ON A REGULARIZED SOLUTION OF THE CAUCHY PROBLEM FOR MATRIX FACTORIZATIONS OF THE HELMHOLTZ EQUATION

D. A. JURAEV ${ }^{1,4 *}$, S. NOEIAGHDAM ${ }^{2,3}$, P. AGARWAL ${ }^{4}$, §

Abstract

In this paper, we consider the problem of recovering solutions for matrix factorizations of the Helmholtz equation in a multidimensional bounded domain from their values on a part of the boundary of this domain, i.e., the Cauchy problem. An approximate solution to this problem is constructed based on the Carleman matrix method.

Keywords: Ill-Posed Cauchy Problems, regularized solution, approximate solution, matrix factorization, elliptical system.

AMS Subject Classification: 35J46, 35J56

1. Introduction

Many scientific and applied problems, studied at the world level, in many cases are reduced to the study of ill-posed boundary value problems for partial differential equations. Applied research on conditional correctness and construction of an approximate solution for given values on a part of the boundary of the region, for equations of elliptical type, are especially important in hydrodynamics, geophysics and electrodynamics. The study of a family of regularizing solutions to ill-posed problems served as an impetus for the beginning of studies of the well-posedness class when narrowed to a compact set. Therefore, the study of ill-posed problems for linear elliptic systems of the first order is one of the topical problems in the theory of partial differential equations. At present, in the world, in the study of ill-posed boundary value problems for linear elliptic systems of the first order,

[^0]the construction of a regularized solution plays a special role. The Cauchy problem for elliptic equations is ill-posed (example Hadamard, see for instance [18], p. 39).

At present, special attention is paid to topical aspects of differential equations and mathematical physics, which have scientific and practical applications in the fundamental sciences. In particular, special attention is paid to the study of various ill-posed boundary value problems for partial differential equations of elliptic type, which have practical application in applied sciences. As a result, significant results were obtained in studies of ill-posed boundary value problems for partial differential equations, that is, approximate solutions were constructed using Carleman matrices in explicit form from approximate data in special domains, estimates of conditional stability and solvability criteria were established. The first results, from the point of view of practical importance, for ill-posed problems and for reducing the class of possible solutions to a compact set and reducing problems to stable ones were obtained in the works of A.N. Tikhonov (see [2]). In the works of M.M. Lavrent'ev, estimates were obtained that characterize the stability of the spatial problem in the class of bounded solutions of the Cauchy problem for the Laplace equation and some other ill-posed problems of mathematical physics in a straight cylinder, as well as for an arbitrary spatial domain with a sufficiently smooth boundary (see, for instance [20]-[21]).

In this work, based on the results of works [20]-[21], [27]-[30], based on the Cauchy problem for the Laplace and Helmholtz equations, an explicit Carleman matrix was constructed and, on its basis, a regularized solution of the Cauchy problem for the matrix factorization of the Helmholtz equation. In work [32], the calculation of double integrals with the help of some connection between wave equation and ODE system was considered.

The problem of reconstructing the solution for matrix factorization of the Helmholtz equation (see, for instance [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] and [13]), is one of the topical problems in the theory of differential equations.

At present, there is still interest in classical ill-posed problems of mathematical physics. This direction in the study of the properties of solutions of Cauchy problem for Laplace equation was started in [31], [20]-[21], [1], [27]-[30] and subsequently developed in [14]-[15], [19], [23]-[24], [17], [3]-[13].

2. Basic information and statement of the Cauchy problem

Let $\mathbb{R}^{m},(m=2 k, k \geq 1)$ be a m-dimensional real Euclidean space,

$$
\begin{gathered}
x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}, y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}, \\
x^{\prime}=\left(x_{1}, \ldots, x_{m-1}\right) \in \mathbb{R}^{m-1}, y^{\prime}=\left(y_{1}, \ldots, y_{m-1}\right) \in \mathbb{R}^{m-1} .
\end{gathered}
$$

We introduce the following notation:

$$
\begin{gathered}
r=|y-x|, \alpha=\left|y^{\prime}-x^{\prime}\right|, w=i \tau \sqrt{u^{2}+\alpha^{2}}+\beta, w_{0}=i \tau \alpha+\beta, \\
\beta=\tau y_{m}, \tau=\operatorname{tg} \frac{\pi}{2 \rho}, \rho>1, u \geq 0, s=\alpha^{2}, \\
G_{\rho}=\left\{y:\left|y^{\prime}\right|<\tau y_{m}, y_{m}>0\right\}, \partial G_{\rho}=\left\{y:\left|y^{\prime}\right|=\tau y_{m}, y_{m}>0\right\}, \\
\frac{\partial}{\partial x}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{m}}\right)^{T}, \frac{\partial}{\partial x}=\xi^{T}, \xi^{T}=\left(\begin{array}{c}
\xi_{1} \\
\ldots \\
\xi_{m}
\end{array}\right) \text {-transposed vector } \xi, \\
U(x)=\left(U_{1}(x), \ldots, U_{n}(x)\right)^{T}, u^{0}=(1, \ldots, 1) \in \mathbb{R}^{n}, n=2^{m}, m \geq 2,
\end{gathered}
$$

$$
E(z)=\left\|\begin{array}{c}
z_{1} \ldots 0 \\
\ldots \ldots . \\
0 \ldots z_{n}
\end{array}\right\| \text { - diagonal matrix, } z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{n}
$$

$G_{\rho} \subset \mathbb{R}^{m},(m=2 k, k \geq 1)$ be a bounded simply-connected domain, the boundary of which consists of the surface of the cone ∂G_{ρ}, and a smooth piece of the surface S, lying in the cone G_{ρ}, i.e., $\partial G_{\rho}=S \bigcup T, T=\partial G_{\rho} \backslash S$. Let $\left(0,0, \ldots, x_{m}\right) \in G_{\rho}, x_{m}>0$.

Let $D\left(\xi^{T}\right)$ be a $(n \times n)$ - dimensional matrix with elements consisting of a set of linear functions with constant coefficients of the complex plane for which the following condition is satisfied:

$$
D^{*}\left(\xi^{T}\right) D\left(\xi^{T}\right)=E\left(\left(|\xi|^{2}+\lambda^{2}\right) u^{0}\right)
$$

where $D^{*}\left(\xi^{T}\right)$ is the Hermitian conjugate matrix $D\left(\xi^{T}\right), \lambda-$ is a real number.
We consider a system of differential equations in the region G

$$
\begin{equation*}
D\left(\frac{\partial}{\partial x}\right) U(x)=0 \tag{1}
\end{equation*}
$$

where $D\left(\frac{\partial}{\partial x}\right)$ is the matrix of first-order differential operators.
We denote by $A\left(G_{\rho}\right)$ the class of vector functions in the domain G_{ρ} continuous on $\bar{G}_{\rho}=G_{\rho} \bigcup \partial G_{\rho}$ and satisfying system (1).

