships from natural language text, and then use this 

information to generate a complete and accurate EERD.  
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To describe the system's domain problem, a problem statement is composed in 

the requirement statements which explain entities/tables, relations, and attributes with 

their specifications. Requirement statements do not have a standard format, thus any 

plain text file which describes requirement of components can be entered into the 

model. Dataset have been collected from textbooks, scholarly articles, and websites 

which are simply descriptive texts without annotations.  

1.2  Purpose of the System 

The purpose of this system is to automatically find relations between entities and 

extract EERD components from natural language text, with the goal of improving the 

systematic EERD creation in software engineering and database design. By leveraging 

techniques from NLP, including NER, part-of-speech (POS) tagging, and dependency 

parsing, the system aims to accurately identify and label entities, attributes, and 

relationships from text, and use extracted features to generate an EERD. The system 

will be designed to be scalable and adaptable to new domains. Ultimately, the system 

aims to streamline the EERD creation process and improve the accuracy and quality of 

the resulting diagrams. 

Several theories discussed various approaches and techniques used for this task, 

including rules and ML based approaches, and will highlight the potential benefits and 

challenges associated with each approach. The chapters of this thesis are organized to 

provide a comprehensive overview of the problem domain. Chapter 2 an overview of 

ERD is presented, establishing a solid foundation for the subsequent chapters. In 

Chapter 3, digs into a literature review, examining the merits and demerits of rule, 

semantic and ML based approaches in modeling EERD. The approach and 

implementation details of the proposed approach are discussed in Chapter 4. Chapter 5 

is dedicated to presenting the experimental results and engaging in an in-depth 

discussion of the findings. Finally, Chapter 6 concludes the thesis by summarizing the 

research findings, discussing limitations, and identifying potential areas for future 

research. In essence, this thesis offers an exploration of generating EERD from 

unstructured input text, aiming to contribute to the ongoing research in this field.  
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CHAPTER 2  

2. OVERVIEW OF ENTITY RELATIONSHIP DIAGRAMS 

A relational database is a type of DBMS that organizes and stores data in a 

structured manner using tables, where each table represents an entity or a concept in 

the real world. The foundation of a relational database is the concept of a relation, 

which refers to a set of related data organized into rows (also known as tuples) and 

columns (also known as attributes). These tables are interconnected through 

relationships, which define how the data in one table is related to the data in another. 

Relational databases have become a widely adopted solution for storing and managing 

data in various domains, ranging from business applications to scientific research. 

Their inherent structure, flexibility, and ability to manage complex relationships make 

them a valuable tool for efficiently organizing and accessing data in a structured 

manner. (Elmasri and Navathe 2016) 

EERD helps in designing the schema for a relational database and aids in the 

maintenance by providing a graphical representation of the data and its relationships. 

EERD is used by people such as database designers and developers to create a visual 

representation of the data model for a particular system. This representation helps them 

to identify the relationships between entities and to ensure that the database is designed 

to meet the specific needs of the organization. 

Components, ERD is a visual representation of entities and the relationships 

between them in a database. An entity in an ERD represents a real-world object or 

concept that has data attributes that can be stored in a database. For example, in a 

university database, entities may include students, courses, and professors. 

Relationships between entities in an ERD are depicted using lines, symbols, and 
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cardinality indicators that specify the number of instances of one entity that can be 

associated with another entity. (Elmasri and Navathe 2016) 

Overall, ERDs provide an effective tool for modeling complex relationships and 

designing effective database systems, helping designers identify data redundancies and 

inconsistencies and ensuring that databases are designed to meet specific 

organizational needs. This section introduces the fundamental concepts of databases, 

including their advantages and basic components. It also briefly presents an overview 

of ERD. 

2.1 Database Modelling 

The process of database modeling involves creating a conceptual design, which 

is crucial for the success of a database system. This conceptual design can be achieved 

through different methods such as ERDs or object modeling. ERD consists of entities, 

attributes, and relationships which are represented on a diagram using various shapes 

with different meanings. Object modeling, on the other hand, uses class diagrams and 

is commonly applied in software which is implemented in Unified Modeling Language 

(UML). Although there are different approaches to conceptual design, our study 

primarily emphasizes the use of ERDs. 

2.2 Entity-Relationship Diagrams 

The conceptual design of an ERD involves creating a high-level, abstract 

representation of the data entities and their relationships in a database system. It focuses 

on the overall structure of the database and the relationships between the data entities, 

without worrying about implementation details such as data types or storage 

mechanisms.  

The process of constructing an ERD is to define the requirements of the system. 

This involves identifying the entities and their attributes, as well as the relationships 

between them. The requirement analysist and system designers must collaborate 

closely with the stakeholders and end-users to gather information about the system, its 

goals, and its requirements. During this process, the analysist must consider factors 

such as data redundancy, data consistency, and data integrity and ensure that the system 

meets the specific needs of the organization. This step is time consuming and requires 



 

7 

high domain knowledge. Once the conceptual design is complete, the programmers can 

move on to the logical and physical design phases, which involve translating the 

conceptual design into a detailed data model and implementing the database system. 

(Elmasri and Navathe 2016) 

2.3 Components of Entity Relationship Diagram 

The ERD typically consists of three main components: entities, attributes, and 

relationships. Entities are represented as rectangles, with their attributes linked within 

the rectangle. Attributes are the specific characteristics or properties of an entity, and 

they are represented as ovals. Relationships are represented as lines connecting the 

entities via relations, and they indicate the nature of the connection between the entities. 

By using these components, designers can model the structure of a database and ensure 

that it accurately reflects the relationships and attributes of the entities involved. This 

section outlines the fundamental elements of ERDs. (Elmasri and Navathe 2016) 

2.3.1 Entity 

The ER model represents entities as the primary objects, which are real-world 

things with an independent existence. These entities can either be physical objects, such 

as a car or a house, or conceptual objects, such as a job or a course. 

 

Figure 2.1 Entity Shape 

Each entity has its own unique characteristics and can be distinguished from 

other entities. An entity is represented by a rectangle in an ERD as Figure 2.1. 

2.3.2 Weak Entity 

A weak entity is an entity in a database that cannot be uniquely identified by its 

own attributes alone. It depends on a related entity called a strong entity to give it 

meaning and context. A weak entity is always identified by a combination of its own 

attributes and the attributes of the related strong entity.  
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Figure 2.2 Weak Entity Shape 

For example, consider a database that stores information about bank accounts. A 

weak entity in this database might be a transaction, which depends on the related strong 

entity of an account to give it context. A transaction entity would have attributes such 

as date, time, and amount, but it would also have a foreign key that references the 

primary key of the account with which it is associated. This means that a transaction 

entity cannot exist without an associated account entity, and its primary key is a 

combination of its own attributes and the primary key of the associated account entity. 

Weak entities are often represented as Figure 2.2 by using a double rectangle. 

2.3.3 Attribute 

Attributes are characteristics or properties of an entity. An attribute is represented 

by an oval or ellipse in an ERD as Figure 2.3.  

 

Figure 2.3 Attribute Shape 

Examples of attributes for a customer entity could include customer ID, name, 

address, and phone number. Categorization of attributes in ERD as follows: 

• Key Attribute 

• Derived Attribute 

• Multi-valued Attribute 

• Composite Attribute 

2.3.4 Key Attribute 

A key attribute, also known as a candidate key, is an attribute or a set of attributes 

in a database table that can uniquely identify each record or row in the table. A key 
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attribute must be unique, meaning that no two records in the table can have the same 

value for the key attribute(s).  

 

Figure 2.4 Key Attribute Shape 

For example, in a table that stores information about customers, a unique 

identifier such as a customer identification number could be a key attribute. This would 

ensure that each record in the table can be uniquely identified by its customer 

identification number. Key attributes are important in database design as they are used 

to enforce data integrity and to ensure that each record in the table is unique. 

2.3.5 Derived Attributes 

In a relational database, a derived attribute is an attribute which has derived or 

calculated from using other attributes in database. A weak attribute is an attribute that 

cannot be uniquely identified using its own attributes alone. A weak attribute is always 

part of a composite key and depends on the presence of another entity to identify it 

uniquely. 

 

Figure 2.5 Derived Attribute Shape 

For example, consider a table that stores information about rooms in a hotel. The 

room number alone may not be sufficient to identify a unique room, as there could be 

multiple rooms with the same number in different buildings or on different floors. In 

this case, the floor number or building name would also be needed to uniquely identify 

the room. Therefore, the room number would be considered a weak attribute, as it 

depends on the presence of the building and floor number to identify it uniquely. For 

instance, of derived attribute, the entity “Customer” in this hotel has attributes like date 

of birth and age. The attribute “age” could be derived attribute which is calculated from 
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the attribute called “date of birth.” Derived attributes are often represented in an ERD 

by using a dashed oval or ellipse as Figure 2.5. 

2.3.6 Multi-Valued Attributes 

A multi-valued attribute is an attribute that can have multiple values for a single 

instance of an entity in a database. This means that a single entity can have multiple 

values for a specific attribute.  

 

Figure 2.6 Multi-Valued Attribute Shape 

For example, a person entity may have multiple phone numbers or email 

addresses associated with it. Multi-valued attributes are represented in an ERD by using 

a double oval or ellipse as Figure 2.6. 

2.3.7 Composite Attribute 

A composite attribute is an attribute in a database that is made up of multiple 

sub-attributes. A composite attribute can be broken down into smaller parts, each of 

which represents a separate piece of information about the entity being modeled.  

 

Figure 2.7 Composite Attribute Shape 

For example, consider a table that stores information about a person, where one 

of the attributes is "Full name." Full name can be broken down into smaller sub-

attributes such as first, middle, and last name. Each of these sub-attributes provides 

additional information about the person's address and can be used to query or 

manipulate the data more effectively. 
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2.3.8 Relationship 

In an ERD, a relation refers to the association or connection between two or more 

entities. It is represented as a line connecting the entities, and it indicates the 

relationship between them. The relationship cardinality can be one-to-one, one-to-

many, or many-to-many. 

 

Figure 2.8 Relationship Shape 

For example, consider a database that stores information about a school. The 

ERD for this database might include entities such as "students," "teachers," and 

"courses." A relation in this context could be the association between students and 

courses. Since a student can enroll in courses, and a course can have students, the 

relationship would be named “enroll.” A relationship is represented by a diamond 

shape in an ERD as Figure 2.8.  

2.3.9 Identifying Relationship 

An identifier relationship is a type of relationship in a database where a child 

entity's primary key is also part of the parent entity's primary key. Identifier 

relationships are commonly used in database design when there is a one-to-many 

relationship between two tables.  

 

Figure 2.9 Identifying Relationship Shape 

For example, consider a database with two entities: a “Customer” and an 

“Order.” Each order in the order table belongs to a single customer in the customer 

table. The customer's ID is used as the primary key in the customer table, and the order 
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table has its own primary key as well as a foreign key that references the customer's 

ID. In this case, the relationship between the two tables is an identifier relationship 

because the customer's ID is part of the order's primary key, represented as Figure 2.9. 

2.3.10 Cardinalities 

Cardinality defines the number of occurrences of one entity that are related to 

the number of occurrences of another entity. Cardinality is represented by notation on 

the relationship line as seen in Figure 2.10, such as one-to-one, one-to-many, or many-

to-many. 

 

Figure 2.10 Cardinality Ratio one-to-many, 𝐸1: 𝐸2 on Relation R 
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CHAPTER 3  

3. LITERATURE REVIEW 

Software systems are becoming increasingly complex and designing them is 

becoming more challenging than ever. Among the many techniques that have been 

developed to address this challenge is the use of EERD, which provides a visual 

representation of a system's structure and dependencies. To address this challenge, 

researchers have explored the use of NLP techniques to extract relationships from the 

text and generate varying diagrams. This literature review provides an overview of the 

approaches that have been proposed for this problem, including rule-based and ML-

based approaches, as well as the potential applications and challenges of relation 

extraction from text to generate diagrams.  

