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ON A REGULARIZED SOLUTION OF THE CAUCHY PROBLEM FOR

MATRIX FACTORIZATIONS OF THE HELMHOLTZ EQUATION

D. A. JURAEV1,4∗, S. NOEIAGHDAM2,3, P. AGARWAL4, §

Abstract. In this paper, we consider the problem of recovering solutions for matrix
factorizations of the Helmholtz equation in a multidimensional bounded domain from
their values on a part of the boundary of this domain, i.e., the Cauchy problem. An ap-
proximate solution to this problem is constructed based on the Carleman matrix method.
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1. Introduction

Many scientific and applied problems, studied at the world level, in many cases are
reduced to the study of ill-posed boundary value problems for partial differential equations.
Applied research on conditional correctness and construction of an approximate solution
for given values on a part of the boundary of the region, for equations of elliptical type, are
especially important in hydrodynamics, geophysics and electrodynamics. The study of a
family of regularizing solutions to ill-posed problems served as an impetus for the beginning
of studies of the well-posedness class when narrowed to a compact set. Therefore, the
study of ill-posed problems for linear elliptic systems of the first order is one of the topical
problems in the theory of partial differential equations. At present, in the world, in the
study of ill-posed boundary value problems for linear elliptic systems of the first order,
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the construction of a regularized solution plays a special role. The Cauchy problem for
elliptic equations is ill-posed (example Hadamard, see for instance [18], p. 39).

At present, special attention is paid to topical aspects of differential equations and
mathematical physics, which have scientific and practical applications in the fundamental
sciences. In particular, special attention is paid to the study of various ill-posed bound-
ary value problems for partial differential equations of elliptic type, which have practical
application in applied sciences. As a result, significant results were obtained in studies of
ill-posed boundary value problems for partial differential equations, that is, approximate
solutions were constructed using Carleman matrices in explicit form from approximate
data in special domains, estimates of conditional stability and solvability criteria were
established. The first results, from the point of view of practical importance, for ill-posed
problems and for reducing the class of possible solutions to a compact set and reducing
problems to stable ones were obtained in the works of A.N. Tikhonov (see [2]). In the
works of M.M. Lavrent’ev, estimates were obtained that characterize the stability of the
spatial problem in the class of bounded solutions of the Cauchy problem for the Laplace
equation and some other ill-posed problems of mathematical physics in a straight cylinder,
as well as for an arbitrary spatial domain with a sufficiently smooth boundary (see, for
instance [20]-[21]).

In this work, based on the results of works [20]-[21], [27]-[30], based on the Cauchy
problem for the Laplace and Helmholtz equations, an explicit Carleman matrix was con-
structed and, on its basis, a regularized solution of the Cauchy problem for the matrix
factorization of the Helmholtz equation. In work [32], the calculation of double integrals
with the help of some connection between wave equation and ODE system was considered.

The problem of reconstructing the solution for matrix factorization of the Helmholtz
equation (see, for instance [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] and [13]), is one of the
topical problems in the theory of differential equations.

At present, there is still interest in classical ill-posed problems of mathematical physics.
This direction in the study of the properties of solutions of Cauchy problem for Laplace
equation was started in [31], [20]-[21], [1], [27]-[30] and subsequently developed in [14]-[15],
[19], [23]-[24], [17], [3]-[13].

2. Basic information and statement of the Cauchy problem

Let Rm, (m = 2k, k ≥ 1) be a m−dimensional real Euclidean space,

x = (x1, ..., xm) ∈ Rm, y = (y1, ..., ym) ∈ Rm,

x′ = (x1, ..., xm−1) ∈ Rm−1, y′ = (y1, ..., ym−1) ∈ Rm−1.
We introduce the following notation:

r = |y − x| , α =
∣∣y′ − x′∣∣ , w = iτ

√
u2 + α2 + β, w0 = iτα+ β,

β = τym, τ = tg
π

2ρ
, ρ > 1, u ≥ 0, s = α2,

Gρ =
{
y :

∣∣y′∣∣ < τym, ym > 0
}
, ∂Gρ =

{
y :

∣∣y′∣∣ = τym, ym > 0
}
,

∂

∂x
=

(
∂

∂x1
, ...,

∂

∂xm

)T
,
∂

∂x
= ξT , ξT =

 ξ1
...
ξm

 - transposed vector ξ,

U(x) = (U1(x), ... , Un(x))T , u0 = (1, ... , 1) ∈ Rn, n = 2m, m ≥ 2,
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E(z) =

∥∥∥∥∥∥
z1 ... 0
.......
0 ...zn

∥∥∥∥∥∥- diagonal matrix, z = (z1, ... , zn) ∈ Rn.