3. Construction of the Carleman matrix and the Cauchy problem

Formulation of the problem. Suppose $U(y) \in A\left(G_{\rho}\right)$ and

$$
\begin{equation*}
\left.U(y)\right|_{S}=f(y), y \in S \tag{2}
\end{equation*}
$$

Here, $f(y)$ a given continuous vector-function on S. It is required to restore the vector function $U(y)$ in the domain G_{ρ}, based on it's values $f(y)$ on S.

If $U(y) \in A\left(G_{\rho}\right)$, then the following integral formula of Cauchy type is valid

$$
\begin{equation*}
U(x)=\int_{\partial G_{\rho}} N(y, x ; \lambda) U(y) d s_{y}, \quad x \in G \tag{3}
\end{equation*}
$$

where

$$
N(y, x ; \lambda)=\left(E\left(\varphi_{m}(\lambda r) u^{0}\right) D^{*}\left(\frac{\partial}{\partial x}\right)\right) D\left(t^{T}\right)
$$

Here $t=\left(t_{1}, \ldots, t_{m}\right)$-is the unit exterior normal, drawn at a point y, the surface ∂G_{ρ}, $\varphi_{m}(\lambda r)$ - is the fundamental solution of the Helmholtz equation in $\mathbb{R}^{m},(m=2 k, k \geq 1)$, where $\varphi_{m}(\lambda r)$ defined by the following formula:

$$
\begin{align*}
& \varphi_{m}(\lambda r)=P_{m} \lambda^{(m-2) / 2} \frac{H_{(m-2) / 2}^{(1)}(\lambda r)}{r^{(m-2) / 2}} \tag{4}\\
& P_{m}=\frac{1}{2 i(2 \pi)^{(m-2) / 2}}, m=2 k, k \geq 1
\end{align*}
$$

Here $H_{(m-2) / 2}^{(1)}(\lambda r)$ - is the Hankel function of the first kind of $(m-2) / 2-$ th order (see, for instance [25]).

We denote by $K(w)$ is an entire function taking real values for real $w,(w=u+$ $i v, u, v$-real numbers) and satisfying the following conditions:

$$
\begin{gather*}
K(u) \neq 0, \sup _{v \geq 1}\left|v^{p} K^{(p)}(w)\right|=B(u, p)<\infty \tag{5}\\
-\infty<u<\infty, p=0,1, \ldots, m
\end{gather*}
$$

We define the function $\Phi(y, x ; \lambda)$ at $y \neq x$ by the following equality

$$
\begin{gather*}
\Phi(y, x ; \lambda)=\frac{1}{c_{m} K\left(x_{m}\right)} \frac{\partial^{k-1}}{\partial s^{k-1}} \int_{0}^{\infty} \operatorname{Im}\left[\frac{K(w)}{w-x_{m}}\right] \frac{u I_{0}(\lambda u)}{\sqrt{u^{2}+\alpha^{2}}} d u \tag{6}\\
m=2 k, k \geq 1
\end{gather*}
$$

where $c_{2}=-2 \pi, c_{m}=(-1)^{k-1}(m-2)(k-1)!\omega_{m} ; I_{0}(\lambda u)=J_{0}(i \lambda u)-$ is the Bessel function of the first kind of zero order (see, [1]), ω_{m} - area of a unit sphere in space \mathbb{R}^{m}.

In the formula (6), choosing

$$
\begin{equation*}
K(w)=E_{\rho}\left(\sigma^{1 / \rho} w\right), K\left(x_{m}\right)=E_{\rho}\left(\sigma^{1 / \rho} \gamma\right), \gamma=\tau x_{m}, \sigma>0 \tag{7}
\end{equation*}
$$

we get

$$
\begin{equation*}
\Phi_{\sigma}(y, x ; \lambda)=\frac{E_{\rho}\left(\sigma^{1 / \rho} \gamma\right)}{c_{m}} \frac{\partial^{k-1}}{\partial s^{k-1}} \int_{0}^{\infty} \operatorname{Im}\left[\frac{E_{\rho}\left(\sigma^{1 / \rho} w\right)}{w-x_{m}}\right] \frac{u I_{0}(\lambda u)}{\sqrt{u^{2}+\alpha^{2}}} d u \tag{8}
\end{equation*}
$$

Here $E_{\rho}\left(\sigma^{1 / \rho} w\right)$ - is the entire Mittag-Leffler function (see, [22]). In [26], using the S-generalized beta function, a new generalization of the Mittag-Leffler function and its properties is presented.

The formula (3) is true if instead $\varphi_{m}(\lambda r)$ of substituting the function

$$
\begin{equation*}
\Phi_{\sigma}(y, x ; \lambda)=\varphi_{m}(\lambda r)+g_{\sigma}(y, x ; \lambda) \tag{9}
\end{equation*}
$$

where $g_{\sigma}(y, x)-$ is the regular solution of the Helmholtz equation with respect to the variable y, including the point $y=x$.

Then the integral formula has the form:

$$
\begin{equation*}
U(x)=\int_{\partial G_{\rho}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}, \quad x \in G \tag{10}
\end{equation*}
$$

where

$$
N_{\sigma}(y, x ; \lambda)=\left(E\left(\Phi_{\sigma}(y, x ; \lambda) u^{0}\right) D^{*}\left(\frac{\partial}{\partial x}\right)\right) D\left(t^{T}\right)
$$

Recall the basic properties of the Mittag-Leffler function. The entire function of MittagLeffler is defined by a series.

$$
\sum_{n=1}^{\infty} \frac{w^{n}}{\Gamma\left(1+\rho^{-1} n\right)}=E_{\rho}(w), w=u+i v
$$

where $\Gamma(s)$ - is the Euler gamma function.
We denote by $\gamma_{\varepsilon}\left(\beta_{0}\right)\left(\varepsilon>0,0<\beta_{0}<\pi\right)$ the contour in the complex plane ζ, run in the direction of non-decreasing $\arg \zeta$ and consisting of the following parts:

1. The beam $\arg \zeta=-\beta_{0},|\zeta| \geq \varepsilon$;
2. The arc $-\beta_{0}<\arg \zeta<\beta_{0}$ of circle $|\zeta|=\varepsilon$;
3. The beam $\arg \zeta=\beta_{0},|\zeta| \geq \varepsilon$.

The contour $\gamma_{\varepsilon}\left(\beta_{0}\right)$ divides the plane ζ into two unbounded simply connected domains G_{ρ}^{-}and G_{ρ}^{+}lying to the left and to the right of $\gamma_{\varepsilon}\left(\beta_{0}\right)$, respectively.