The studies which are focusing on generating several diagrams (e.g., Class, Use-

Case), are all in the field of information extraction from the text input. A variety of 

articles differ on how to extract the information. While some studies put assumptions 

and gives direction to the user of the system with specific input format, other 

researchers decided to use rule-based approach to automatically extract information by 

defining overall possible input patterns as rules.  

These input patterns might be quite complex and challenging by the nature of 

language. Studies are highlighting their way of information extraction techniques with 

varying NLP approaches; hence the studies are trying to extract information from text. 

For example, the sentence "There are lecturers who teach courses.". This 

seemingly simple sentence contains a wealth of information that can be automatically 

inferred by the reader. Through their knowledge of language and the world, the reader 

can deduce the existence of a relationship between the lecturer and the course, as well 

as the fact that the course is taught to students. However, in information extraction, 
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capturing such complex information requires a variety of techniques, including 

linguistic analysis for syntax and semantics rules for extraction, as well as heuristics 

for handling world knowledge. (Kashmira & Sumathipala, 2018) 

Data modeling involves identifying specific elements within user requirements, 

such as entities, attributes, and relationships, which are entered in textual form. NLP 

plays a crucial role in this process by identifying and extracting the nouns and other 

parts of speech (POS) tags necessary to determine these elements, including their 

attributes and cardinalities. NLP involves several steps, including morphological 

analysis, tokenization, POS tagging, chunking, and parsing, which are used to process 

user requirements written in natural language.  

In information extraction, identifying entities and their relationships from 

unstructured text is a key challenge. This task involves two sub-tasks: recognizing 

named entities and extracting relations between them. Early work used a sequential 

approach, with separate models for entity extraction and relation classification. 

However, in recent years, end-to-end systems have become more prevalent in 

evaluation. Current NERs are not fully compatible with extracting the entities that point 

this problem domain. According to the experiments of (Zhong & Chen, 2021), it is 

found that cross-sentence information is useful to improve identifying named entities 

in sentences. 

Some researchers have used NLP to generate diverse types of diagrams. These 

researchers have employed rule based, semantic based and ML-based approaches to 

achieve the desired outcomes. However, much of the research mostly focuses on the 

class diagram or the use case diagram. The following section provides a brief overview 

of previous research in this area.  

3.1 Rule-Based Approaches on Diagram Generation 

Numerous studies have explored the structural analysis of language for 

generating ERDs. Additionally, with the aid of NLP, there are two approaches for 

mapping natural language to conceptual design: rule-based and probability-based 

mapping. Each approach has its own advantages and disadvantages. 

Rule-based design store rules and heuristics in multiple knowledge bases. These 

tools utilize a parsing algorithm that extracts information from a grammar and lexicon 

that fulfills the tool's needs. During parsing, the sentence is analyzed based on the 
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syntactic rules and the lexicon. The parsing results are then passed on to the rules and 

heuristics, which establish a connection between linguistic and design knowledge. The 

rule-based approach for translating verbs and nouns into entities and relationships has 

limitations because it may not always be accurate to convert all verbs into relationships 

or all nouns into entities. To address this issue, researchers have turned to using the n-

gram model, which is a probabilistic language model that relies on the probability of a 

word in a document based on its previous (e.g., n-1) words. N-grams are commonly 

used in language modeling and can help to overcome the limitations of rule-based 

approaches. (Habib 2019) 

Study of (Habib 2019), is focused on the process flow with given Figure 3.1. 

below. The process starts with segmenting sentences. This is followed by tokenization, 

which produces words as outputs. POS tag had been assigned to each token to aid 

parsing step which is a morphological analysis and applied heuristic rules. 

 

Figure 3.1 Proposed Model of Habib Reference: Habib, M., Kasra. (2019). On the 

Automated Entity-Relationship and Schema Design by Natural Language Processing. 

The International Journal of Engineering and Science (IJES), 8(11), 42–48. 

doi:10.9790/1813-0811034248 

Chunking and parsing are applied to the input words, where multiple possible 

analyses are conducted. Parsing is the process of assigning a syntactic analysis to a 

string of words, using grammar to create a parsing tree. Finally, extracted information 

from the parsing tree which is used to create an ERD. The process flow of Habib is 

illustrated in Figure 3.1. 
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Figure 3.2 Parser tree of the sentence “X hit the ball.” Reference: Habib, M., Kasra. 

(2019). On the Automated Entity-Relationship and Schema Design by Natural 

Language Processing. The International Journal of Engineering and Science (IJES), 

8(11), 42–48. doi:10.9790/1813-0811034248 

The author defined the rules from parse tree of given unstructured-text input. As 

a conclusion of approaches, probabilistic based, and rule-based approach achieved 

91.3, 86.9 precision, and 89.0, 86.3 recall, respectively. The author claims that the rule-

based approaches are failing to map entities if the specific patterns have not been given 

to the system. (Habib 2019) 

The study of (Karaa et al. 2015) points out this problem, and states that those 

diversity of patterns is hard to deal with. They have produced the idea that using word 

dependencies from Stanford’s NLP library to increase the number of patterns that they 

can cover against the unexpected patterns with using semantic analysis. Study claims 

to have huge size of set of patterns against other studies and one patterns can discover 

more information like class names and attributes. However, Karaa’s system is lacking 

from redundant information problem. For instance, if the input contains synonyms of 

two same entity (e.g., Client and Customer), the system will not be able to deal with it 

and creates 2 separate entities. The authors are aware of this problem and claim that to 

be expanded into semantic information might solve this problem and improve output 

of the overall system. 

Another study (S. Btoush & M. Hammad, 2015), had focused on generation of 

ERD from text, had define specific heuristic rules for extracting entity, attribute, and 

relation with using structural analysis. However, study has not covered weak, derived 

attributes, and cardinalities of relations. As a conclusion, the article states that, the word 

dependencies need to be considered to extract components of ERD. 
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Figure 3.3 Approach of S. Btoush Reference: S. Btoush, E., & M. Hammad, M. 

(2015). Generating ER diagrams from requirement specifications based on Natural 

Language Processing. International Journal of Database Theory and Application, 

8(2), 61–70. doi:10.14257/ijdta.2015.8.2.07  

One of the latest studies has been done by (Vidya Sagar & Abirami, 2014), by 

clarifying problem statements with defining criteria, to minimize unexpected inputs 

from users in the application. The study achieves extracting information including 

preprocess steps like extracting grammatical occurrences and extracting elements from 

sentence (defining rules for subject and object extraction, identifying rules to detect 

entities, attributes, and relationships). It also focused on syntactic feature extraction 

with the use of POS tags, design of elements by dependency analyzer as seen in Figure 

3.4. In addition to that focused on relation types like aggregation, composition, and 

generalization. As a conclusion of this work states that this approach is also needy for 

semantic information in conceptual model.  

 

Figure 3.4 ERD Modeling Generation Framework Reference: Sagar, V. B. R. V., & 

Abirami, S. (2014). Conceptual modeling of natural language functional requirements. 

Journal of Systems and Software, 88, 25–41. doi:10.1016/j.jss.2013.08.036 
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According to the recent study (Ahmed, Ahsan, Qamar, & Butt, 2021), has 

observed that there is a lack of research aimed at automating the generation of a Class 

diagram from an initial set of requirements in various research repositories. The article 

created pre-defined rules to extract entities using sentence segmentation, tokenization, 

and POS tagging. Study removed redundant classes by defining dictionary which 

includes irrelevant glossary words. The algorithm structure described as C: ϵ [{C, A, 

O, R}] where C is the candidate class, A is the attribute, o is the operation and r are the 

relationship. Relationships are considered and extracted with description as R: R: ϵ 

[{rT, Cr, Rc}], where rT is type of relationship, Cr is cardinality and Rc is related Class. 

3.2 Semantic-Based Approaches 

Recent development in NLP, in 2019 March, the authors (Utama & Jang 2019), 

have decided to use natural language tools to construct class diagram. The study has 

been aided by the NLP library called Spacy. Article achieved the solution by using 

preprocessing methods to normalize input data then combined semantic analysis with 

dependency relation. Approach is to define rules by using more relevant parameters 

(word dependencies) which previous studies have missed. Articles claim to achieve 

higher precision in their system than the other rule-based approaches. 

 

Figure 3.5 Block diagram of large-scale Object-Based Language Interactor Reference: 

Morgan, R., & Garigl, R. (1995). Natural Language Processing with LOLITA. 

Endeavour, 19(1), 11–15. doi:10.1016/0160-9327(95)98888-m  
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The system which has been proposed by (Morgan & Garigl, 1995), -Large scale 

Object-based Language Interactor, Translator and Analyzer (LOLITA)- is able to 

generate object model from natural language specification as seen the Figure 3.6. 

Unfortunately, the approach of the author is domain specific and input language is 

assumed in assertive sentences with the form of Subject, Verb and Object. Moreover, 

the study uses domain-specific databases for labeling. In addition to grammatical 

analysis, the study also focuses on the meaning of the text and creating semantic 

network representation to create semantic networks that allow study to construct graph. 

According to the author of this article, the system lacks uniformity of population 

density, therefore it is not robust and needs more domain specific network information. 

 

Figure 3.6 Illustration of Semantic Net Reference: Morgan, R., & Garigl, R. (1995). 

Natural Language Processing with LOLITA. Endeavour, 19(1), 11–15. 

doi:10.1016/0160-9327(95)98888-m  

The article (Kchaou, Bouassida, & Ben-Abdallah, 2017) claims to define 

patterns using text similarity technique. The authors use term frequency-inverse 

document frequency (TF-IDF) and latent semantic indexing (LSI). TF-IDF is a 

numerical statistic that reflects how important a word is to a document in a collection 

or corpus. The higher the TF-IDF score for a word in a document, the more relevant 

that word is to the document. In other words, a high TF-IDF score indicates that a word 

is both frequent in the document and rare in the corpus, which means that it is a suitable 

candidate for identifying the main topics or themes of the document. 

LSI was founded to identify patterns in the relationships between the terms and 

concepts from collection of text. If the words are used in the same context, they are 

highly probable to be in similar meaning. It uses singular value decomposition (SVD) 

technique to identify patterns. Overall, the approach is to find similarity of input 
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documentations with overall the datasets and produce output. However, they lack large 

evaluation and datasets and perform bad on unseen data. The study defined a set of 

input rules to eliminate redundancy. As a result, the usage of LSI out-performs the TF-

IDF technique with following F-measure scores, 0.77, 0.40. 

One of the articles (Omar, Hanna, & Mc Kevitt, 2006), had proposed use of 

semantic analysis to automate generation of ER models from natural language. Author 

states processes as follows: First, parsing the English sentences and obtain their POS 

tags, a parser such as Memory-Based Shallow Parser (MBSP) has used. The output 

produced by the parser is then fed into a semantic analyzer for semantic analysis. 

Afterward, the parsed text is passed through ER-Converter to identify appropriate data 

modeling elements. 

 

Figure 3.7 Model of ER-Converter Tool Reference: Omar, N., Hanna, P., & Mc 

Kevitt, P. (2006). Semantic Analysis in the Automation of ER Modelling Through 

Natural Language Processing. 2006 International Conference on Computing &amp; 

Informatics. doi:10.1109/icoci.2006.5276559  

There are several steps involved in achieving the desired ER model from the 

natural language input, including POS tagging, semantic role assignment, syntactic and 

semantic heuristics application, and human intervention in (Omar, Hanna, & Mc 

Kevitt, 2006). For example, the output of semantic analyzer for the following sentence: 
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The 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑟(𝐴𝐺𝐸𝑁𝑇)sends an 𝑜𝑟𝑑𝑒𝑟(𝑇𝐻𝐸𝑀𝐸) to the 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟. (𝐺𝑂𝐴𝐿). The 

author decided to use semantic tags to write corresponding heuristic rules. After 

assigning these semantic and syntactic labels with weights, the candidate entities and 

attributes are served to the user to investigate and approve. 