Gρ ⊂ Rm, (m = 2k, k ≥ 1) be a bounded simply-connected domain, the boundary of
which consists of the surface of the cone ∂Gρ, and a smooth piece of the surface S, lying
in the cone Gρ, i.e., ∂Gρ = S

⋃
T, T = ∂Gρ\S. Let (0, 0, ..., xm) ∈ Gρ, xm > 0.

Let D(ξT ) be a (n× n)− dimensional matrix with elements consisting of a set of linear
functions with constant coefficients of the complex plane for which the following condition
is satisfied:

D∗(ξT )D(ξT ) = E((|ξ|2 + λ2)u0),

where D∗(ξT ) is the Hermitian conjugate matrix D(ξT ), λ− is a real number.
We consider a system of differential equations in the region G

D

(
∂

∂x

)
U(x) = 0, (1)

where D

(
∂

∂x

)
is the matrix of first-order differential operators.

We denote by A(Gρ) the class of vector functions in the domain Gρ continuous on

Gρ = Gρ
⋃
∂Gρ and satisfying system (1).

3. Construction of the Carleman matrix and the Cauchy problem

Formulation of the problem. Suppose U(y) ∈ A(Gρ) and

U(y)|S = f(y), y ∈ S. (2)

Here, f(y) a given continuous vector-function on S. It is required to restore the vector
function U(y) in the domain Gρ, based on it’s values f(y) on S.

If U(y) ∈ A(Gρ), then the following integral formula of Cauchy type is valid

U(x) =

∫
∂Gρ

N(y, x;λ)U(y)dsy, x ∈ G, (3)

where

N(y, x;λ) =

(
E
(
ϕm(λr)u0

)
D∗
(
∂

∂x

))
D(tT ).

Here t = (t1, ... , tm)−is the unit exterior normal, drawn at a point y, the surface ∂Gρ,
ϕm(λr)− is the fundamental solution of the Helmholtz equation in Rm, (m = 2k, k ≥ 1),
where ϕm(λr) defined by the following formula:

ϕm(λr) = Pmλ
(m−2)/2

H
(1)
(m−2)/2(λr)

r(m−2)/2
,

Pm =
1

2i(2π)(m−2)/2
, m = 2k, k ≥ 1.

(4)

Here H
(1)
(m−2)/2(λr)− is the Hankel function of the first kind of (m−2)/2− th order (see,

for instance [25]).
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We denote by K(w) is an entire function taking real values for real w, (w = u +
iv, u, v−real numbers) and satisfying the following conditions:

K(u) 6= 0, sup
v≥1

∣∣vpK(p)(w)
∣∣ = B(u, p) <∞,

−∞ < u <∞, p = 0, 1, ..., m.

(5)

We define the function Φ(y, x;λ) at y 6= x by the following equality

Φ(y, x;λ) =
1

cmK(xm)

∂k−1

∂sk−1

∞∫
0

Im

[
K(w)

w − xm

]
uI0(λu)√
u2 + α2

du,

m = 2k, k ≥ 1,

(6)

where c2 = −2π, cm = (−1)k−1(m−2)(k−1)!ωm; I0(λu) = J0(iλu)−is the Bessel function
of the first kind of zero order (see, [1]), ωm− area of a unit sphere in space Rm.

In the formula (6), choosing

K(w) = Eρ(σ
1/ρw), K(xm) = Eρ(σ

1/ργ), γ = τxm, σ > 0, (7)

we get

Φσ(y, x;λ) =
Eρ(σ

1/ργ)

cm

∂k−1

∂sk−1

∞∫
0

Im

[
Eρ(σ

1/ρw)

w − xm

]
uI0(λu)√
u2 + α2

du. (8)

Here Eρ(σ
1/ρw)− is the entire Mittag-Leffler function (see, [22]). In [26], using the

S-generalized beta function, a new generalization of the Mittag-Leffler function and its
properties is presented.