Let $\rho>1, \frac{\pi}{2 \rho}<\beta_{0}<\frac{\pi}{\rho}$.
Denote

$$
\begin{equation*}
\psi_{\rho}(w)=\frac{1}{2 \pi i} \int_{\gamma_{\varepsilon}\left(\beta_{0}\right)} \frac{\exp \left(\zeta^{\rho}\right)}{\zeta-w} d \zeta \tag{11}
\end{equation*}
$$

Then the following integral representations are valid:

$$
\begin{gather*}
E_{\rho}(w)=\psi_{\rho}(w), \quad z \in G_{\rho}^{-} \tag{12}\\
E_{\rho}(w)=\rho \exp \left(w^{\rho}\right)+\psi_{\rho}(w), \quad z \in G_{\rho}^{+} \tag{13}
\end{gather*}
$$

From these formulas we find

$$
\left.\begin{array}{c}
\left|E_{\rho}(w)\right| \leq \rho \exp \left(\operatorname{Re} w^{\rho}\right)+\left|\psi_{\rho}(w)\right|, \quad|\arg w| \leq \frac{\pi}{2 \rho}+\eta_{0} \\
\left|E_{\rho}(w)\right| \leq\left|\psi_{\rho}(w)\right|, \quad \frac{\pi}{2 \rho}+\eta_{0} \leq|\arg w| \leq \pi, \quad \eta_{0}>0
\end{array}\right\}
$$

Further, since $E_{\rho}(w)$ is real with real w, then

$$
\begin{aligned}
& \operatorname{Re} \psi_{\rho}(w)=\frac{\rho}{2 \pi i} \int_{\gamma_{\varepsilon}\left(\beta_{0}\right)} \frac{2 \zeta-\operatorname{Re} w}{(\zeta-w) \zeta-\bar{w})} \exp \left(\zeta^{\rho}\right) d \zeta \\
& \operatorname{Im} \psi_{\rho}(w)=\frac{\rho \operatorname{Im}(w)}{2 \pi i} \int_{\gamma_{\varepsilon}\left(\beta_{0}\right)} \frac{\exp \left(\zeta^{\rho}\right)}{(\zeta-w) \zeta-\bar{w})} d \zeta
\end{aligned}
$$

The information given here concerning the function $E_{\rho}(w)$ is taken from (see, for instance [5] and [9]).

In what follows, to prove the main theorems, we need the following estimates for the function $\Phi_{\sigma}(y, x ; \lambda$.

Lemma 3.1. Let $x=\left(x_{1}, \ldots, x_{m}\right) \in G_{\rho}, y \neq x, \sigma \geq \lambda+\sigma_{0}, \sigma_{0}>0$, then

1) at $\beta \leq \alpha$ inequalities are satisfied

$$
\begin{gather*}
\left|\Phi_{\sigma}(y, x ; \lambda)\right| \leq C(\rho, \lambda) \frac{\sigma^{m-3}}{r^{m-2}} \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{17}\\
\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{j}}\right| \leq C(\rho, \lambda) \frac{\sigma^{m}}{r^{m-1}} \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho}, j=1, \ldots, m \tag{18}\\
\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right| \leq C(\rho, \lambda) \frac{\sigma^{m}}{r^{m-1}} \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho}, j=1, \ldots, m \tag{19}
\end{gather*}
$$

2) at $\beta>\alpha$ inequalities are satisfied

$$
\begin{equation*}
\left|\Phi_{\sigma}(y, x ; \lambda)\right| \leq C(\rho, \lambda) \frac{\sigma^{m-3}}{r^{m-2}} \exp \left(-\sigma \gamma^{\rho}+\sigma \operatorname{Re} w_{0}^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{20}
\end{equation*}
$$

$\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{j}}\right| \leq C(\rho, \lambda) \frac{\sigma^{m}}{r^{m-1}} \exp \left(-\sigma \gamma^{\rho}+\sigma \operatorname{Re} w_{0}^{\rho}\right), \sigma>1, x \in G_{\rho}, j=1, \ldots, m$.
$\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right| \leq C(\rho, \lambda) \frac{\sigma^{m}}{r^{m-1}} \exp \left(-\sigma \gamma^{\rho}+\sigma \operatorname{Re} w_{0}^{\rho}\right), \sigma>1, x \in G_{\rho}, j=1, \ldots, m$.

Here $C(\rho, \lambda)$ is the function depending on ρ and λ.
For a fixed $x \in G_{\rho}$ we denote by S^{*} the part of S on which $\beta \geq \alpha$. If $x \in G_{\rho}$, then $S=S^{*}$ (in this case, $\beta=\tau y_{m}$ and the inequality $\beta \geq \alpha$ means that y lies inside or on the surface cone).

4. The continuation formula and regularization according to M.M. LaVRENT'EV'S

Theorem 4.1. Let $U(y) \in A\left(G_{\rho}\right)$ it satisfy the inequality

$$
\begin{equation*}
|U(y)| \leq M, y \in T=\partial G_{\rho} \backslash S^{*} \tag{23}
\end{equation*}
$$

If

$$
\begin{equation*}
U_{\sigma}(x)=\int_{S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}, \quad x \in G_{\rho} \tag{24}
\end{equation*}
$$

then the following estimates are true

$$
\begin{gather*}
\left|U(x)-U_{\sigma}(x)\right| \leq M C_{\rho}(\lambda, x) \sigma^{k} \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{25}\\
\left|\frac{\partial U(x)}{\partial x_{j}}-\frac{\partial U_{\sigma}(x)}{\partial x_{j}}\right| \leq M C_{\rho}(\lambda, x) \sigma^{k} \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho}, j=1, \ldots, m \tag{26}
\end{gather*}
$$

Here and below functions bounded on compact subsets of the domain G_{ρ}, we denote by $C_{\rho}(\lambda, x)$.

Proof. Let us first estimate inequality (25). Using the integral formula (10) and the equality (24), we obtain

$$
\begin{aligned}
U(x)= & \int_{S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}+\int_{\partial G_{\rho} \backslash S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}= \\
& =U_{\sigma}(x)+\int_{\partial G_{\rho} \backslash S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}, x \in G_{\rho} .
\end{aligned}
$$

Taking into account the inequality (23), we estimate the following

$$
\begin{array}{r}
\left|U(x)-U_{\sigma}(x)\right| \leq\left|\int_{\partial G_{\rho} \backslash S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}\right| \leq \tag{27}\\
\leq \int_{\partial G_{\rho} \backslash S^{*}}\left|N_{\sigma}(y, x ; \lambda)\right||U(y)| d s_{y} \leq M \int_{\partial G_{\rho} \backslash S^{*}}\left|N_{\sigma}(y, x ; \lambda)\right| d s_{y}, x \in G_{\rho} .
\end{array}
$$

To do this, we estimate the integrals $\int_{\partial G_{\rho} \backslash S^{*}}\left|\Phi_{\sigma}(y, x ; \lambda)\right| d s_{y}, \int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{j}}\right| d s_{y}$ and $\int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{m}}\right| d s_{y}$ on the part $\partial G_{\rho} \backslash S^{*}$ of the plane $y_{m}=0(j=1,2, \ldots, m-1)$.