Table 3.1 Semantic Roles and Their Definitions Reference: Omar, N., Hanna, P., & 

Mc Kevitt, P. (2006). Semantic Analysis in the Automation of ER Modelling Through 

Natural Language Processing. 2006 International Conference on Computing &amp; 

Informatics. doi:10.1109/icoci.2006.5276559  

Semantic Role Definition 

AGENT 
The volitional causer of an 

event 

THEME 
The participant most directly 

affected by event 

… 

RESULT The product of an event 

GOAL 
The destination of an object of a 

transfer event 

Finally, the attributes are attached to their corresponding entities, entities are 

attached to their corresponding relationships, and entities are attached to their 

corresponding cardinality, resulting in the final ER model. (Omar, Hanna, & Mc Kevitt, 

2006) 

3.3 Machine-Learning Approach 

The study (Kashmira & Sumathipala, 2018), which has been published on 2018, 

proposed approach includes a model that automatically generates an ERD while 

minimizing user intervention. This model addresses issues such as incomplete 

information and redundancies in requirement specifications. It consists of three main 

modules: the Preprocessing Module, ML Module, and ERD Modeling Module. 
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Figure 3.8 Machine Learning Model of Kashmira Reference: Kashmira, P. G., & 

Sumathipala, S. (2018). Generating Entity Relationship Diagram from Requirement 

Specification Based on NLP. 2018 3rd International Conference on Information 

Technology Research (ICITR). doi:10.1109/icitr.2018.8736146  

Pre-processing module is responsible to segment the sentences and convert plural 

nouns to singular to satisfy standard general rule to identify entity. Module of machine-

learning is responsible to find entities, relationships, and attributes with supervised-

learning approach. When designing an ERD, the designer typically uses world 

knowledge to decide which attributes are related to specific entities. To tackle this 

challenge, the proposed model employs ontology and web mining techniques to 

identify and filter out the relevant attributes from extracted entities. Figure 3.9 

illustrates the output of study, words with green background are labeled as “entity,” 

pinks are “attribute” and yellows are “sub-classes.” The study tried several ML 

algorithms like random forest, naïve bayes, decision table, and sequential minimal 

optimization. However, the study has not fully finished, it cannot find relationship 

types, cardinalities, and other component specifications for ERD. 

 

Figure 3.9 Annotated Data output of Kashmira Reference: Kashmira, P. G., & 

Sumathipala, S. (2018). Generating Entity Relationship Diagram from Requirement 

Specification Based on NLP. 2018 3rd International Conference on Information 

Technology Research (ICITR). doi:10.1109/icitr.2018.8736146  
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The proposed model of the (Ghosh, Mukherjee, Chakraborty, & Bashar, 2018), 

has focused on generating ERD, with usage of pre-defined database and support vector 

machine (SVM) classifier to identify ERD components. It compares found “NOUN” 

phrases with its database, then states to use SVM classifier to identify components and 

expand its database with synonym of found entities. After that fetches all adjectives 

and denotes that token as attributes of entity within same sentence. However, the 

system works on assertive sentences (i.e., subject + verb + object) but cannot deal with 

complex sentences. 

 

Figure 3.10 Proposed Model Reference: Ghosh, S., & Bashar, R. (2018). Automated 

Generation of E-R Diagram from a Given Text in Natural Language. International 

Conference on Machine Learning and Data Engineering (iCMLDE). 

doi:10.1109/icmlde.2018.00026 

Current NER taggers label words in a text that are the names of specific things 

such as people or company names. However, they do not correctly label words as 

entities in the ERD. To address this issue, a custom NER module has been implemented 

to identify certain features of the ERD, such as entities and attributes. Study has 

annotated as entity, sub-entity, attributes of dataset which contain 50 documents. 

Overall, the result of the study only labels entity, sub-entity-and attributes by using ML 

algorithm and states ERD modelling module to be implemented as future works. 

However, the author does not provide accuracy and F1-scores.  
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CHAPTER 4  

4. APPROACH 

This section provides a detailed introduction to the design and implementation of 

the proposed system. The design of the system refers to the plan for the system, while 

the implementation refers to the steps taken to execute that plan.  

NLP encompasses a wide range of functionalities related to human language, 

including the identification of semantic and grammatical patterns in text using a 

combination of general rules and ML models. Since our study lacks an annotated 

dataset, it relies on self-labeling of document input using a set of general rules 

established by previous articles. However, these rules do not cover all grammar 

combinations and patterns, and thus, the custom NER extraction module is utilized to 

identify hidden features and patterns in the input text.  

To achieve this, NLP techniques from widely used libraries like Spacy and NLTK 

are employed to analyze the text and link it to its linguistic information. The proposed 

system, i.e., the design, outlines the process to be followed, which will be presented in 

the following part. 

4.1 Proposed Design 

The proposed system consists of five different modules. Figure 4.1 illustrates the 

process line of the system module. The first module is responsible for receiving the 

input document and utilizing pre-processing techniques to extract linguistic features 

from each sentence in the document. These linguistic features are then linked to each 

token/word, also forwarded to wordnet to obtain synonyms with same POS tags to 

create its own dataset.  
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Figure 4.1 Proposed System Architecture 

The second module is responsible for creating a custom NER. Our study used 

NLP framework called Spacy. Spacy provides a base environment to build custom 

models. According to (Jiang, Banchs, & Li, 2016) , Spacy outperforms the common 

other frameworks like “LingPipe” and “NLTK” in NER. This module creates vectors 

by using word dependencies and POS tags. The ML model has been fed by the 

information extracted from the vector created in the pre-processing module. In other 

words, this module generates custom NER; retrieves candidate components and links 

them with corresponding labels which are “Entity,” “Attribute,” and “Relation,” 

alongside the vectorized sentences.  

The third module aims to find and extract specifications of each component, by 

assigning component features. This module takes the output labels to determine 

specific attribute information, such as whether an attribute is a primary key, has multi-

valued information, or whether an entity is weak. Model tries to address the issue of 

word redundancy, which was a challenge in the (Karaa et al. 2015). By eliminating 

redundancy to detect components, the proposed system will provide a more accurate to 

extract entities. 

The fourth module of the proposed system is responsible for assigning component 

features to GraphViz nodes. This module takes the output labels which are tagged by 

component feature extraction module, to assign component shapes and styles to 
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generate ERD. In the following subsections, this study will provide a detailed 

explanation of the modules and features used in the proposed system. 

4.1.1 Dataset Collection 

The dataset used in this study serves as a foundational resource for training and 

evaluating the Named Entity Recognition (NER) model focused on extracting 

components of ERDs from unstructured text. The dataset, consisting of 105 documents 

with absence of explicit labeling. The dataset was meticulously compiled from a 

diverse range of sources, primarily ERD texts of authoritative database textbooks and 

reputable online resources. Given the nature of the dataset, our approach involves 

transforming this unlabeled text into a labeled format. This process entails assigning 

approximate labels to each instance of an ERD component within the text by using 

general heuristic rules. The evaluation set consists exclusively of extracted from 

authoritative database textbooks and obtained ground-truth labels for this evaluation 

set, we meticulously extracted information from solution figures provided within the 

textbooks. The components recognized by the NER model are categorized into distinct 

features, each capturing important attributes of the components. Entities are divided 

into “Normal” and “Weak”. Attributes are categorized into “Normal”, ”Key”, 

”Derived” and ”Multi-valued”. Relation component has divided into “Normal”, 

“Identifier” and “Cardinality”. In conclusion, the dataset collection process involves 

combination of information from authoritative database textbooks and online 

resources to construct a diverse and extensive dataset of unlabeled requirement 

descriptions. 

The evaluation set had been extracted from solution figures to have a robust 

dataset that serves as the foundation for evaluation of system.  

An example of collected dataset documentation is “ Employee contains name, 

address, salary, sex, B_date, ssn. Ssn is a primary attribute. Each Department has a 

name, unique number, location, and Number_Of_Employees and particular one 

Employee who manages the department. Department may have several locations. 

Number_of_employees is a weak attribute. The start_date is recorded in manages 

relation. Many Employees works for one Department. An Employee can supervise 

many Employees. A Department controls many numbers of Projects which many 

employees can work on. Work on relation stores number_of_hours attribute. Both 
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participants are determined to be total. An Employee dependens of many Dependent 

entity. Dependents of is identifier relation for the Dependent entity which is a weak 

entity. Dependent entity contains sex, birth_date, relationship, and name.” 

4.2 Pre-Processing Module 

The pre-processing module is a crucial part of the proposed system and serves to 

extract various linguistic features from text input. The features used in this module 

illustrated on Figure 4.2, are derived from the Spacy and NLTK library as follows:  

1. Sentence segmentation,  

2. Word correction (optional),  

3. Tokenization 

4. Chunking 

a. POS Tagging 

5. Wordnet Synonym Extraction 

6. Word Dependency 

 Example documentation is going to be used while explaining each process as 

follows: “Student has name, surname, unique id, and multiple addresses. Students take 

many courses. Each course has a unique number, name, and instructor name. A course 

can be given by an instructor. Each instructor has a unique id, name and given course 

information. An instructor can give many Courses.” 

 

Figure 4.2 Pre-processing Module 
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4.2.1 Sentence Segmentation 

Sentence segmentation is the process of splitting a text document into individual 

sentences. This is important because most NLP tasks require sentence-level input. The 

most common way to perform sentence segmentation is to split the text by punctuation 

marks. However, this can be tricky when dealing with abbreviations, numbers, and 

other exceptional cases. Spacy has been employed to manage such cases. The input 

document is segmented into individual sentences. For example, the given 

documentation in proposed design can be segmented into the following sentences:  

• Student has name, surname, unique id, and multiple addresses.  

• Students take many courses.  

• Each course has unique number, name, and instructor name.  

• A course can be given by an instructor.  

• Each instructor has unique id, name and given course information.  

• An instructor can give many Courses. 

4.2.2 Word Correction (Optional) 

Word correction is an optional step that involves correcting common spelling and 

grammatical errors in the text. This step can improve the accuracy of downstream NLP 

tasks. Word correction can be done using various techniques like dictionary-based 

correction, rule-based correction, or ML-based correction. 

4.2.3 Tokenization 

Tokenization is the process of separating a phrase into words, also known as 

tokens. This is done by splitting the sentence based on spaces, punctuation, and other 

delimiters. Tokenization is important because most NLP tasks operate on individual 

words, and not on entire sentences. Example of application on first sentence could be 

tokenized into the following words: 

• Student 

• has 

• name 

• surname 

• unique 
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• id, 

• and 

• multiple 

• addresses. 

Spacy had struggled to tokenize and label the word which indicates identification 

number (id). Those inputs might be like: “student_id, course-id, couseID, …,” which 

the spacy could not understand those tokens. Therefore, the system looked for prefixes 

and postfix of words which contain the term in them. However, spacy also stuck to 

tokenize the term “id,” it assumed the term is 2 individual tokens and give output as 

“i” and “d”. System investigated these tokens and merged them as “id.” 

4.2.4 Chunking 

Chunking is the process of grouping individual words together into meaningful 

phrases or "chunks". This is done based on grammatical rules and syntactic structures 

of the language as “NOUN,” “VERB,” etc. ... 