The formula (3) is true if instead ϕm(λr) of substituting the function

Φσ(y, x;λ) = ϕm(λr) + gσ(y, x;λ), (9)

where gσ(y, x)− is the regular solution of the Helmholtz equation with respect to the
variable y, including the point y = x.

Then the integral formula has the form:

U(x) =

∫
∂Gρ

Nσ(y, x;λ)U(y)dsy, x ∈ G, (10)

where

Nσ(y, x;λ) =

(
E
(
Φσ(y, x;λ)u0

)
D∗
(
∂

∂x

))
D(tT ).

Recall the basic properties of the Mittag-Leffler function. The entire function of Mittag-
Leffler is defined by a series.

∞∑
n=1

wn

Γ(1 + ρ−1n)
= Eρ(w), w = u+ iv,

where Γ(s)− is the Euler gamma function.
We denote by γε(β0)(ε > 0, 0 < β0 < π) the contour in the complex plane ζ, run in the

direction of non-decreasing arg ζ and consisting of the following parts:
1. The beam arg ζ = −β0, |ζ| ≥ ε;
2. The arc −β0 < arg ζ < β0 of circle |ζ| = ε;
3. The beam arg ζ = β0, |ζ| ≥ ε.
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The contour γε(β0) divides the plane ζ into two unbounded simply connected domains
G−ρ and G+

ρ lying to the left and to the right of γε(β0), respectively.

Let ρ > 1,
π

2ρ
< β0 <

π

ρ
.

Denote

ψρ(w) =
1

2πi

∫
γε(β0)

exp(ζρ)

ζ − w
dζ, (11)

Then the following integral representations are valid:

Eρ(w) = ψρ(w), z ∈ G−ρ , (12)

Eρ(w) = ρ exp(wρ) + ψρ(w), z ∈ G+
ρ , (13)

From these formulas we find

|Eρ(w)| ≤ ρ exp(Rewρ) + |ψρ(w)| , |argw| ≤ π

2ρ
+ η0,

|Eρ(w)| ≤ |ψρ(w)| , π

2ρ
+ η0 ≤ |argw| ≤ π, η0 > 0

 (14)

|ψρ(w)| ≤ M

1 + |w|
, M = const (15)

Eρ(w) ≈ ρ exp(wρ), w > 0, w →∞, (16)

Further, since Eρ(w) is real with real w, then

Reψρ(w) =
ρ

2πi

∫
γε(β0)

2ζ − Rew

(ζ − w)ζ − w)
exp(ζρ)dζ,

Imψρ(w) =
ρIm (w)

2πi

∫
γε(β0)

exp(ζρ)

(ζ − w)ζ − w)
dζ,

The information given here concerning the function Eρ(w) is taken from (see, for in-
stance [5] and [9]).

In what follows, to prove the main theorems, we need the following estimates for the
function Φσ(y, x;λ.

Lemma 3.1. Let x = (x1, ..., xm) ∈ Gρ, y 6= x, σ ≥ λ+ σ0, σ0 > 0, then
1) at β ≤ α inequalities are satisfied

|Φσ(y, x;λ)| ≤ C(ρ, λ)
σm−3

rm−2
exp(−σγρ) , σ > 1, x ∈ Gρ, (17)∣∣∣∣∂Φσ(y, x;λ)

∂yj

∣∣∣∣ ≤ C(ρ, λ)
σm

rm−1
exp(−σγρ) , σ > 1, x ∈ Gρ, j = 1, ...,m. (18)∣∣∣∣∂Φσ(y, x;λ)

∂xj

∣∣∣∣ ≤ C(ρ, λ)
σm

rm−1
exp(−σγρ) , σ > 1, x ∈ Gρ, j = 1, ...,m. (19)

2) at β > α inequalities are satisfied

|Φσ(y, x;λ)| ≤ C(ρ, λ)
σm−3

rm−2
exp(−σγρ + σRewρ0) , σ > 1, x ∈ Gρ, (20)∣∣∣∣∂Φσ(y, x;λ)

∂yj

∣∣∣∣ ≤ C(ρ, λ)
σm

rm−1
exp(−σγρ + σRewρ0) , σ > 1, x ∈ Gρ, j = 1, ...,m. (21)∣∣∣∣∂Φσ(y, x;λ)

∂xj

∣∣∣∣ ≤ C(ρ, λ)
σm

rm−1
exp(−σγρ + σRewρ0) , σ > 1, x ∈ Gρ, j = 1, ...,m. (22)
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Here C(ρ, λ) is the function depending on ρ and λ.
For a fixed x ∈ Gρ we denote by S∗ the part of S on which β ≥ α. If x ∈ Gρ, then

S = S∗ (in this case, β = τym and the inequality β ≥ α means that y lies inside or on the
surface cone).