Separating the imaginary part of (8), we obtain

$$
\begin{align*}
\Phi_{\sigma}(y, x ; \lambda) & =\frac{E_{\rho}\left(\sigma^{1 / \rho} \gamma\right)}{c_{m}}\left[\frac{\partial^{k-1}}{\partial s^{k-1}} \int_{0}^{\infty} \frac{\left(y_{m}-x_{m}\right) \operatorname{Im} E_{\rho}\left(\sigma^{1 / \rho} w\right)}{u^{2}+r^{2}} \frac{u I_{0}(\lambda u)}{\sqrt{u^{2}+\alpha^{2}}} d u-\right. \\
& \left.-\frac{\partial^{k-1}}{\partial s^{k-1}} \int_{0}^{\infty} \frac{u \operatorname{Re} E_{\rho}\left(\sigma^{1 / \rho} w\right)}{u^{2}+r^{2}} I_{0}(\lambda u) d u\right], y \neq x, x_{m}>0 \tag{28}
\end{align*}
$$

Given (28) and the inequality

$$
\begin{equation*}
I_{0}(\lambda u) \leq \sqrt{\frac{2}{\lambda \pi u}} \tag{29}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{\partial G_{\rho} \backslash S^{*}}\left|\Phi_{\sigma}(y, x ; \lambda)\right| d s_{y} \leq C_{\rho}(\lambda, x) \sigma^{k} \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{30}
\end{equation*}
$$

To estimate the second integral, we use the equality

$$
\begin{gather*}
\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{j}}=\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial s} \frac{\partial s}{\partial y_{j}}=2\left(y_{j}-x_{j}\right) \frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial s} \tag{31}\\
s=\alpha^{2}, j=1,2, \ldots, m-1
\end{gather*}
$$

Given equality (28), inequality (29) and equality (31), we obtain

$$
\begin{gather*}
\int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{j}}\right| d s_{y} \leq C_{\rho}(\lambda, x) \sigma^{k} \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{32}\\
j=1,2, \ldots, m-1
\end{gather*}
$$

Now, we estimate the integral $\int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{m}}\right| d s_{y}$.
Taking into account equality (28) and inequality (29), we obtain

$$
\begin{equation*}
\int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{m}}\right| d s_{y} \leq C_{\rho}(\lambda, x) \sigma^{k} \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{33}
\end{equation*}
$$

From inequalities (30), (32), (33) and (27), we obtain an estimate (25).
Now let us prove inequality (26). To do this, we take the derivatives from equalities (10) and (24) with respect to $x_{j}, j=1, \ldots, m$, then we obtain the following:

$$
\begin{gather*}
\frac{\partial U(x)}{\partial x_{j}}=\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}+\int_{\partial G_{\rho} \backslash S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y} \tag{34}\\
\frac{\partial U_{\sigma}(x)}{\partial x_{j}}=\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}, \quad x \in G_{\rho}, j=1, \ldots, m
\end{gather*}
$$

Taking into account the (34) and inequality (23), we estimate the following

$$
\begin{gather*}
\left|\frac{\partial U(x)}{\partial x_{j}}-\frac{\partial_{\sigma} U(x)}{\partial x_{j}}\right| \leq\left|\int_{\partial G_{\rho} \backslash S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}\right| \leq \\
\leq \int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right||U(y)| d s_{y} \leq M \int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right| d s_{y}, \tag{35}\\
x \in G_{\rho}, j=1, \ldots, m .
\end{gather*}
$$

To do this, we estimate the integrals $\int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right| d s_{y},(j=1,2, \ldots, m-1)$ and $\int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{m}}\right| d s_{y}$ on the part $\partial G_{\rho} \backslash S^{*}$ of the plane $y_{m}=0$.

To estimate the first integrals, we use the equality

$$
\begin{gather*}
\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{j}}=\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial s} \frac{\partial s}{\partial x_{j}}=-2\left(y_{j}-x_{j}\right) \frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial s}, \tag{36}\\
s=\alpha^{2}, j=1,2, \ldots, m-1 .
\end{gather*}
$$

Given equality (28), inequality (29) and equality (36), we obtain

$$
\begin{gather*}
\int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right| d s_{y} \leq C_{\rho}(\lambda, x) \sigma^{k} \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho}, \tag{37}\\
j=1,2, \ldots, m-1 .
\end{gather*}
$$

Now, we estimate the integral $\int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{m}}\right| d s_{y}$.
Taking into account equality (28) and inequality (29), we obtain

$$
\begin{equation*}
\int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{m}}\right| d s_{y} \leq C_{\rho}(\lambda, x) \sigma^{k} \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho}, \tag{38}
\end{equation*}
$$

From inequalities (35), (37) and (38), we obtain an estimate (26).
Theorem 4.1 is proved.
Corollary 4.1. For each $x \in G_{\rho}$, the equalities are true

$$
\lim _{\sigma \rightarrow \infty} U_{\sigma}(x)=U(x), \lim _{\sigma \rightarrow \infty} \frac{\partial U_{\sigma}(x)}{\partial x_{j}}=\frac{\partial U(x)}{\partial x_{j}}, j=1, \ldots, m
$$

We denote by \bar{G}_{ε} the set

$$
\bar{G}_{\varepsilon}=\left\{\left(x_{1}, \ldots, x_{m}\right) \in G_{\rho}, a>x_{m} \geq \varepsilon, a=\max _{T} \psi\left(x^{\prime}\right), 0<\varepsilon<a\right\} .
$$

Here, at $m=2, \psi\left(x_{1}\right)$ - is a curve, and at $m=2 k, k \geq 1, \psi\left(x^{\prime}\right)$ - is a surface. It is easy to see that the set $\bar{G}_{\varepsilon} \subset G_{\rho}$ is compact.

Corollary 4.2. If $x \in \bar{G}_{\varepsilon}$, then the families of functions $\left\{U_{\sigma}(x)\right\}$ and $\left\{\frac{\partial U_{\sigma}(x)}{\partial x_{j}}\right\}$ converge uniformly for $\sigma \rightarrow \infty$, i.e.:

$$
U_{\sigma}(x) \rightrightarrows U(x), \frac{\partial U_{\sigma}(x)}{\partial x_{j}} \rightrightarrows \frac{\partial U(x)}{\partial x_{j}}, j=1, \ldots, m
$$

It should be noted that the set $E_{\varepsilon}=G_{\rho} \backslash \bar{G}_{\varepsilon}$ serves as a boundary layer for this problem, as in the theory of singular perturbations, where there is no uniform convergence.