4.2.5 Part-Of-Speech Tagging 

POS tagging is the process of assigning a grammatical label to tokenized 

sentences, such as noun, adjective, or verb. POS tagging is important for many NLP 

tasks, like NER, sentiment analysis, and text classification. After tokenization, spaCy 

can label and parse a given document by universal POS tag set as seen on Table 4.1. 

Table 4.1 Universal Part-of-Speech Tags Reference: http://spacy.io/linguistic-features 

Name Abbreviation Example 

Adposition ADP In, to, during… 

Adverb ADV Very, well, exactly, up, down, when, 

where, how, never… 

Auxiliary AUX Has, was, should, must, … 

Coord. Conjunction CCONJ And, or but 

Determiner DET A, an, the, this… 

… 

Noun NOUN Girl, tree, beauty, decision… 

Numeral NUM 0,1,2,3,4, … 

Pronoun PRON I, you, he, myself, mine, everybody, … 

Proper Noun PROPN Mary, John, London… 

Verb VERB Run, eat, runs, ate, running, eating… 
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The trained components include binary data that is generated from showing the 

system an adequate number of examples, allowing the software to make generalized 

predictions across the language. For example, the first sentence can be POS tagged as 

follows:  

• Student (NOUN)  

• has (VERB)  

• name (NOUN)  

• surname (NOUN)  

• unique (ADJ)  

• id (NOUN)  

• and (CCONJ)  

• multiple (ADJ)  

• addresses (NOUN) 

4.2.6 Wordnet Synonym Extraction 

WordNet is a lexical database that groups English words into sets of synonyms, 

also known as synsets. This step involves using WordNet to extract synonyms of words 

found in the text. This can help to reduce word redundancy and improve the accuracy 

of downstream NLP tasks. This module obtains entities, attributes, and relations then 

stores the synonyms which are with same POS Tags from wordnet. For example, 

synonyms for the entity "Student" can include "learner", "pupil", and "scholar". 

4.2.7 Word Dependency 

Word dependency is the relationship between words in a sentence based on their 

syntactic and semantic roles. This step involves analyzing the dependency relationships 

among the words in the text to extract more information about the structure and 

meaning of the tokens. The table of dependency tags which has been published by the 

spacy is as follow in Table 4.2. 
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Table 4.2 Spacy Dependency Labels Reference: https://spacy.io/linguistic-features 

Label Description 

ROOT Root 

ADVMOD Adverbial Modifier 

AMOD Adjectival Modifier 

AUX Auxiliary 

AUXPASS Auxiliary (passive) 

… 

CSUBJ Clausal Subject 

DOBJ Direct Object 

NSUBJPASS Nominal Subject (Passive) 

NUMMOD Numeric Modifier 

POBJ Object of Preposition 

The dependencies between the words in the text are identified according to the 

table above. For example, in Figure 4.3, "A course can be given by an instructor.", the 

word "course" is dependent on the word "given", and the word "Instructor" is 

dependent on the word "by". Therefore, it is possible to find out the tokens which are 

related to subjects and objects of the sentence according to dependencies between root 

word which is “given.” 

 

Figure 4.3 Dependency Output of Given Sentence 

In addition to that, Spacy provides illustration of word dependency hierarchy in 

tree representation. Structure is finds child of root word of the sentence and creates 

tree as shown in Figure 4.4. This would help us to observe relations in tokens. The 

dependency tree illustration of the sentence “A course which has been given by the 

instructor, has a name.” as the follows: 



 

33 

 

Figure 4.4 Example Dependency Tree 

The dependency of the sentence is the word “has” and leads to extract relation 

and attribute of entity “Course.” If the root verb is stating subject ownership of the 

word (has, have, contain, include, …), the right sub-tree is responsible for finding 

attributes. If the containing component is an entity, it basically an indication of 

ownership relation. For example, “Department has Employees.” The entities are 

“Department” and “Employee” while the root dependency is “has.” Therefore, “has-a” 

relation identifies entity. The module called specification resolver will investigate 

individual found entities, to find whether that has-a relation identifies the entity. The 

root of the left sub-tree is the word  ”Course” which indicates entity with dependency 

subject, so if its child node represents action so that tree is indicating relation. 

In this example Course is “entity,” and the token “name” is attribute of “Course.” 

On the left sub-tree with the root “Course” will be investigated and the relation verb 

token is found “Given” as relation. In addition to that the right sub-tree contains another 

“NOUN” token “Instructor” which has the dependency label as “object,” indicates the 

relation refers to its root noun phrase which is “Course.” Therefore, each sub-tree will 

be investigated separately and considered as a separate tree whether to find components 

like “Entity,” “Attribute,” or “Relation.” Wordnet had been used to extract synonyms 

of found candidate components to reduce redundant information as much as possible 

which to be used in custom NER and specification resolver module. 

As a conclusion of this module, the sentences could be corrected to reduce errors 

that can be caused from user inputs. Then the splitting sentences in each document 

would help to investigate and extract tokens more accurately. The Spacy provides 

sentence segmentation, tokenization, chunking, POS tagging and word dependencies. 

In addition to that, proposed approach to use WordNet-Synonyms to detect possible 

entities or components. 
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4.3 Custom Named Entity Extraction Module 

In the custom NER module of our proposed system, applies advanced techniques 

to enhance the extraction and labeling of key information from the input text. This 

module plays a crucial role in leveraging the power of ML algorithms to improve the 

accuracy and efficiency of the overall system. The section will provide a detailed 

explanation of each process. Figure 4.5 illustrates the processes as follows: 

1. Candidate Component Extraction 

2. Dependency Extraction 

3. Candidate Extraction (Entity, Attribute, Relation) 

4. Vectorization 

5. Custom Named Entity Recognizer 

The module consists of several interconnected processes, starting with the 

extraction of dependency information, followed by the identification of candidate 

labels based on predefined rules. Subsequently, the label data is vectorized to transform 

it into labels for ML.  

Finally, the processed data is fed into a custom NER module, which further 

refines the output by recognizing and categorizing specific entities within the text as 

“Entity,” “Attribute,” and “Relation.” Through the integration of these processes, 

Custom Named Entity Extraction Module empowers the system to capture related 

components from the complex linguistic structures present in the input data. 

 

Figure 4.5 Custom Named Entity Extraction Module 
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4.3.1 Dependency Extraction 

To achieve the desired labeling, our study utilized the capabilities of the Spacy 

library. With integration of Spacy, the input document can be parsed and tagged with 

relevant information. This is where the trained pipeline and its statistical models 

become instrumental. In addition to that, enabling Spacy to make accurate predictions 

regarding the appropriate tags or labels within the given context.  

The trained components within Spacy comprise binary data that is generated 

through examples and enabling the system to make generalized predictions across the 

language. For instance, in English, it is highly probable that a word following the token 

"the" would be classified as a noun. As an illustration of the output generated by the 

Spacy pipeline, consider the following example provided in documentation of spacy as 

examined in Table 4.3. 

Table 4.3 Spacy Token Features 

The input sentence is considered in 8 different topics: 

• TEXT: The original word text. 

• LEMMA: The base form of the word. 

• POS: The simple part-of-speech tag. 

• TAG: The detailed part-of-speech tag. 

• DEP: Syntactic dependency, i.e., the relation between tokens. 

• SHAPE: The word shape – capitalization, punctuation, digits. 

TEXT LEMMA POS TAG DEP SHAPE ALPHA STOP 

Apple Apple PROPN NNP NSUBJ Xxxxx True False 

is Be AUX VBZ AUX Xx True True 

looking Look VERB VBG ROOT Xxxx True False 

at At ADP IN PREP Xx True True 

buying Buy VERB VBG PCOMP Xxxx True False 

U.K. u.k. PROPN NNP COMPOUND X.X. False False 

startup Startup NOUN NN DOBJ Xxxx True False 

for For ADP IN PREP Xxx True True 

$ $ SYM $ QUANTMOD $ False False 

1 1 NUM CD COMPOUND D False False 

billion billion NUM CD POBJ Xxxx True False 
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• ISALPHA: Does the token consist of alphabetic characters. 

• STOP: Is the token part of a stop list, i.e., the most frequently used words of the 

language (“Linguistic Features · spaCy Usage Documentation,” n.d.) 

4.3.2 Candidate Component Extraction 

This step involves applying general rules to extract candidate components, like 

entities and attributes, from the text. For example, in the sentence "Student has name, 

surname, unique id, and multiple addresses", the candidate entity would be "Student" 

and the attributes would be "name", "surname", "unique id", and "multiple addresses". 

These rules can be based on linguistic patterns, regular expressions, or domain-specific 

knowledge. The idea of manual rules had been applied to extract candidates with 

generalized terms.  

Root word had been focused and categorized into 2 different topics to determine 

if corresponding dependency tree is defining a specification or relation. If it is 

representing relation then find the subject and object by looking at left and right subtree 

of root word, with help of dependency tags like “nsubj”,” csubj,” “iobj,” “obj.” Tokens 

examined on the left and right subtree if root is standing for any other 

identifier/determining subtrees or relations. 

If root verb with lemma is in “have, contain, include, store”, algorithm finds for 

tokens with “NOUN”, “PROPN”, or “ADJ” based pos tags, to determine object and 

subject in addition to the dependency tags. Some noun phrases could consist of more 

than one token, which is why compound and modifier tokens also though and noun 

phrases captured and merged for instance the noun “Care Centre.” Those tokens have 

to be merged into 1 token and may represent entity, and attribute. 

The found subjects tokens examined as whether they have been in other 

documents as creating relationships while iterating to have further look to identify that 

noun and object token is representing “Attribute” or “Entity.” If they are a sentence 

that specifies attribute information of found token, it is highly probable that token is an 

entity. Otherwise, it is highly probable that component is attribute. In addition to that, 

dependency also provides object, subject relation, therefore validating to make sure to 

have correct objects/nouns, subject/nouns, adjectives on right and left sub-tree. Tokens 

found shall has the dependency as subject, object. The information of candidate 

component had been expanded by look-up set from generated synonym dataset to 
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determine possible candidate entities, attributes of relation with the same POS tag. 

(Chen, 1983) 

NLTK library is employed to find corresponding tokens, start, and end indexes. 

After that the components found labeled as “Entity,” “Attribute,” and “Relation,” with 

next to their indexes. Let �̂� denote list of sequence with position features: 

�̂� =  (𝑤𝑖, < 𝑒𝑛𝑡𝑖𝑡𝑦, 𝑐𝑠𝑡𝑎𝑟𝑡, 𝑐𝑒𝑛𝑑 >), … , (𝑤𝑗, < 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝑐𝑠𝑡𝑎𝑟𝑡, 𝑐𝑒𝑛𝑑 >

), … , (𝑤𝑧, < 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑐𝑠𝑡𝑎𝑟𝑡, 𝑐𝑒𝑛𝑑, >), …  
(4,1) 

Specifically, given an input sentence X and found components C -structured list-

, as: 𝐶 = (𝑤𝑖 , 𝑆), where 𝑤𝑖 is token to be tagged, S is the component spans, where  𝑆 =

 (𝑡𝑎𝑔, 𝑐𝑖, 𝑐𝑓), where tag is “entity”, “attribute”, or “relation” and  𝑐𝑖, 𝑐𝑓 is position 

markers , which has inserted into the input sentence after extraction of component.  

4.3.3 Vectorization 

Vectorization is the process of representing words or phrases as numerical 

vectors that can be used as input to ML algorithms. This step involves converting the 

tokens, entities, attributes, and relations extracted from the text into numerical vectors. 

This is important because most ML algorithms require numerical input. POS, and 

dependency tags have merged into each individual token before converting sentence 

into vector. Vectorization has assigned one of the components of Spacy called 

Tok2Vec. 