4. The continuation formula and regularization according to M.M.
Lavrent’ev’s

Theorem 4.1. Let U(y) ∈ A(Gρ) it satisfy the inequality

|U(y)| ≤M, y ∈ T = ∂Gρ\S∗. (23)

If

Uσ(x) =

∫
S∗

Nσ(y, x;λ)U(y)dsy, x ∈ Gρ, (24)

then the following estimates are true

|U(x)− Uσ(x)| ≤MCρ(λ, x)σk exp(−σγρ) , σ > 1, x ∈ Gρ. (25)∣∣∣∣∂U(x)

∂xj
− ∂Uσ(x)

∂xj

∣∣∣∣ ≤MCρ(λ, x)σk exp(−σγρ) , σ > 1, x ∈ Gρ, j = 1, ...,m. (26)

Here and below functions bounded on compact subsets of the domain Gρ, we denote by
Cρ(λ, x).

Proof. Let us first estimate inequality (25). Using the integral formula (10) and the equal-
ity (24), we obtain

U(x) =

∫
S∗

Nσ(y, x;λ)U(y)dsy +

∫
∂Gρ\S∗

Nσ(y, x;λ)U(y)dsy =

= Uσ(x) +

∫
∂Gρ\S∗

Nσ(y, x;λ)U(y)dsy, x ∈ Gρ.

Taking into account the inequality (23), we estimate the following

|U(x)− Uσ(x)| ≤

∣∣∣∣∣∣∣
∫

∂Gρ\S∗

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣∣ ≤
≤

∫
∂Gρ\S∗

|Nσ(y, x;λ)| |U(y)| dsy ≤M
∫

∂Gρ\S∗

|Nσ(y, x;λ)| dsy, x ∈ Gρ.

(27)

To do this, we estimate the integrals

∫
∂Gρ\S∗

|Φσ(y, x;λ)| dsy,
∫

∂Gρ\S∗

∣∣∣∣∂Φσ(y, x;λ)

∂yj

∣∣∣∣ dsy
and

∫
∂Gρ\S∗

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy on the part ∂Gρ\S∗ of the plane ym = 0 (j = 1, 2, ...,m−1).
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Separating the imaginary part of (8), we obtain

Φσ(y, x;λ) =
Eρ(σ

1/ργ)

cm

 ∂k−1
∂sk−1

∞∫
0

(ym − xm)ImEρ(σ
1/ρw)

u2 + r2
uI0(λu)√
u2 + α2

du−

− ∂k−1

∂sk−1

∞∫
0

uReEρ(σ
1/ρw)

u2 + r2
I0(λu)du

 , y 6= x, xm > 0.

(28)

Given (28) and the inequality

I0(λu) ≤
√

2

λπu
, (29)

we have ∫
∂Gρ\S∗

|Φσ(y, x;λ)| dsy ≤ Cρ(λ, x)σk exp(−σγρ) , σ > 1, x ∈ Gρ, (30)

To estimate the second integral, we use the equality

∂Φσ(y, x;λ)

∂yj
=
∂Φσ(y, x;λ)

∂s

∂s

∂yj
= 2(yj − xj)

∂Φσ(y, x;λ)

∂s
,

s = α2, j = 1, 2, ...,m− 1.

(31)

Given equality (28), inequality (29) and equality (31), we obtain∫
∂Gρ\S∗

∣∣∣∣∂Φσ(y, x;λ)

∂yj

∣∣∣∣ dsy ≤ Cρ(λ, x)σk exp(−σγρ) , σ > 1, x ∈ Gρ,

j = 1, 2, ...,m− 1.