5. Estimation of the stability of the solution to the Cauchy problem

Suppose that the surface S (or the curve at $m=2$) is given by the equation

$$
y_{m}=\psi\left(y^{\prime}\right), y^{\prime} \in \mathbb{R}^{m-1}
$$

where $\psi\left(y^{\prime}\right)$ is a single-valued function satisfying the Lyapunov conditions.
We put

$$
a=\max _{T} \psi\left(y^{\prime}\right), b=\max _{T} \sqrt{1+\psi^{\prime 2}\left(y^{\prime}\right)} .
$$

Theorem 5.1. Let $U(y) \in A\left(G_{\rho}\right)$ satisfy condition (23), and on a smooth surface S the inequality

$$
\begin{equation*}
|U(y)| \leq \delta, 0<\delta<1 \tag{39}
\end{equation*}
$$

Then the following estimates are true

$$
\begin{gather*}
|U(x)| \leq C_{\rho}(\lambda, x) \sigma^{k} M^{1-\left(\frac{\gamma}{a}\right)^{\rho}} \delta\left(\frac{\gamma}{a}\right)^{\rho}, \sigma>1, x \in G_{\rho} \tag{40}\\
\left|\frac{\partial U(x)}{\partial x_{j}}\right| \leq C_{\rho}(\lambda, x) \sigma^{k} M^{1-\left(\frac{\gamma}{a}\right)^{\rho}} \delta^{\left(\frac{\gamma}{a}\right)^{\rho}}, \sigma>1, x \in G_{\rho}, j=1, . ., m \tag{41}
\end{gather*}
$$

Here is $a^{\rho}=\max _{y \in S} \operatorname{Re} w_{0}^{\rho}$.
Proof. Let us first estimate inequality (40). Using the integral formula (10), we have

$$
\begin{equation*}
\left.U(x)=\int_{S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}+\int_{\partial G_{\rho} \backslash S^{*}} N_{\sigma}(y, x ; \lambda)\right) U(y) d s_{y}, x \in G_{\rho} \tag{42}
\end{equation*}
$$

We estimate the following

$$
\begin{equation*}
|U(x)| \leq\left|\int_{S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}\right|+\left|\int_{\partial G_{\rho} \backslash S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}\right|, x \in G_{\rho} \tag{43}
\end{equation*}
$$

Given inequality (39), we estimate the first integral of inequality (43).

$$
\begin{gather*}
\left|\int_{S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}\right| \leq \int_{S^{*}}\left|N_{\sigma}(y, x ; \lambda)\right||U(y)| d s_{y} \leq \tag{44}\\
\leq \delta \int_{S^{*}}\left|N_{\sigma}(y, x ; \lambda)\right| d s_{y}, x \in G_{\rho}
\end{gather*}
$$

To do this, we estimate the integrals $\int_{S^{*}}\left|\Phi_{\sigma}(y, x ; \lambda)\right| d s_{y}, \int_{S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{j}}\right| d s_{y},(j=$ $1,2, \ldots, m-1)$ and $\int_{S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{m}}\right| d s_{y}$ on a smooth surface S.

Given equality (28) and the inequality (29), we have

$$
\begin{equation*}
\int_{S^{*}}\left|\Phi_{\sigma}(y, x ; \lambda)\right| d s_{y} \leq C_{\rho}(\lambda, x) \sigma^{k} \exp \sigma\left(\tau^{\rho} a^{\rho}-\gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{45}
\end{equation*}
$$

To estimate the second integral, using equalities (28) and (31) as well as inequality (29), we obtain

$$
\begin{gather*}
\int_{S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{j}}\right| d s_{y} \leq C_{\rho}(\lambda, x) \sigma^{k} \exp \sigma\left(\tau^{\rho} a^{\rho}-\gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{46}\\
j=1, \ldots, m-1
\end{gather*}
$$

To estimate the integral $\int_{S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{m}}\right| d s_{y}$, using equality (28) and inequality (29), we obtain

$$
\begin{equation*}
\int_{S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial y_{m}}\right| d s_{y} \leq C_{\rho}(\lambda, x) \sigma^{k} \exp \sigma\left(\tau^{\rho} a^{\rho}-\gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{47}
\end{equation*}
$$

From (45) - (47), we obtain

$$
\begin{equation*}
\left|\int_{S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}\right| \leq C_{\rho}(\lambda, x) \sigma^{k} \delta \exp \sigma\left(\tau^{\rho} a^{\rho}-\gamma^{\rho}\right), \sigma>1, x \in G_{\rho} . \tag{48}
\end{equation*}
$$

The following is known

$$
\begin{equation*}
\left|\int_{\partial G_{\rho} \backslash S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}\right| \leq C_{\rho}(\lambda, x) \sigma^{k} M \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{49}
\end{equation*}
$$

Now taking into account (48) - (49), we have

$$
\begin{equation*}
|U(x)| \leq \frac{C_{\rho}(\lambda, x) \sigma^{k}}{2}\left(\delta \exp \left(\sigma \tau^{\rho} a^{\rho}\right)+M\right) \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{50}
\end{equation*}
$$

Choosing σ from the equality

$$
\begin{equation*}
\sigma=\frac{1}{a^{\rho}} \ln \frac{M}{\delta} \tag{51}
\end{equation*}
$$

we obtain an estimate (40).
Now let us prove inequality (41). To do this, we find the partial derivative from the integral formula (10) with respect to the variable $x_{j}, j=1, \ldots, m-1$:

$$
\begin{align*}
& \frac{\partial U(x)}{\partial x_{j}}=\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}+\int_{\partial G_{\rho} \backslash S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}+ \\
& \quad+\frac{\partial U_{\sigma}(x)}{\partial x_{j}}+\int_{\partial G_{\rho} \backslash S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}, x \in G_{\rho}, j=1, \ldots, m . \tag{52}
\end{align*}
$$

Here

$$
\begin{equation*}
\frac{\partial U_{\sigma}(x)}{\partial x_{j}}=\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y} . \tag{53}
\end{equation*}
$$

We estimate the following

$$
\begin{align*}
& \left|\frac{\partial U(x)}{\partial x_{j}}\right| \leq\left|\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}\right|+\left|\int_{\partial G_{\rho} \backslash S^{*}} \frac{\left.\partial N_{\sigma}(y, x ; \lambda)\right)}{\partial x_{j}} U(y) d s_{y}\right| \leq \tag{54}\\
& \quad \leq\left|\frac{\partial U_{\sigma}(x)}{\partial x_{j}}\right|+\left|\int_{\partial G_{\rho} \backslash S^{*}} \frac{\left.\partial N_{\sigma}(y, x ; \lambda)\right)}{\partial x_{j}} U(y) d s_{y}\right|, x \in G_{\rho}, j=1, \ldots, m .
\end{align*}
$$

Given inequality (39), we estimate the first integral of inequality (54).

$$
\begin{gather*}
\left|\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}\right| \leq \int_{S^{*}}\left|\frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right||U(y)| d s_{y} \leq \tag{55}\\
\quad \leq \delta \int_{S^{*}}\left|\frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right| d s_{y}, x \in G_{\rho}, j=1, \ldots, m .
\end{gather*}
$$

To do this, we estimate the integrals $\int_{S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right| d s_{y},(j=1,2, \ldots, m-1)$ and $\int_{S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{m}}\right| d s_{y}$ on a smooth surface S.