Approach is to feed generated vectors into custom NER to specialize domain of 

our study. Moreover, ML model in custom NER also considers surrounding context of 

given token by using Bi-directional Long-Short-Term-Memory Network (LSTM), 

therefore it may give an insight about semantic relationships even between tokens in 

different sentences. This allows the model to capture semantic and syntactic 

relationship between words/tokens. Custom NER requires vectorized sentences which 

to be explained in the following section.  

4.3.4 Custom Named Entity Recognizer 

Although convolutional neural networks can deal with the varying input sizes, 

fixing the input size in natural language might cause to lose essential information. The 
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tokens are passing information to further ones that creates repeated action. Therefore, 

Recurrent Neural Network (RNN) approaches shall be applied in custom NER. 

Custom NER, tailored to the requirements of our problem definition. Default 

NER by Spacy and other libraries offer a range of predefined labels as seen in Figure 

4.6, tags like “PERSON,” “LOCATION,” “TIME,” … but these labels do not cover 

required components for the problem domain.  

 

Figure 4.6 Default Named Entity Recognizer output of SpaCy 

On the other hand, this approach enables us to precisely capture the specific 

elements that are integral to constructing an ERD, allowing us to gain deeper insights 

into the underlying structure of the given text. Custom NER module allows tailing the 

tagging process to align with the distinctive requirements of problem domain with 

semantic and structural aspects.  

To feed the custom NER model converting tokens into flattened vectors is 

required. This study used Multi Hash Embedded Vector which was generated by 

Tok2Vec. Embedding table of multi hash embedded vector contains orthographic 

features like normalized form, prefix, suffix, and shape of each token. In order to avoid 

collusion in hash table, the spacy uses multi hash tables. According to research using 

dependency of tokens, POS tags, contributes NER systems. Therefore, rather than 

using basic NER structure in Spacy which uses “NORM,” “ PREFIX,” “SUFFIX,” and 

“SHAPE. Our study also experimented several other features: “POS”, ”TAG”, “DEP”, 

“ENT_TYPE”, “ ENT_IOB”, where “POS” is simple POS tags, “TAG” is extended 

POS tags, “DEP” is dependency labels, “ENT_TYPE” is token’s entity label, 

“ENT_IOB” is inside-outside-begging (IOB) tags to detect name phrases. According 

to experimental results, the best model achieved when the model features are “NORM,” 

“PREFIX,” “SUFFIX,” “SHAPE,” “POS,” and “DEP.” 

The NER components are a transition-based parser (TBP) model. TBP is an 

approach used in structured prediction, what the process of predicting the structure is 

transformed into a sequence of state transitions as the type of NER. 
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• Toc2vec: Responsible to map each token into a vector for each batch. 

• Lower Network: Construct token feature pair as a vector for each batch. (Token, 

Feature) 

• Upper Network: State representation | Prediction Scores (“Model Architectures · 

spaCy API Documentation,” n.d.)   

Custom NER computes representation of each token in one row and creates 

sentence matrix. Then gets sequence of word vectors which has derived from 

embedding step. After that, module reduces number of vectors and classifies the token 

label to decide whether the token shall classified as “Entity,” “Attribute,” or “Relation.” 

The problem is to solve the input size problem because each size of sentence might be 

different than each other. The previous states must be observed to decide annotations. 

Therefore, to deal with sequential data, rather than using feed-forward neural network, 

RNN cells shall be used in our study domain. 

 

Figure 4.7 Recurrent Neural Network Cell Structure 

Figure 4.7 illustrates the basic structure of RNN cells. Initial step which has been 

taken is the transforming words to machine readable vectors, then processed a sequence 

of vectors one by one while processing it passes the previous head state to the next step 

of the sequence in hidden state access to neural networks of memory. Figure 4.8 

illustrates the RNN structure in NER. Cells hold information on previous data that the 

network has seen before. 



 

40 

 

Figure 4.8 Example Usage of RNN in NER Reference: 

https://zhoubeiqi.medium.com/named-entity-recognition-ner-using-keras-lstm-spacy-

da3ea63d24c5 

Although traditional RNN models in NLP tasks achieve promising results, are 

not fully capable of identifying all the named entities in long-term dependencies. RNN 

cells stores the information for current features as well neighboring features for 

prediction. It is particularly useful to find and detect short distance features, but when 

it comes to predicting features with long distance it fails because of the conducting 

irrelevant information from previous states. Architecture needs to retain information 

from distant past and get rid of unnecessary information when it is needed. 

According to the study (Bajpai 2021), Bi-directional LSTM leads researchers to 

effectively address the challenges posed by long-term dependencies and achieve 

improved performance in text classification problems with higher performance and 

accuracy than LSTM. That is the reason why the system uses Bi-Directional LSTM 

Network applied to retrieve information in the further tokens next to past ones. 

 

Figure 4.9 Long-Short Term Memory Cell Structure 

In LSTM networks, the conventional hidden layers of RNNs are replaced with 

memory cells and gates. Each individual chunk of layer conducts information, that the 

forget gate decides what information is essential to keep or forget. Passing the value 
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through the sigmoid function to increase or decrease importance of the information, 

enhancing their ability to capture and retain long-range dependencies. As seen in Figure 

4.9, The input gate decides which information the cell state is going to hold by passing 

the previous hidden state and current input into sigmoid and tanh function that enhances 

the values in between -1 and 1. Sigmoid output will decide if current information is to 

keep or forget from the tanh output. The cell state gets multiplied with output of forget 

gate vector. This process even creates a possibility of converging values in cell state to 

0. The cell adds the input gate output and alters cell state vector to new values that 

network finds relevant to create new cell state. The last gate is the output gate which is 

responsible to create new hidden state shall carry, for next cell by using filtered 

information from the cell state and previous hidden states information. This attribute is 

particularly crucial in the context of sentence structures, where understanding the 

relationships between distant words is essential. 

The LSTM network alters hidden layers of RNN with updated by memory cells 

that ensures gradient can pass across many time steps without altered by next token. 

The problem here is that the token information is passed to the further tokens, but the 

initial tokens are lacking from further token information. When the model deals with 

passive sentences, there is information loss in LSTM. To annotate entities, attributes 

and relations, the information in the further tokens might be crucial for initial tokens. 

That is the reason bi-directional LSTM developed. Figure 4.10 shows bi-directional 

LSTM structure which is a combination of two LSTMs, while one of them sequences 

from start to end, second LSTM runs end to start. 

 

Figure 4.10 Bi-directional LSTM Architecture Reference: 

https://zhoubeiqi.medium.com/named-entity-recognition-ner-using-keras-lstm-spacy-

da3ea63d24c5 
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Reduction in number of vectors into the single vector for each hidden layer, 

individual vectors are summarized and derived hidden parameters according to the 

given label. Hence the last vector contains relevant information about the given labels, 

with two networks output the prediction has been done with minimized information 

loss. This might be class label, a real value, or a vector, but system investigates if a 

given token is an “entity,” “attribute,” or “relation.” The model has been fed by the 

vector which has been created by the vectorization step, and the labels are derived from 

candidate extraction component. For example, the sentence “Apple is something 

that…” may related to company “Apple” or the fruit. However, the application of 

LSTM does not know about what “Apple” means, since it has lack of information from 

the future, but the bi-directional LSTM captures this entity. 

Spacy provides trainable components that help to build custom components in 

the network. To build a pipeline for defining a custom NER in spaCy, several steps 

have been taken. The initialization of a blank spaCy model by merging NER 

component to the pipeline. This component serves as the foundation for training custom 

NER model. With the pipeline set up, proceeding to train the NER model using the 

embedded vectors and annotated vectors. This involves running multiple iterations of 

the training process, during which the model learns to recognize and label the target 

entities based on the provided examples. The training involves optimizing the model's 

parameters to minimize the loss and improve its performance. According to the 

experimental results, enhancing base features of Spacy with POS tags, and dependency 

labels performed best among the other models. 

The proposed pipeline only consists of NER therefore upper state is NER Model. 

The model has bi-directional LSTM encoder with relative length according to the input 

size and the layer of TBP’s length is set to 16. The batch size is 8, and epoch is set to 

10. Pieces to use in state prediction is set to 3. The Training data consists of 105 

individual documents with approximately 3200 words. As an output, the model 

predicts if a token is an entity, attribute, or relation. Example output of this module is 

structured from input “Student has name and address.”. The vectorization done after 

the feature set covered with tags which are ”NORM”, “PREFIX”, “SUFFIX”, 

“SHAPE”, “POS”, “DEP”. The output of this module gives structure as: {`entities`: [ 

(0, 7, ̀ entity`), (8, 11, ̀ relation`), (12, 16, ̀ attribute`), (21, 28, ̀ attribute`)]}. The output 

tags are assigned to corresponding token. 
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4.4 Component Feature Extraction Module 

Extracting various specifications that explain component features from the text 

input is important when it comes to extracting information between entities. This 

module focuses on finding relevant information about found components which have 

been generated by ML module. The process line in this module seen in Figure 4.11 as: 

1. Specification Resolver 

2. Component Tagging 

 

Figure 4.11 Component Feature Extraction Module 

Hence, the proposed work assumes that the found tags are correct, therefore 

focusing on individual tokens highlights the features of corresponding component. 

 4.4.1 Specification Resolver 

Train of custom NER shall find components much better than initial component 

extraction patterns from dependencies. This step is responsible to detect component 

specifications by iterating in dependency sub-tree and looking for definitive tokens, 

then links them in meaningful way. The first thing what it does is to sense sentence 

structure if a sentence is explaining about a relation or explanation of a component. For 

example: 

1. The student has name, id, email as attributes.  

2. Email attribute is unique attribute.  

3. A Student can enroll many Courses.  

4. The relation “enroll” is storing enrolled_date.  

5. A Course which has been given by Instructor has a name. 

6. Enroll is identifier relation. 
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The first sentence explains attributes of the entity “Student.” On the other hand, 

the second sentence gives a clue about the type of attribute which “Email” is unique 

attribute. The third sentence is identifying relation and its specifications next to 

possible entity which is “Course.” The fourth sentence highlights the existing attribute 

of a relation “enroll.” Figure 4.12 illustrates dependency tree of sentence 5. 

Dependency Tree and NER tags help over here to sense which type of sentence occurs 

to be investigated. Investigation of each subtree highlights the sensing feature of tagged 

component. Every subtree of this step is considered separately.  

 

Figure 4.12 Illustration of dependency tree of 5th sentence 

The output of custom NER contains if a token is “entity,” “attribute,” or 

“relation.” If the root token labeled as “relation” contains the words like "has, contain, 

include, store", it highlights the relation between entity and attribute or another entity. 

Next tokens which have found and labeled with “Attribute” or “Entity” to investigate 

the sentence. Those tokens in subtree shall present their specifications; therefore, 

searching within dependencies that modifies labeled tokens from custom NER output 

gives idea about that annotated token. 

If a token type is “attribute,” look for modifiers like “identifier, unique, different, 

primary, key, only one” to tag as primary key candidate. The modifiers like 

“calculated, derived” highlights attribute is derived attribute. If there are no indicators, 

the system looks-up the indicated entities from generated dataset from documents. 

Moreover, if there are no indicated ones in dataset, the attribute component considered 

as normal type. If “has-a" relation contains the entity component on the right sub-tree, 

indication of the  token “from” had been noticed whether that attribute contains by the 

entity which has dependency with. By looking for these modifiers, attribute specs had 
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been revealed. In addition to that, if labeled tag is “entity,” therefore the relation is a 

”has-a” with another entity. The words that have dependency which modify the token 

with “attribute” label, is one of the terms like “multiple,” “more than one,” or  

“multivalued,” that attribute token had been validated as multivalued attribute. If the 

attribute does not have any indicator mentioned in document, look-up table provided 

by pre-defined dataset had been taken into consideration to define tag of attribute. 