(32)

Now, we estimate the integral

∫
∂Gρ\S∗

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy.
Taking into account equality (28) and inequality (29), we obtain∫

∂Gρ\S∗

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy ≤ Cρ(λ, x)σk exp(−σγρ) , σ > 1, x ∈ Gρ, (33)

From inequalities (30), (32), (33) and (27), we obtain an estimate (25).
Now let us prove inequality (26). To do this, we take the derivatives from equalities

(10) and (24) with respect to xj , j = 1, ...,m, then we obtain the following:

∂U(x)

∂xj
=

∫
S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy +

∫
∂Gρ\S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy,

∂Uσ(x)

∂xj
=

∫
S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy, x ∈ Gρ, j = 1, ...,m.

(34)
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Taking into account the (34) and inequality (23), we estimate the following∣∣∣∣∂U(x)

∂xj
− ∂σU(x)

∂xj

∣∣∣∣ ≤
∣∣∣∣∣∣∣
∫

∂Gρ\S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣∣ ≤
≤

∫
∂Gρ\S∗

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤M
∫

∂Gρ\S∗

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy,
x ∈ Gρ, j = 1, ...,m.

(35)

To do this, we estimate the integrals

∫
∂Gρ\S∗

∣∣∣∣∂Φσ(y, x;λ)

∂xj

∣∣∣∣ dsy, (j = 1, 2, ...,m− 1) and

∫
∂Gρ\S∗

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy on the part ∂Gρ\S∗ of the plane ym = 0.

To estimate the first integrals, we use the equality

∂Φσ(y, x;λ)

∂xj
=
∂Φσ(y, x;λ)

∂s

∂s

∂xj
= −2(yj − xj)

∂Φσ(y, x;λ)

∂s
,

s = α2, j = 1, 2, ...,m− 1.

(36)

Given equality (28), inequality (29) and equality (36), we obtain∫
∂Gρ\S∗

∣∣∣∣∂Φσ(y, x;λ)

∂xj

∣∣∣∣ dsy ≤ Cρ(λ, x)σk exp(−σγρ) , σ > 1, x ∈ Gρ,

j = 1, 2, ...,m− 1.

(37)

Now, we estimate the integral

∫
∂Gρ\S∗

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy.
Taking into account equality (28) and inequality (29), we obtain∫

∂Gρ\S∗

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy ≤ Cρ(λ, x)σk exp(−σγρ) , σ > 1, x ∈ Gρ, (38)

From inequalities (35), (37) and (38), we obtain an estimate (26).
Theorem 4.1 is proved. �

Corollary 4.1. For each x ∈ Gρ, the equalities are true

lim
σ→∞

Uσ(x) = U(x), lim
σ→∞

∂Uσ(x)

∂xj
=
∂U(x)

∂xj
, j = 1, ...,m.

We denote by Gε the set

Gε =

{
(x1, ..., xm) ∈ Gρ, a > xm ≥ ε, a = max

T
ψ(x′), 0 < ε < a

}
.

Here, at m = 2, ψ(x1) - is a curve, and at m = 2k, k ≥ 1, ψ(x′) - is a surface. It is
easy to see that the set Gε ⊂ Gρ is compact.
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Corollary 4.2. If x ∈ Gε, then the families of functions {Uσ(x)} and

{
∂Uσ(x)

∂xj

}
converge

uniformly for σ →∞, i.e.:

Uσ(x) ⇒ U(x),
∂Uσ(x)

∂xj
⇒

∂U(x)

∂xj
, j = 1, ...,m.

It should be noted that the set Eε = Gρ\Gε serves as a boundary layer for this problem,
as in the theory of singular perturbations, where there is no uniform convergence.

5. Estimation of the stability of the solution to the Cauchy problem

Suppose that the surface S (or the curve at m = 2) is given by the equation

ym = ψ(y′), y′ ∈ Rm−1,

where ψ(y′) is a single-valued function satisfying the Lyapunov conditions.
We put

a = max
T

ψ(y′), b = max
T

√
1 + ψ′2(y′).

Theorem 5.1. Let U(y) ∈ A(Gρ) satisfy condition (23), and on a smooth surface S the
inequality

|U(y)| ≤ δ, 0 < δ < 1. (39)

Then the following estimates are true

|U(x)| ≤ Cρ(λ, x)σkM1−( γa )
ρ

δ(
γ
a )
ρ

, σ > 1, x ∈ Gρ. (40)∣∣∣∣∂U(x)

∂xj

∣∣∣∣ ≤ Cρ(λ, x)σkM1−( γa )
ρ

δ(
γ
a )
ρ

, σ > 1, x ∈ Gρ, j = 1, ..,m. (41)

Here is aρ = max
y∈S

Rewρ0.