Given equality (28), inequality (29) and equality (36), we obtain

$$
\begin{gather*}
\int_{S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right| d s_{y} \leq C_{\rho}(\lambda, x) \sigma^{k} \exp \sigma\left(\tau^{\rho} a^{\rho}-\gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{56}\\
j=1,2, \ldots, m-1
\end{gather*}
$$

Now, we estimate the integral $\int_{S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{m}}\right| d s_{y}$.
Taking into account equality (28) and inequality (29), we obtain

$$
\begin{equation*}
\int_{S^{*}}\left|\frac{\partial \Phi_{\sigma}(y, x ; \lambda)}{\partial x_{m}}\right| d s_{y} \leq C_{\rho}(\lambda, x) \sigma^{k} \delta \exp \sigma\left(\tau^{\rho} a^{\rho}-\gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{57}
\end{equation*}
$$

From (56) - (57), we obtain

$$
\left\lvert\, \begin{gather*}
\left|\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y)\right| \leq C_{\rho}(\lambda, x) \sigma^{k} \delta \exp \sigma\left(\tau^{\rho} a^{\rho}-\gamma^{\rho}\right), \sigma>1, x \in G_{\rho}, \tag{58}\\
j=1, \ldots, m .
\end{gather*}\right.
$$

The following is known

$$
\begin{equation*}
\left|\int_{\partial G_{\rho} \backslash S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}\right| \leq C_{\rho}(\lambda, x) \sigma^{k} M \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho}, ~(j=1, \ldots, m . ~ . \tag{59}
\end{equation*}
$$

Now taking into account (58) - (59), we have

$$
\begin{gather*}
\left|\frac{\partial U(x)}{\partial x_{j}}\right| \leq \frac{C_{\rho}(\lambda, x) \sigma^{k}}{2}\left(\delta \exp \left(\sigma \tau^{\rho} a^{\rho}\right)+M\right) \exp \left(-\sigma \gamma^{\rho}\right), \sigma>1, x \in G_{\rho} \tag{60}\\
j=1, \ldots, m
\end{gather*}
$$

Choosing σ from the equality (51) we obtain an estimate (41).
Theorem 5.1 is proved.

Let $U(y) \in A\left(G_{\rho}\right)$ and instead $U(y)$ on S with its approximation $f_{\delta}(y)$, respectively, with an error $0<\delta<1$,

$$
\begin{equation*}
\max _{S}\left|U(y)-f_{\delta}(y)\right| \leq \delta \tag{61}
\end{equation*}
$$

We put

$$
\begin{equation*}
U_{\sigma(\delta)}(x)=\int_{S^{*}} N_{\sigma}(y, x ; \lambda) f_{\delta}(y) d s_{y}, x \in G_{\rho} \tag{62}
\end{equation*}
$$

Theorem 5.2. Let $U(y) \in A\left(G_{\rho}\right)$ on the part of the plane $y_{m}=0$ satisfy condition (23).
Then the following estimates is true

$$
\begin{gather*}
\left|U(x)-U_{\sigma(\delta)}(x)\right| \leq C_{\rho}(\lambda, x) \sigma^{k} M^{1-\left(\frac{\gamma}{a}\right)^{\rho}} \delta^{\left(\frac{\gamma}{a}\right)^{\rho}}, \sigma>1, x \in G_{\rho} \tag{63}\\
\left|\frac{\partial U(x)}{\partial x_{j}}-\frac{\partial U_{\sigma(\delta)}(x)}{\partial x_{j}}\right| \leq C_{\rho}(\lambda, x) \sigma^{k} M^{1-\left(\frac{\gamma}{a}\right)^{\rho}} \delta\left(\frac{\gamma}{a}\right)^{\rho}, \sigma>1, x \in G_{\rho}, \tag{64}\\
j=1, \ldots, m .
\end{gather*}
$$

Proof. From the integral formulas (10) and (62), we have

$$
\begin{gathered}
U(x)-U_{\sigma(\delta)}(x)=\int_{\partial G_{\rho}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}-\int_{S^{*}} N_{\sigma}(y, x ; \lambda) f_{\delta}(y) d s_{y}= \\
=\int_{S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}+\int_{\partial G_{\rho} \backslash S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}-\int_{S^{*}} N_{\sigma}(y, x ; \lambda) f_{\delta}(y) d s_{y}= \\
=\int_{S^{*}} N_{\sigma}(y, x ; \lambda)\left\{U(y)-f_{\delta}(y)\right\} d s_{y}+\int_{\partial G_{\rho} \backslash S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y} .
\end{gathered}
$$

and

$$
\begin{gathered}
\quad \frac{\partial U(x)}{\partial x_{j}}-\frac{\partial U_{\sigma(\delta)}(x)}{\partial x_{j}}=\int_{\partial G_{\rho}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}-\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} f_{\delta}(y) d s_{y}= \\
=\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}+\int_{\partial G_{\rho} \backslash S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}-\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} f_{\delta}(y) d s_{y}= \\
=\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\left\{U(y)-f_{\delta}(y)\right\} d s_{y}+\int_{\partial G_{\rho} \backslash S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}, j=1, \ldots, m
\end{gathered}
$$

Using conditions (23) and (61), we estimate the following:

$$
\begin{array}{r}
\left|U(x)-U_{\sigma(\delta)}(x)\right|=\left|\int_{S^{*}} N_{\sigma}(y, x ; \lambda)\left\{U(y)-f_{\delta}(y)\right\} d s_{y}\right|+ \\
+\left|\int_{\partial G_{\rho} \backslash S^{*}} N_{\sigma}(y, x ; \lambda) U(y) d s_{y}\right| \leq \int_{S^{*}}\left|N_{\sigma}(y, x ; \lambda)\right|\left|\left\{U(y)-f_{\delta}(y)\right\}\right| d s_{y}+ \\
+\int_{\partial G_{\rho} \backslash S^{*}}\left|N_{\sigma}(y, x ; \lambda)\right||U(y)| d s_{y} \leq \delta \int_{S^{*}}\left|N_{\sigma}(y, x ; \lambda)\right| d s_{y}+M \int_{\partial G_{\rho} \backslash S^{*}}\left|N_{\sigma}(y, x ; \lambda)\right| d s_{y}
\end{array}
$$

and

$$
\begin{gathered}
\left|\frac{\partial U(x)}{\partial x_{j}}-\frac{\partial U_{\sigma(\delta)}(x)}{\partial x_{j}}\right|=\left|\int_{S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\left\{U(y)-f_{\delta}(y)\right\} d s_{y}\right|+ \\
+\left|\int_{\partial G_{\rho} \backslash S^{*}} \frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}} U(y) d s_{y}\right| \leq \int_{S^{*}}\left|\frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right|\left|\left\{U(y)-f_{\delta}(y)\right\}\right| d s_{y}+ \\
+\int_{\partial G_{\rho} \backslash S^{*}}\left|\frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right||U(y)| d s_{y} \leq \delta \int_{S^{*}}\left|\frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right| d s_{y}+ \\
+M \int_{\partial G_{\rho \backslash S^{*}}}\left|\frac{\partial N_{\sigma}(y, x ; \lambda)}{\partial x_{j}}\right| d s_{y}, j=1, \ldots, m .
\end{gathered}
$$