On the relation side, the root verb of each sub-tree is the one who is in charge. If 

the root word is an active word that represents action, the case considered for 

dependency of tokens labeled as “Entity.” In this case, investigation of subject and 

object entity conducted to find cardinality. By using POS tags, plurality and singularity 

of a noun token had help here to identify cardinality. In addition to that, the 

corresponding sub-tree might contain the kind of modifiers that might represent 

cardinalities. Therefore, modifiers of “relation” token had been investigated and 

looked for the words like “many”, ”multiple”, ”more than <num>,” where <num> is a 

numerical text, next to the POS tag plurality. Moreover, even if there are no adjectives, 

the plurality form of entity represents the cardinality. If an entity is in plural form, it 

may indicate that the relationship is many. By looking at those words, pluralities have 

been revealed the cardinality like “one-to-many,” “many-to-many” or “one-to-one.” 

Moreover, the sentence might define relation specifications directly as well, like the 

sentence tells a feature about relation as if the relation is an identifier. 

After finding out entities, attributes, and relation specification, look for any 

update that might occur during the second iteration of document. Some other features 

explored during the iteration process in sentence. For example, the 6th sentence gives 

a specification about the relation. The pre-data generated by Specification Resolver 

step, had been investigated and compared with overall document. In this case the 

function looks for if a sentence is describing about an entity, relation, or attribute 

specification to satisfy consistency between found components. 

After generating component data for graph, algorithm traversed sentences once 

more to update component features if necessary. In this case the function looked for if 

a sentence is describing an entity, relation, or attribute feature. If a sentence indicates 

relation, by the descriptive sentence, this process updates component tag. If a sentence 

is indicating relation, system looked for as if its description is the words like 

“identifier,” “descriptive.”  
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The subject of descriptive sentence is investigated on NER output to link with 

component which has been found by custom NER and specification resolver. In 

addition to that, the subject of descriptive sentence may be indicating attribute or even 

entity. Attribute components found in part of the entity, is updated  if there are any 

specific indication about their specification like “derived,” “foreign,” “primary,” or 

“multivalued.” Updating those attributes might even cause the identifier relation, along 

with weak entity. In entity side, the key to weak entity is considered as foreign key to 

the relation or entity which has linked to. Moreover, after the update of attributes, the 

entity specification might be change, like weak or normal. 

4.4.2 Component Tagging 

This process is responsible to tag components according to its specification 

which is generated by specification resolver process. Hence, the main goal of our study 

is to extract information about relations between components, the illustration of 

components is up to application preferences like the type of ERD generation as Chen, 

or Foot style ERDs. The enumeration has been applied to identify component shapes 

that satisfies GraphViz functions. Entity representations have tagged with “0” for 

rectangular and “1” for double rectangular entity components as explained in overview 

part. Attributes has enumerated from 1 to 4; 1 for key/unique attributes as underlined 

oval, 2 for multivalued attributes as double oval, 3 for normal attributes as oval, and 4 

for derived attributes as dashed oval shape. The tagging for relations is enumerated as 

“0” for diamond, and “1” for double diamond shape to indicate whether the relation is 

identifier relationship. Cardinalities also have an enumeration, 1 for one to one, 2 for 

one to many, 3 for many to one, and 4 for many to many cardinalities. 

After tagging each component the data has become 2 different structures, the first 

one which represents relationships between entities and for relations of entity and 

attributes. Processed list data structure is constructed as Equation 4,2 and 4,3: 

𝐸𝑛𝑡𝑖𝑡𝑦 − 𝐸𝑛𝑡𝑖𝑡𝑦: [ < 𝑠𝑜𝑢𝑟𝑐𝑒 𝑒𝑛𝑡𝑖𝑡𝑦 𝑛𝑎𝑚𝑒 >, (< 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑛𝑎𝑚𝑒 >,

𝑒𝑛𝑢𝑚(𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑦𝑝𝑒): 𝑖𝑛𝑡, 𝑒𝑛𝑢𝑚(𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦) ∶  𝑖𝑛𝑡),

< 𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑛𝑡𝑖𝑡𝑦 𝑛𝑎𝑚𝑒 >], 

(4,2) 

𝐸𝑛𝑡𝑖𝑡𝑦 − 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒: (< 𝑒𝑛𝑡𝑖𝑡𝑦 𝑛𝑎𝑚𝑒 >, 𝑒𝑛𝑢𝑚(𝑒𝑛𝑡𝑖𝑡𝑦 𝑡𝑦𝑝𝑒)) , [(

< 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑛𝑎𝑚𝑒 >, 𝑒𝑛𝑢𝑚(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑡𝑦𝑝𝑒)] 
(4,3) 
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Table 4.4 Sample of Component Relation Structure 

Document 

Customer has name, passport_id, address, and age. Country has 

Airport entity. Address is a multivalued attribute. Country has name, 

and c_id. … … … Flight_id is derived attribute. Purchase contains 

purch_date. 

Entity - 

Entity 

[('Country', (has, 0, 1), 'Airport'),  

('Airport', (departs, 0, 2), 'Flight'), … … … 

('Airport', (stores, 0, 2), 'Airplane'),  

('Airplane', (reserves, 0, 2), 'Ticket'),] 

Entity - 

Attribute 

[((Customer, 0),  

      [(name, 3), (passport_id, 1), ('address_drv', 4), (age, 3), 

(address,2)]), … … 

((Country, 0),  

      [(name, 3), (c_id, 1)]),  

((Airport, 0),  

   [(airportName, 3), (countryId, 1), (ProvinceID, 1), (airportId, 1)]),] 

The term “enum” stands for enumeration which was described above. The instance of 

processed data is illustrated in Table 4.4. 

4.4.3 Reduction of Redundant Information 

Reduction of redundant components is a challenging task to obtain. Utilization of 

word net and word similarity had been investigated which helps to reduce duplication 

of annotated data. If there are synonymous attributes, entities present, with similar POS 

tags which are related to the same entity shall be eliminated to reduce redundancy. For 

example, the sentence: 

"𝐿𝑒𝑐𝑡𝑢𝑟𝑒𝑟 has name, surname.  𝑇𝑒𝑎𝑐ℎ𝑒𝑟 contains the address and number. " It 

might be known that the “Lecturer” and “Teacher” refer to the same entity. To reduce 

redundancy, this module basically looks for synonyms for each labeled token. If 

annotated token uses same POS tag and, in the word-net synonym list, it is high 

probable that those nouns lemma refer to same component. However, sometimes 

merging those components leads to information loss, therefore the overall context of 

documentation is important to consider about. Looking for the component cases which 

use the same POS tags, and labeled components, creates information loss. For example, 
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one of synonyms of the word “car” is “truck.” Unfortunately, the usage of synonyms 

might cause information loss when the description contains both terms together 

because they are indicating different entities. Therefore, morphosemantic analysis is 

required to reduce redundancy. The proposed work also tried to use word similarity 

within sentences, but this also created information loss in the documents which contain 

similar meaning words. For example, the word “student” brings “grad student” as 

highly similar entity, which is correct but in context, they might be actor of different 

entities as well. As a conclusion, our study could not fully reduce the redundant 

information across the documentation. 

4.5 Graph Pre – Processing 

The final generation of ERDs are tailored by the library called GraphViz. This 

library provides nodes to create graphs with several types of shapes and connections. 

To accomplish this task. The output of component feature extraction module had been 

used to separately generate graph components. The overall structure of this module is 

illustrated in Figure 4.13. 

 

Figure 4.13 Graph Pre-Processing Module 

Each component is generated according to the structure of entity-entity and 

entity-attribute data structure. The first step is to generate entities, and attributes. The 

entity-attribute structure had been traveled and each entity node has been created 

according to their enumerated shape type. After those attributes had been created with 

corresponding shape, each entity had been linked to its attributes. As same method had 

been applied to entity-entity structure to create relationship node with its shape, as well 
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as introduced in overview of ERD. After the generation of the node the entities are 

linked to each other with their cardinalities. The last step is to render pictures from 

graph information which GraphViz framework had generated by constructed node and 

connections. 
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CHAPTER 5  

5. RESULTS 

The following section presents a thorough analysis of the obtained results from 

a series of features used in experiments and case examples of best network, along with 

an in-depth discussion of the identified limitations and issues encountered during the 

implementation of the system. This examination aims to provide a comprehensive 

evaluation of the system's performance and offer insights into areas where the 

generated outputs may deviate from the desired outcomes. By critically examining 

these outputs, valuable insights will be gained into the weaknesses of the system and 

potential gaps for improvement. Through a detailed exploration of the case examples, 

this section aims to dig into the underlying factors contributing to the identified issues 

with meaningful discussions on their implications and proposing recommendations for 

future enhancements.  

5.1 Experimental Results of Custom Named Entity Recognition Module 

To develop an efficient NER system, our study explored various attribute 

features to find the optimal model. The results of our study are experimented with 

multiple attributes, including POS tags, dependency labels, entity labels, and more. 

Each attribute provides a unique perspective on the sentence structure. By 

incorporating these diverse attributes, our study aimed to capture a comprehensive 

representation of the text, facilitating the extraction of components such as entities, 

attributes, and relations. Through testing and evaluation, has analyzed the performance 

of different attribute combinations, seeking to identify the attributes that contribute 

most effectively to the NER task. 



 

51 

Considering that collected 105 documents with approximately 3200 words for 

training is relatively small. In such cases, smaller batch sizes are commonly used to 

ensure that the model can learn from a diverse set of examples within each batch. A 

typical batch size for a small dataset could range from 8 to 32. Our study experimented 

with batch sizes with 8 and observed the performance and utilization during training. 

Regarding the number of epochs, it represents the number of times the custom 

NER model will iterate over the entire training dataset. Hence, there are no fixed rules, 

but general practice is to start with smaller number of epochs, such proposed model 

has been tried and monitored model’s learning progress between 10 epochs with the 

0.001 learning rate. The learning curve starts to converge, and model gets overfit after 

10 epochs. The pipeline consists of vectorization, multi-hash embedding with related 

features, bi-directional LSTM encoder, transition-based parser, Tok2Vec Listener, and 

named entity recognizer. Table 5.1 provides experimental results of several feature sets 

with evaluation metrics. The Tok2Vec technique helps in transforming the discrete 

tokens of a sentence into continuous vector representation, which are then fed into the 

NER model for prediction. Therefore, by analyzing the evaluation metrics would give 

a preview about which feature is feasible to meaningful representation. 

Table 5.1 Bi-Directional Long Short-Term Memory Network Feature Comparison for 

Custom Named Entity Recognition 

Model Features 
Loss 

Tok2Vec 

Loss 

NER 

F1 

Score - 

NER 

Precision - 

NER 

Recall - 

NER 

1 {SPCY}1 474.84 349.70 71.85 70.27 73.51 

2 {SPCY}, “POS” 180.67 611.14 80.74 76.45 85.54 

3 {SPCY}, “DEP” 796.38 190.62 89.63 90.58 88.69 

4 
{SPCY}, ”POS”, 

“DEP” 
389.28 189.98 93.87 92.96 94.81 

5 

{SPCY}, ”POS”, 

”TAG, ”DEP”, 

”ENT_TYPE”.  

”ENT_IOB” 

423.58 257.57 92.17 91.53 92.82 

 
1 {SPCY}: Consist of base Spacy attibutes as follows: “NORM”, “PREFIX”, “SUFFIX”, “SHAPE” 
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Spacy base attributes are annotated as {SPCY}, which has features like 

“NORM,” “PREFIX.” “SUFFIX,” “SHAPE,” where “NORM” stands for normalized 

form of the token. 