Proof. Let us first estimate inequality (40). Using the integral formula (10), we have

U(x) =

∫
S∗

Nσ(y, x;λ)U(y)dsy +

∫
∂Gρ\S∗

Nσ(y, x;λ))U(y)dsy, x ∈ Gρ. (42)

We estimate the following

|U(x)| ≤

∣∣∣∣∣∣
∫
S∗

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∫

∂Gρ\S∗

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣∣ , x ∈ Gρ. (43)

Given inequality (39), we estimate the first integral of inequality (43).∣∣∣∣∣∣
∫
S∗

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤
∫
S∗

|Nσ(y, x;λ)| |U(y)| dsy ≤

≤ δ
∫
S∗

|Nσ(y, x;λ)| dsy, x ∈ Gρ.

(44)
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To do this, we estimate the integrals

∫
S∗

|Φσ(y, x;λ)| dsy,
∫
S∗

∣∣∣∣∂Φσ(y, x;λ)

∂yj

∣∣∣∣ dsy, (j =

1, 2, ...,m− 1) and

∫
S∗

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy on a smooth surface S.

Given equality (28) and the inequality (29), we have∫
S∗

|Φσ(y, x;λ)| dsy ≤ Cρ(λ, x)σk expσ(τρaρ − γρ), σ > 1, x ∈ Gρ. (45)

To estimate the second integral, using equalities (28) and (31) as well as inequality (29),
we obtain ∫

S∗

∣∣∣∣∂Φσ(y, x;λ)

∂yj

∣∣∣∣ dsy ≤ Cρ(λ, x)σk expσ(τρaρ − γρ), σ > 1, x ∈ Gρ,

j = 1, ...,m− 1.

(46)

To estimate the integral

∫
S∗

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy, using equality (28) and inequality (29),

we obtain ∫
S∗

∣∣∣∣∂Φσ(y, x;λ)

∂ym

∣∣∣∣ dsy ≤ Cρ(λ, x)σk expσ(τρaρ − γρ), σ > 1, x ∈ Gρ. (47)

From (45) - (47), we obtain∣∣∣∣∣∣
∫
S∗

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣ ≤ Cρ(λ, x)σkδ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ. (48)

The following is known∣∣∣∣∣∣∣
∫

∂Gρ\S∗

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣∣ ≤ Cρ(λ, x)σkM exp(−σγρ), σ > 1, x ∈ Gρ. (49)

Now taking into account (48) - (49), we have

|U(x)| ≤ Cρ(λ, x)σk

2
(δ exp(στρaρ) +M) exp(−σγρ), σ > 1, x ∈ Gρ. (50)

Choosing σ from the equality

σ =
1

aρ
ln
M

δ
, (51)

we obtain an estimate (40).
Now let us prove inequality (41). To do this, we find the partial derivative from the

integral formula (10) with respect to the variable xj , j = 1, ...,m− 1:

∂U(x)

∂xj
=

∫
S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy +

∫
∂Gρ\S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy +

+
∂Uσ(x)

∂xj
+

∫
∂Gρ\S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy, x ∈ Gρ, j = 1, ...,m.

(52)
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Here

∂Uσ(x)

∂xj
=

∫
S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy. (53)

We estimate the following

∣∣∣∣∂U(x)

∂xj

∣∣∣∣ ≤
∣∣∣∣∣∣
∫
S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∫

∂Gρ\S∗

∂Nσ(y, x;λ))

∂xj
U(y)dsy

∣∣∣∣∣∣∣ ≤

≤
∣∣∣∣∂Uσ(x)

∂xj

∣∣∣∣+

∣∣∣∣∣∣∣
∫

∂Gρ\S∗

∂Nσ(y, x;λ))

∂xj
U(y)dsy

∣∣∣∣∣∣∣ , x ∈ Gρ, j = 1, ...,m.

(54)

Given inequality (39), we estimate the first integral of inequality (54).∣∣∣∣∣∣
∫
S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤
∫
S∗

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤

≤ δ
∫
S∗

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy, x ∈ Gρ, j = 1, ...,m.