Now, repeating the proof of Theorems 4.1 and 5.1, we obtain

$$
\begin{gathered}
\left|U(x)-U_{\sigma(\delta)}(x)\right| \leq \frac{C_{\rho}(\lambda, x) \sigma^{k}}{2}\left(\delta \exp \left(\sigma \tau^{\rho} a^{\rho}\right)+M\right) \exp \left(-\sigma \gamma^{\rho}\right) \\
\left|\frac{\partial U(x)}{\partial x_{j}}-\frac{U_{\sigma(\delta)}(x)}{\partial x_{j}}\right| \leq \frac{C_{\rho}(\lambda, x) \sigma^{k}}{2}\left(\delta \exp \left(\sigma \tau^{\rho} a^{\rho}\right)+M\right) \exp \left(-\sigma \gamma^{\rho}\right), j=1, \ldots, m
\end{gathered}
$$

From here, choosing σ from equality (51), we obtain an estimates (63) and (64).

Theorem 5.2 is proved.

Corollary 5.1. For each $x \in G_{\rho}$, the equalities are true

$$
\lim _{\delta \rightarrow 0} U_{\sigma(\delta)}(x)=U(x), \lim _{\delta \rightarrow 0} \frac{\partial U_{\sigma(\delta)}(x)}{\partial x_{j}}=\frac{\partial U(x)}{\partial x_{j}}, j=1, \ldots, m
$$

Corollary 5.2. If $x \in \bar{G}_{\varepsilon}$, then the families of functions $\left\{U_{\sigma(\delta)}(x)\right\}$ and $\left\{\frac{\partial U_{\sigma(\delta)}(x)}{\partial x_{j}}\right\}$ converge uniformly for $\delta \rightarrow 0$, i.e.:

$$
U_{\sigma(\delta)}(x) \rightrightarrows U(x), \frac{\partial U_{\sigma(\delta)}(x)}{\partial x_{j}} \rightrightarrows \frac{\partial U(x)}{\partial x_{j}}, j=1, \ldots, m
$$

6. Conclusion

This article obtained the following results:
Using the Carleman function, a formula is obtained for the continuation of the solution of linear elliptic systems of the first order with constant coefficients in a spatial bounded domain $\mathbb{R}^{m},(m=2 k, k \geq 1)$. The resulting formula is an analogue of the classical formula of B. Riemann, W. Voltaire and J. Hadamard, which they constructed to solve the Cauchy problem in the theory of hyperbolic equations. An estimate of the stability of the solution of the Cauchy problem in the classical sense for matrix factorizations of the Helmholtz equation is given. The problem is considered in which instead of the exact data of the Cauchy problem; their approximations with a given deviation in the uniform metric are given and under the assumption that the solution of the Cauchy problem is bounded on part T of the boundary of the domain G_{ρ}; an explicit regularization formula is obtained.

We note that when solving applied problems, one should find the approximate values of $U(x)$ and $\frac{\partial U(x)}{\partial x_{j}}, x \in G_{\rho}, j=1, \ldots, m$. In this paper, we construct a family of vectorfunctions $U\left(x, f_{\delta}\right)=U_{\sigma(\delta)}(x)$ and $\frac{\partial U\left(x, f_{\delta}\right)}{\partial x_{j}}=\frac{\partial U_{\sigma(\delta)}(x)}{\partial x_{j}}, j=1, \ldots, m$ depending on a parameter σ, and prove that under certain conditions and a special choice of the parameter $\sigma=\sigma(\delta)$, at $\delta \rightarrow 0$, the family $U_{\sigma(\delta)}(x)$ and $\frac{\partial U_{\sigma(\delta)}(x)}{\partial x_{j}}$ converges in the usual sense to a solution $U(x)$ and its derivative $\frac{\partial U(x)}{\partial x_{j}}$ at a point $x \in G_{\rho}$.

Following A.N. Tikhonov (see [2]), a family of vector-valued functions $U_{\sigma(\delta)}(x)$ and $\frac{\partial U_{\sigma(\delta)}(x)}{\partial x_{j}}$ is called a regularized solution of the problem. A regularized solution determines a stable method of approximate solution of the problem.
Thus, functionals $U_{\sigma(\delta)}(x)$ and $\frac{\partial U_{\sigma(\delta)}(x)}{\partial x_{j}}$ determines the regularization of the solution of problem (1)-(2).

Acknowledgement. We would like to thank the referees for their comments and suggestions on the manuscript.