Model 2 incorporates additional POS tags alongside the default attributes of 

Spacy. This integration resulted in improved performance compared to the base Spacy 

custom NER module. However, Model 2 encountered challenges in detecting attributes 

that contained special characters. Furthermore, there were instances where attributes 

were incorrectly labeled as "Entity." This issue primarily arose from attributes with a 

"NOUN" tag, which exhibited similar behavior to entity properties. Moreover, 

descriptive sentences which are related to attributes are sometimes considered as  

entity. 

The inclusion of dependency labels proved to be more effective in comparison 

to model 1 and 2. By incorporating dependency labels into the base Spacy features, the 

projected outcome was an improved identification of entities and attributes, when 

compared to the model obtained POS tags. Model 4, which integrated both POS tags, 

and dependency labels alongside the base Spacy features achieved the best overall 

results among the assessment procedure. Model 5 comprised all of the characteristic 

features of model 4, as well as Spacy’s pre-trained NER module output, which included 

standard NER tags like “MONEY”, “LOCATION, as well as tags with IOB tags. 

Unfortunately, the addition of these features resulted in higher losses and worse F1 

score than Model 4. As a result, model 4 was chosen to be used in the evaluation 

process. In the following section, the case model outputs will be examined Model 4. 

5.2 Model Case Outputs 

The following subsection delves into a series of cases that examine diverse types 

of features within data relationships. Each case presents a unique scenario, shedding 

light on various aspects of data organization and connectivity to be examined and have 

further investigate output. 

 5.2.1 Case 1: "Attribute" of "Entity" Extraction  

In Case 1, our study focused on understanding the relationship between entities 

and attributes. Generated custom NER delve into how attributes are associated with 

specific entities and explore the implications of these connections. By examining this 
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fundamental aspect of data relationships, it gains insights into how attributes define 

and characterize entities.  

Scenario 1:  

Department contains name, number, locations, manager, and manager_start_date. 

Locations is the only multivalued attribute. Name and number are key attributes. 

(Elmasri and Navathe 2016) 

 

Figure 5.1 Generated Entity Relationship Diagram of Scenario 1 

 

Figure 5.2 Illustration of Elmasri on Scenario 1 Reference: Elmasri, R., & Navathe, 

S. B. (2016). Fundamentals of Database Systems. 

Attribute and Entity extraction scenarios which describe entity, attribute 

specifications are usually captured correctly. The aid of custom NER is not tagging the 

attribute “Locations” as” Entity” but the “Attribute.” Since it checks further tokens and 

sentences it is capable of tagging correctly of each subject token of sentence. 

Unfortunately, the specification resolver module is lacking in detecting compound 

attributes. 

5.2.2 Case 2: Relation Extraction  

Case 2 shifts attention to the relationships between different entities. Our study 

explores how entities interact with each other, the dependencies that exist, and the 

significance of these connections. By analyzing the connections between entities, the 



 

54 

results of this study indicate and gain a deeper understanding of how data is linked 

across different entities.  

Scenario 2: 

Instructor teaches Course. Textbook which is used by Course. 

(a)  (b) 

Figure 5.3 Generated Entity Relationship Diagram of Scenario 2 (a), ERD Illustration 

(b) Reference: Elmasri, R., & Navathe, S. B. (2016). Fundamentals of Database 

Systems. 

Figure 5.3 illustrates output of scenario 2 which is solution and captured 

components. The relationship between entities generally is captured correctly. Hence 

the relationship is represented by each branch of dependency tree generally a verb 

phrase and indicates root word corresponding sub-tree. 

Scenario 3:  

Suppliers have sname. Project has proj_name. Part has part_no. Many Projects can 

supplied by many Suppliers. Many Projects uses many Parts. Many Suppliers 

can_supply many Parts. sname is primary attribute. proj_name is primary attribute. 

part_no is primary attribute. 
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Figure 5.4 Generated Entity Relationship Diagram of Scenario 3 

Figure 5.5 is an illustration of scenario 3 which is generated by the author. The 

generated ERD (Figure 5.4) is quite similar and same as the generated output from the 

model which has been proposed. Based on the experimental result, it was found that 

the information extraction module successfully managed and accurately labeled the 

components in scenario 3. This means that the module was able to identify and assign 

correct labels to the various elements such as “Entity,” “Attribute,” and “Relation” on 

simple structured sentences.  

 

Figure 5.5 Elmasri Illustration on Scenario 3 Reference: Elmasri, R., & Navathe, S. 

B. (2016). Fundamentals of Database Systems. 

Moreover, these structural sentences could be extracted using heuristic 

approaches which is accepted as current literature. This suggests that by implementing 

certain rules or patterns, the system was able to extract meaningful sentences that 

describe the relationships and connections between different items in the diagram with 

the aid of custom NER.  
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The dependency tree of the input sentence played a crucial role in analysis. It 

provided valuable insights and aided in identifying the dependencies and associations 

between the different components. By examining the dependency tree, our study was 

able to uncover the relationships and connections between items, allowing for a more 

comprehensive understanding of the diagram's structure.  

Overall, the combination of an effective information extraction module and the 

utilization of heuristic approaches and dependency trees greatly contributed to 

accurately describing the diagram and generating meaningful outputs. 

Scenario 4: 

Many Accounts deposits from the Bank. Many Accounts withdraw from the Bank. 

Account has balance, phone_no, date and account_id. Bank has name. Bank is a weak 

entity. Phone_no is a multivalued attribute. 

 

Figure 5.6 Generated Entity Relationship Diagram of Scenario 4 

The system also captures the weak entities if it has been declared in input 

sentences. If the existence of an entity is related to another entity, those entities are 

considered as weak entities. The system looks for specific identifying specification for 

attributes. If there are no specifications of key attributes, the system investigates his 

dataset which has been created while tagging the previous documents and tags 

attributes. For example, in Scenario 4, account_id has not been declared as primary 

key. Although there are no indicators, the system proposes and labels the attribute 

“account_id” as primary key (Figure 5.6). 

 



 

57 

Scenario 5:  

Student has name, and student_id. The course has name, course_id, and 

credit_number. The students enroll in many courses. Student_id is a unique attribute. 

Students are weak entity. Enroll is identifier. Faculty has name, faculty_id, and 

multivalued address. A Faculty get many Students. Grad_Student has name, and score. 

Grad_Student is a student. 

 

Figure 5.7 Generated Entity Relationship Diagram of Scenario 5 

Figure 5.7 describes the structure of basic course enrollment -i.e., Scenario 5-. 

As you can see the “IS-A” relationship had been captured. In addition to that, the 

feature of parent entity which is “Weak Entity” also embedded into child “Entity.” 

Moreover, if there are no key attributes of “entity,” it does consider that entity as weak 

because the entity does not have uniquely identified by its own attributes alone. 

Therefore, the output of the system considers and labels “entity” without any key 

attribute as “weak entity” as well.  

5.2.3 Case 3: "Attribute" of "Relation" Extraction 

Case 3 investigates the relationship between relations and attributes. System 

explores how attributes contribute to the definition and organization of relations. By 
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examining this connection, the proposed model gains insights into how attributes shape 

the structure and interpretation of relations within a dataset.  

Scenario 6:  

Project has proj_id, and ProjName. s_id is unique attribute which has been stored by 

Supplier. Part entity stores PartNo as attribute. Suppliers, Parts, and Projects have 

ternary relation called 'supply' which has quantity attribute. Many Suppliers supply 

many Parts to many Projects. 

 

Figure 5.8 Generated Entity Relationship Diagram of Scenario 6 

As we can observe from Figure 5.8, the attribute of relation “amount” had been 

captured by the specification resolver module. The sentence: “Suppliers, Parts, and 

Projects have ternary relation called 'supply' which has quantity attribute.,” contains 

significant information about relation. The custom NER finds and tags tokens as entity, 

attribute, and relation. Although it finds relation and cardinalities, readers might get 

confused on relationship. The entity “Part” uses the relation “supply” component to 

have relationship between other entities “Supplier” and “Project.” However, there are 

no indications that which association is linked to which entity. It creates problems with 

understanding cardinalities. Possible solution to this problem is to change color of 

associations which is referring to or, create another relationship called “supply” but 

declaring another relationship means that another relationship needs to be built on 

physical design of database which is incorrect. 
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Figure 5.9 Dependency Tree Illustration of sentence: “Suppliers, Parts, and Projects 

have ternary relation called ‘supply’ which has quantity attribute.” 

In this scenario, entities are “Part,” “Suppliers,” “Projects,” attribute tagged by 

NER is “amount,” and relation is “supply.” Figure 5.9 is an illustration of dependency 

tree of the sentence. In dependency tree, the subjects of sentence are “Suppliers,” 

“Parts,” “Projects” which had been labeled as “entity,” on right hand side the 

relationship between those entities are described with the word “supply” which had 

been labeled as “Relation” by NER. Therefore, the direct relationship between those 

entities had been captured and created with one-to-one cardinality. Then specification 

resolver is considered plurality of tokens then alters the cardinality from “one-to-one” 

to “many-to-many.”  

The token labeled as “relation” which is “supply” also had its own sub-tree. Thus, 

these sub-trees are investigated separately, and the token labeled as “attribute” is linked 

to its root token which is “supply.” The same algorithm runs for this sub-tree therefore, 

it is possible to capture attribute of relation on top of the overall sentence. 

Custom NER brings out the component information that helps to get rid of to 

define different heuristic rules to detect entities, attributes, and relationships from the 

sentences, by having information about overall documentation. While some of the 

sentences are directly indicating corresponding components specification of entity, 

attribute, or relation, heuristic approaches have to be tailored specifically to identify 

described specification of component. 

5.2.4 Case 4: Complex Relations  

Case 4 focuses on complex relations, which involve intricate data relationships 

with multiple entities, attributes, and possibly nested structures. The proposed study 
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explored the challenges and opportunities presented by these complex connections. By 

investigating complex relations, we gained a comprehensive understanding of how data 

can be organized and analyzed in more intricate scenarios. By exploring these different 

cases, the system gains valuable insights into the diverse types of features that exist 

within data relationships. 

Scenario 7:  

Employee contains name, address, salary, sex, B_date, ssn. Ssn is a primary attribute. 

The name attribute is creation of 3 different components, such as Fname, Minit, and 

Lname. Each Department has a name, unique number, location, and 

Number_Of_Employees and particular one Employee who manages the department. 

Department may have several locations. Number_of_employees is a weak attribute. 

Location is a multivalued attribute. The start_date is recorded in manages relation. 

Many Employees works one Department. Both participants are total. An Employee can 

supervises many Employees. A Department controls many numbers of Projects which 

many employees can work on. Project has name, number, and location. Projects has 

unique number. Work on relation stores number_of_hours attribute. Both participants 

are determined to be total. An Employee dependens of many Dependent entity. 

Dependents of is identifier relation for the Dependent entity which is a weak entity 

Dependent. The participation of Employee is partial, whereas that of dependent is total. 

Dependent entity contains sex, birth_date, relationship, and name. (Elmasri and 

Navathe 2016) 

 

Figure 5.10 Solution Entity Relationship Diagram of Scenario 7 Reference: Elmasri, 

R., & Navathe, S. B. (2016). Fundamentals of Database Systems. 
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Figure 5.11 Generated Entity Relationship Diagram of Scenario 7 

Investigation of this scenario 7 as the author (Elmasri and Navathe 2016) says 

participation of entity “Department” is not clearly understandable from the 

requirement. Scenario questions the users, who say that a “department” must always 

have a manager, which implies total participation. Therefore, domain-knowledge is 

required to assign these kinds of relations. 