(55)

To do this, we estimate the integrals

∫
S∗

∣∣∣∣∂Φσ(y, x;λ)

∂xj

∣∣∣∣ dsy, (j = 1, 2, ...,m − 1) and∫
S∗

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy on a smooth surface S.

Given equality (28), inequality (29) and equality (36), we obtain∫
S∗

∣∣∣∣∂Φσ(y, x;λ)

∂xj

∣∣∣∣ dsy ≤ Cρ(λ, x)σk expσ(τρaρ − γρ), σ > 1, x ∈ Gρ,

j = 1, 2, ...,m− 1.

(56)

Now, we estimate the integral

∫
S∗

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy.
Taking into account equality (28) and inequality (29), we obtain∫

S∗

∣∣∣∣∂Φσ(y, x;λ)

∂xm

∣∣∣∣ dsy ≤ Cρ(λ, x)σkδ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ, (57)

From (56) - (57), we obtain∣∣∣∣∣∣
∫
S∗

∂Nσ(y, x;λ)

∂xj
U(y)

∣∣∣∣∣∣ ≤ Cρ(λ, x)σkδ expσ(τρaρ − γρ), σ > 1, x ∈ Gρ,

j = 1, ...,m.

(58)
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The following is known∣∣∣∣∣∣∣
∫

∂Gρ\S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣∣ ≤ Cρ(λ, x)σkM exp(−σγρ), σ > 1, x ∈ Gρ,

j = 1, ...,m.

(59)

Now taking into account (58) - (59), we have∣∣∣∣∂U(x)

∂xj

∣∣∣∣ ≤ Cρ(λ, x)σk

2
(δ exp(στρaρ) +M) exp(−σγρ), σ > 1, x ∈ Gρ,

j = 1, ...,m.

(60)

Choosing σ from the equality (51) we obtain an estimate (41).
Theorem 5.1 is proved. �

Let U(y) ∈ A(Gρ) and instead U(y) on S with its approximation fδ(y), respectively,
with an error 0 < δ < 1,

max
S
|U(y)− fδ(y)| ≤ δ. (61)

We put

Uσ(δ)(x) =

∫
S∗

Nσ(y, x;λ)fδ(y)dsy, x ∈ Gρ. (62)

Theorem 5.2. Let U(y) ∈ A(Gρ) on the part of the plane ym = 0 satisfy condition (23).
Then the following estimates is true∣∣U(x)− Uσ(δ)(x)

∣∣ ≤ Cρ(λ, x)σkM1−( γa )
ρ

δ(
γ
a )
ρ

, σ > 1, x ∈ Gρ. (63)

∣∣∣∣∂U(x)

∂xj
−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ Cρ(λ, x)σkM1−( γa )
ρ

δ(
γ
a )
ρ

, σ > 1, x ∈ Gρ,

j = 1, ...,m.
(64)

Proof. From the integral formulas (10) and (62), we have

U(x)− Uσ(δ)(x) =

∫
∂Gρ

Nσ(y, x;λ)U(y)dsy −
∫
S∗

Nσ(y, x;λ)fδ(y)dsy =

=

∫
S∗

Nσ(y, x;λ)U(y)dsy +

∫
∂Gρ\S∗

Nσ(y, x;λ)U(y)dsy −
∫
S∗

Nσ(y, x;λ)fδ(y)dsy =

=

∫
S∗

Nσ(y, x;λ) {U(y)− fδ(y)} dsy +

∫
∂Gρ\S∗

Nσ(y, x;λ)U(y)dsy.
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and

∂U(x)

∂xj
−
∂Uσ(δ)(x)

∂xj
=

∫
∂Gρ

∂Nσ(y, x;λ)

∂xj
U(y)dsy −

∫
S∗

∂Nσ(y, x;λ)

∂xj
fδ(y)dsy =

=

∫
S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy +

∫
∂Gρ\S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy −

∫
S∗

∂Nσ(y, x;λ)

∂xj
fδ(y)dsy =

=

∫
S∗

∂Nσ(y, x;λ)

∂xj
{U(y)− fδ(y)} dsy +

∫
∂Gρ\S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy, j = 1, ...,m.

Using conditions (23) and (61), we estimate the following:

∣∣U(x)− Uσ(δ)(x)
∣∣ =

∣∣∣∣∣∣
∫
S∗

Nσ(y, x;λ) {U(y)− fδ(y)} dsy

∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣
∫

∂Gρ\S∗

Nσ(y, x;λ)U(y)dsy

∣∣∣∣∣∣∣ ≤
∫
S∗

|Nσ(y, x;λ)| |{U(y)− fδ(y)}| dsy+

+

∫
∂Gρ\S∗

|Nσ(y, x;λ)| |U(y)| dsy ≤ δ
∫
S∗

|Nσ(y, x;λ)| dsy +M

∫
∂Gρ\S∗

|Nσ(y, x;λ)| dsy.

and ∣∣∣∣∂U(x)

∂xj
−
∂Uσ(δ)(x)

∂xj

∣∣∣∣ =

∣∣∣∣∣∣
∫
S∗

∂Nσ(y, x;λ)

∂xj
{U(y)− fδ(y)} dsy

∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣
∫

∂Gρ\S∗

∂Nσ(y, x;λ)

∂xj
U(y)dsy

∣∣∣∣∣∣∣ ≤
∫
S∗

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |{U(y)− fδ(y)} | dsy+

+

∫
∂Gρ\S∗

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ |U(y)| dsy ≤ δ
∫
S∗

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy+
+M

∫
∂Gρ\S∗

∣∣∣∣∂Nσ(y, x;λ)

∂xj

∣∣∣∣ dsy, j = 1, ...,m.

Now, repeating the proof of Theorems 4.1 and 5.1, we obtain∣∣U(x)− Uσ(δ)(x)
∣∣ ≤ Cρ(λ, x)σk

2
(δ exp(στρaρ) +M) exp(−σγρ),∣∣∣∣∂U(x)

∂xj
−
Uσ(δ)(x)

∂xj

∣∣∣∣ ≤ Cρ(λ, x)σk

2
(δ exp(στρaρ) +M) exp(−σγρ), j = 1, ...,m.

From here, choosing σ from equality (51), we obtain an estimates (63) and (64).
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Theorem 5.2 is proved. �

Corollary 5.1. For each x ∈ Gρ, the equalities are true

lim
δ→0

Uσ(δ)(x) = U(x), lim
δ→0

∂Uσ(δ)(x)

∂xj
=
∂U(x)

∂xj
, j = 1, ...,m.

Corollary 5.2. If x ∈ Gε, then the families of functions
{
Uσ(δ)(x)

}
and

{
∂Uσ(δ)(x)

∂xj

}
converge uniformly for δ → 0, i.e.:

Uσ(δ)(x) ⇒ U(x),
∂Uσ(δ)(x)

∂xj
⇒

∂U(x)

∂xj
, j = 1, ...,m.

6. Conclusion

This article obtained the following results:
Using the Carleman function, a formula is obtained for the continuation of the solution

of linear elliptic systems of the first order with constant coefficients in a spatial bounded
domain Rm, (m = 2k, k ≥ 1). The resulting formula is an analogue of the classical
formula of B. Riemann, W. Voltaire and J. Hadamard, which they constructed to solve
the Cauchy problem in the theory of hyperbolic equations. An estimate of the stability
of the solution of the Cauchy problem in the classical sense for matrix factorizations of
the Helmholtz equation is given. The problem is considered in which instead of the exact
data of the Cauchy problem; their approximations with a given deviation in the uniform
metric are given and under the assumption that the solution of the Cauchy problem is
bounded on part T of the boundary of the domain Gρ; an explicit regularization formula
is obtained.

We note that when solving applied problems, one should find the approximate values

of U(x) and
∂U(x)

∂xj
, x ∈ Gρ, j = 1, ...,m. In this paper, we construct a family of vector-

functions U(x, fδ) = Uσ(δ)(x) and
∂U(x, fδ)

∂xj
=
∂Uσ(δ)(x)

∂xj
, j = 1, ...,m depending on a

parameter σ, and prove that under certain conditions and a special choice of the parameter

σ = σ(δ), at δ → 0, the family Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
converges in the usual sense to a

solution U(x) and its derivative
∂U(x)

∂xj
at a point x ∈ Gρ.

Following A.N. Tikhonov (see [2]), a family of vector-valued functions Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
is called a regularized solution of the problem. A regularized solution determines

a stable method of approximate solution of the problem.

Thus, functionals Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
determines the regularization of the solution

of problem (1)–(2).
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