Another problem in the output is that the pronouns which had been used in 

scenario shall be linked to the “Department” and “Employee.” (Figure 5.11) Hence 

there are no proper entity in that sentence. There could be way to utilize this issue, one 

is to replace the phrase “both participants” with corresponding entities shall be linked 

to phrase with nearest pronoun method. Even though, extracting information like 

entities, attributes, and relations are correct. However, the attribute “Location” is 

annotated as multivalued attribute for both entities which is “Department” and 

“Project.” The problem over here is caused by not linking corresponding component at 

nearest entity. 
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Scenario 8: 

Customer has name, passport_id, address, and age. Country has many Airports. 

Address is a multivalued attribute. Country has name, and c_id. Airport has 

airportName, countryId, ProvinceID, airportId. Flight is an entity which stores f_id, 

sourceCountry, destCountry, numberOfCustomer. Each Airport departs many Flights. 

Airplane has name, airplane_no, and s_id. Ticket contains customer_id, seatNo, 

airplane_no, flight_id. An airport stores many Airplanes. Each Airplane may have 

many Tickets. Airplane_no is derived attribute. A Customer can purchase many 

Tickets. Airplanes reserve seats for many Tickets. A Ticket belongs to many Flights. 

Flight_id is derived attribute. Purch_date has been stored in purchase relation. 

 

Figure 5.12 Generated Entity Relationship Diagram of Scenario 8 

In scenario 8, the problem occurred because of wrong labeling caused by custom 

NER. The problem that arises from the input text is related to incorrect or abbreviated 

terminology. For example, instead of using "destination country," the text uses an 

abbreviated form "destCountry" (Figure 5.12). This presents a challenge to the system 

because the abbreviated or incorrect terminology can lead to confusion or 

misinterpretation of the intended meaning and syntactic analysis. It may cause 
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difficulties in understanding the context or correctly identifying the entities or 

relationships being referred to. Moreover, it affects the POS tagging and dependency 

tree so the incorrect annotation from the custom NER. 

Scenario 9:  

Shelter stores Animals. Shelter has location, capacity, s_id and name. Animal contains 

type, and animal_id. Dog has arrival_date, kind_type, age, and size. Cat includes 

nickname, kind_type, age, and colour. The Dog and Cat is Animal. Visitors contain the 

name, phone_no, multiple address, and v_id. V_id and phone_no are key attributes. A 

Visitor can adopt many Animals. Adopt relation contains adoption_date. 

 

Figure 5.13 Generated Entity Relationship Diagram of Scenario 9 

Overall, in this scenario, there is no inconsistency in output but the relation 

between animal and its related sub-entities. The same problem occurs on entities which 

use the same relation. Relationship token might be declared separately to increase 

readability. Since the relationship indicates “IS-A,” it is still understandable but the 

relationships which require cardinality might create confusion in the reader’s mind. 
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5.3 Evaluation 

In this section, our study assesses the performance and reliability of a model 

designed to extract entity-relationship (ER) diagram components from unstructured 

text. Through the analysis of 25 diverse text and component features collected from 

database books with their problem text and ground-truth labels are collected from 

solution of ERD figure from the book. Overall, total of 1329 words, evaluated with the 

4th  from the Table 5.1accuracy, precision, recall. The results validate the model's 

effectiveness, providing insights into its strengths and limitations of ER diagram 

extraction from text, enabling improved efficiency and automation in database design 

and analysis. 

5.4 Confusion Matrices 

To evaluate in the context of extracting ERD components from text, True 

Negatives (TN) represents cases where the model correctly predicts the absence of 

ERD component. However, in the task of extracting specific components (entities, 

attributes, and relations) from the text, the absence of these components is generally 

assumed unless they are explicitly mentioned. Therefore, the focus of evaluation shall 

be on True Positives (TP) which are correctly extracted components, False Positives 

(FP) which are incorrectly identified components. 

Table 5.2 Confusion Matrix of Entity Extraction 
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Table 5.2 provides an overview of entity identification results within the 

evaluation dataset. The evaluation achieved a recall score of approximately 0.98 and a 
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precision score of around 0.94, yielding an F1 score of 0.96. Our study conducted a 

thorough investigation into the specifications of the identified components, 

distinguishing between normal entities and weak entities. The inaccurate predictions 

primarily stemmed from the Custom NER output, responsible for component labelling. 

Conversely, the specification resolver module received this output and assigned 

specification tags to annotated tokens. Among the entities correctly identified by the 

Custom NER module, the specification resolver module accurately labeled 76 entities 

as normal and 17 entities as weak, while six of the normal entity were mislabeled as 

weak entity. Since the investigation of across the correctly found entity, FP is 0 for 

normal entity, and TN is 0 for weak entities. In terms of evaluation, the recall for 

tagging normal entities was approximately 0.92, and the precision for labeling weak 

entities was 0.73. 

Table 5.3 Confusion Matrix of Attribute Extraction 
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In terms of annotating attributes, the confusion matrix, presented in Table 5.3, 

provides an overview. The model accurately predicts 289 attribute components within 

the evaluation set. However, certain outputs such as abbreviations and words 

containing special characters (#, &, $, -, …) posed challenges for the custom NER 

module to resolve. Moreover, there were instances where entities were incorrectly 

labeled as attributes within certain contexts. The model achieved a recall of 

approximately 0.91 and a precision of 0.96, resulting in an F1 score of 0.93 for attribute 

extraction. To evaluate the specification resolver's performance in identifying attribute 

specifications from correctly classified attributes, the following analysis focuses on 

finding key attributes. 
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Table 5.4 Confusion Matrix of Key Attribute Extraction 
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According to the data presented in Table 5.4, the specification resolver module 

successfully extracted 83 key attributes correctly, but 10 components were identified 

as false positives. However, there were 3 attributes wrongly predicted as key attributes. 

The recall for resolving key attributes was measured at 0.89, while the precision 

achieved was 0.96. The resolver module identified 6 attributes as derived and 4 as 

multivalued, out of a total of 8 derived and 4 multivalued attributes, with 2 incorrect 

identifications of derived attributes. Unfortunately, there was limited evaluation for 

specifications such as multivalued in the evaluation set. Overall, most of the incorrect 

resolving occurred due to undefined key attributes and need for domain specific 

knowledge. As the description lacks information on primary attributes, the module 

resorts to using its own dataset to label attributes for entities without specified key 

attributes. 

Table 5.5 Confusion Matrix of Relation Extraction 
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Table 5.5 presents the annotations of relation components across the evaluation 

dataset. The precision and recall scores for relation prediction are 0.90 and 0.95, 

respectively, resulting in an F1 score of 0.92. The investigation of relation extraction 

was prompted by issues with the incorrect extraction of dependency trees. These 

problems arose from relation words containing special characters and phrases, which 

led the model to make incorrect label predictions. Within the specification resolver, 4 

relations were correctly identified as identifiers, although 1 of them was not actually 

an identifier, out of a total of 5 identifier relationships. Overall, the model accurately 

identified 69 cardinalities, while 8 of them were incorrect. As a result, the module 

achieved a recall of 0.89 for extracting cardinalities among the correctly defined 

relations.  
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CHAPTER 6 

6. CONCLUSION AND DISCUSSION 

The aim of our study was to develop a solution for extracting information and 

revealing relation between entity to generate ERDs from text input. The proposed 

solution demonstrated promising results in detecting entities, attributes, and relations. 

The f1-scores of detecting entities is 0.96, while for attribute and relation are 0.93 and 

0.92, respectively. Unlike many previous studies that often overlooked crucial 

information such as entity type, attribute type, and identifying relations, the current 

solution aimed to retrieve these essential components. However, we encountered 

several limitations, which are discussed below along with proposed solutions for future 

improvement. 

The first limitation observed in our study was the issue of redundant information. 

Although the proposed solution showed effectiveness in some cases, there were still 

limitations in handling certain instances. For example, when presented with the 

statement "Teacher has name. Teacher gives lecture. A Lecturer can give many 

Courses," the solution recognize that "Lecturer" refers to the same entity as "Teacher." 

The proposed solution attempted to resolve this problem by considering synonyms of 

found entities with the same POS tags. However, there were cases, such as "Game has 

Player and Bat (Animal). Players can have a bat as a weapon. Bat has name," where 

the model struggled to determine which instance of "Bat" the attribute "name" referred 

to. To overcome this limitation, we proposed looking for contextual information and 

incorporating word sense similarity between identified entities. However, this 

approach resulted in other challenges, as highly similar entities like "student" and 

"grad_student" caused information loss when one of them was removed. Consequently, 

there is still a need to further address the issue of redundant information. As a future 
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direction, the “SynoExtractor” pipeline might be applied to reduce redundant 

information which uses synonyms, word embeddings, lemmas, and POS tags to find 

actual synonyms with same sense in document. 

The second limitation identified was the challenge of linking entities across 

different sentences. When component references were scattered across multiple 

sentences, it became difficult to establish the correspondence between tokens and 

accurately resolve the connections. For instance, the statement "Actress has name and 

age information. Those pieces of information are all multivalued. The entity contains 

phone numbers." posed difficulties in linking the attributes and entities mentioned in 

the first sentence. As a future direction linking entities to the nearest pronoun as a 

possible solution, but this approach was not consistently accurate. To mitigate this 

challenge, future research should explore more advanced techniques, such as 

leveraging contextual analysis or syntactic and discourse analysis, to establish reliable 

connections between entities across sentences. Moreover, the difficulty in identifying 

and linking tokens that refer and mean to the same component. For instance, the 

statement "Teacher gives Courses. The person who gives a lecture has a name." 

indicates that "Teacher" and "Person" referred to the same entity, but the proposed 

solution treated them as separate entities. To address this challenge, we tried leveraging 

semantic similarity measures to identify tokens with equivalent or similar meanings 

but failed to manage the cases described above. Future research could explore advanced 

NLP techniques, including deep learning models or transformer-based architectures, to 

improve the identification and linking of tokens with similar meanings. 

The third limitation pertained to managing abbreviations of different 

components. For example, the statement "Each Flight has Flight_id. F_id is a unique 

attribute" posed challenges in correctly identifying and linking attributes. To resolve 

this problem, utilizing an ontology to map abbreviations to their corresponding full 

forms could be used. This approach would allow for accurate recognition and linking 

of attributes, even when different abbreviations were used. Future research could focus 

on automatically generating or updating domain-specific ontologies based on the 

textual input, along with incorporating ML techniques for abbreviation resolution and 

NER.  

The fourth limitation identified was the potential generation of unrealistic ERDs 

that do not align with the logical interpretation. Model tries to satisfy input text even 

though the logic of the input text is not correct. As a suggestion, by analyzing patterns 
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and inconsistencies in the dataset, the recommendation system could be built and 

provide suggestions to the user when generating new diagrams. Incorporating web 

ontology and mining techniques can further enhance the suggestions by extracting 

relevant domain knowledge, might improve the logical coherence of the generated 

ERDs and minimize the occurrence of unrealistic representations. 

In conclusion, the results of the proposed work demonstrate the effectiveness of 

the proposed solution in extracting information and generating ERDs from text input. 

However, several limitations were encountered, including handling redundant 

information, linking entities across sentences, dealing with abbreviations. Future 

directions for improvement include addressing these limitations by incorporating 

techniques such as contextual analysis, semantic similarity measures, total 

participation, ontology-based mapping, and recommendation systems. By refining the 

solution and exploring these avenues, finding relations between entities might lead the 

systems like generation of ERDs, can be enhanced to provide more accurate 

representations of the input text.  

Furthermore, future research could also focus on evaluating the proposed 

solution on a larger and more diverse annotated dataset to validate its effectiveness and 

generalizability. The inclusion of user studies and feedback can provide valuable 

insights into the usability and practicality of the solution, aiding in its refinement and 

real-world applicability.  

Overall, our study contributes to the field of ERD generation by identifying 

limitations and proposing potential solutions for further improvement. By addressing 

these challenges, diagram generation systems can become more robust, reliable, and 

user-friendly, supporting various software applications. 
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