References

[1] Bers, A., John, F. and Shekhter M., (1966), Partial Differential Equations, Mir, Moscow.
[2] Tikhonov, A.N., (1963), On the solution of ill-posed problems and the method of regularization, Reports of the USSR Academy of Sciences, 151 (3), pp. 501-504.
[3] Juraev, D.A., (2017), The Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain, Siberian Electronic Mathematical Reports, 14, pp. 752-764.
[4] Juraev, D.A., (2018), On the Cauchy problem for matrix factorizations of the Helmholtz equation in a bounded domain, Siberian Electronic Mathematical Reports, 15, pp. 11-20.
[5] Juraev, D.A., (2018), The Cauchy problem for matrix factorizations of the Helmholtz equation in \mathbb{R}^{3}, Journal of Universal Mathematics, 1 (3), pp. 312-319.
[6] Juraev, D.A., (2018), On the Cauchy problem for matrix factorizations of the Helmholtz equation in an unbounded domain in \mathbb{R}^{2}, Siberian Electronic Mathematical Reports, 15, pp. 1865-1877.
[7] Zhuraev, D.A., (2018), Cauchy problem for matrix factorizations of the Helmholtz equation, Ukrainian Mathematical Journal, 69 (10), pp. 1583-1592.
[8] Juraev, D.A., (2020), The solution of the ill-posed Cauchy problem for matrix factorizations of the Helmholtz equation, Advanced Mathematical Models \& Applications, 5 (2), pp. 205-221.
[9] Juraev, D.A. and Noeiaghdam, S., (2021), Regularization of the ill-posed Cauchy problem for matrix factorizations of the Helmholtz equation on the plane, Axioms, 10 (2), pp. 1-14.
[10] Juraev, D.A., (2021), Solution of the ill-posed Cauchy problem for matrix factorizations of the Helmholtz equation on the plane, Global and Stochastic Analysis, 8 (3), pp. 1-17.
[11] Juraev D. A. and Gasimov Y. S., (2022), On the regularization Cauchy problem for matrix factorizations of the Helmholtz equation in a multidimensional bounded domain, Azerbaijan Journal of Mathematics, 12(1), pp. 142-161.
[12] Juraev D. A., (2022), On the solution of the Cauchy problem for matrix factorizations of the Helmholtz equation in a multidimensional spatial domain, Global and Stochastic Analysis, 9(2), pp. 1-17.
[13] Juraev D. A., (2022), The solution of the ill-posed Cauchy problem for matrix factorizations of the Helmholtz equation in a multidimensional bounded domain, Palestine Journal of Mathematics, 11(3), pp. 604-613.
[14] Arbuzov, E.V. and Bukhgeim, A.L., (2006), The Carleman formula for the Helmholtz equation, Siberian Mathematical Journal, 47 (3), pp. 518-526.
[15] Goluzin, G.M. and Krylov, V.M., (1993), The generalized Carleman formula and its application to the analytic continuation of functions, Sbornik: Mathematics, 40 (2), pp. 144-149.
[16] Berdawood, R., Nachaoui, A., Saeed, R., Nachaoui, M. and Aboud, F., (2021), An efficient D-N alternating algorithm for solving an inverse problem for Helmholtz equation, Discrete \& Continuous Dynamical Systems-S, 14, pp. 1-22.
[17] Niyozov, I.E., (2015), On the continuation of the solution of systems of equations of the theory of elasticity, Uzbek Mathematical Journal, 3, pp. 95-105.
[18] Hadamard, J., (1978), The Cauchy problem for linear partial differential equations of hyperbolic type, Nauka, Moscow.
[19] Aizenberg, L.A., (1990), Carleman's formulas in complex analysis, Nauka, Novosibirsk.
[20] Lavrent'ev, M.M., (1957), On the Cauchy problem for second-order linear elliptic equations, Reports of the USSR Academy of Sciences, 112 (2), pp. 195-197.
[21] Lavrent'ev, M.M., (1962), On some ill-posed problems of mathematical physics, Nauka, Novosibirsk.
[22] Dzharbashyan, M.M., (1966), Integral transformations and representations of functions in complex domain, Nauka, Moscow.
[23] Tarkhanov, N.N., (1985), On the Carleman matrix for elliptic systems, Reports of the USSR Academy of Sciences, 284 (2), pp. 294-297.
[24] Tarkhanov, N.N., (1995), The Cauchy problem for solutions of elliptic equations, Akad. Verl., V. 7, Berlin.
[25] Kythe, P.K., (1996), Fundamental solutions for differential operators and applications, Birkhauser, Boston.
[26] Agarwal, P., Çetinkaya, A., Jain, Sh. and Kiymaz, I.O., (2019), S-Generalized Mittag-Leffler function and its certain properties, Mathematical Sciences and Applications E-Notes, 7 (2), pp. 139-148.
[27] Yarmukhamedov, Sh., (1977), On the Cauchy problem for the Laplace equation, Reports of the USSR Academy of Sciences, 235 (2), pp. 281-283.
[28] Yarmukhamedov, Sh., (1997), On the extension of the solution of the Helmholtz equation, Reports of the Russian Academy of Sciences, 357 (3), pp. 320-323.
[29] Yarmukhamedov, Sh., (2004), The Carleman function and the Cauchy problem for the Laplace equation, Siberian Mathematical Journal, 45 (3), pp. 702-719.
[30] Yarmukhamedov, Sh., (2008), Representation of harmonic functions as potentials and the Cauchy problem, Math. Notes, 83 (5), pp. 763-778.
[31] Carleman, T., (1926), Les fonctions quasi analytiques. Gautier-Villars et Cie., Paris.
[32] Ibrahimov, V.R., Mehdiyeva, G.Yu. and Imanova, M.N., (2020), On the computation of double integrals by using some connection between the wave equation and the system of ODE, The Second Edition of the International Conference on Innovative Applied Energy (IAPE'20), pp. 1-8.
[33] Ivanov, V.K., (1963) About incorrectly posed tasks, Math. Collect., 61, pp. 211-223.

Davron Aslonqulovich Juraev is an Associate Professor and the head of Natural Science Disciplines, Higher Military Aviation School of the Republic of Uzbekistan, Karshi city, Uzbekistan. He received his B.Sc. and M.Sc. degrees from Samarkand State University, Uzbekistan and Ph.D. degree from National University of Uzbekistan, Tashkent in 2002, 2004 and 2018 respectively. His major research areas are equations of mathematical physics, solving Cauchy problem, solving integral equations, ODEs and PDEs, solving ill-posed problems, matrix factorization of Helmholtz equations, and first order elliptical systems.

Samad Noeiaghdam is an Associate Professor of Irkutsk National Research Technical University and senior researcher of South Ural State University. He received his M.Sc. degree and Ph.D. degree in Applied Mathematics at Central Tehran Branch of Islamic Azad University in Iran, in 2013 and 2018 respectively. His research interests are numerical analysis, solving integral equations, ordinary differential equations, partial differential equations, solving ill-posed problems, solving fuzzy problems and bio-mathematical models.

Praveen Agarwal is a professor of Anand International College of Engineering Department of Mathematics, Jaipur, India. He received his M.Sc. degree from Rajasthan University, India Ph.D. degree from Malviya National Institute of Technology (MNIT) in Jaipur, India, in 2000 and 2006 respectively. His major research areas are numerical analysis, fractional calculus, analysis, special functions, solving integral equations, ODEs and PDEs, solving mathematical models, engineering, applied and computational mathematics.

[^0]: ${ }^{1}$ Department of Scientific Research, Innovation and Training of Scientific and Pedagogical Staff, University of Economics and Pedagogy, I. A. Karimov 13, 180100, Karshi, Uzbekistan. e-mail: juraev_davron@list.ru; ORCID: https://orcid.org/0000-0003-1224-6764.

 * Corresponding author.
 ${ }^{2}$ Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical University, Irkutsk 664074, Russia. e-mail: snoei@istu.edu; ORCID: https://orcid.org/0000-0002-2307-0891.
 ${ }^{3}$ Department of Applied Mathematics and Programming, South Ural State University, Lenin Prospect 76, Chelyabinsk 454080, Russia. e-mail: noiagdams@susu.ru; ORCID: https://orcid.org/0000-0002-2307-0891.
 ${ }^{4}$ Department of Mathematics, Anand International College of Engineering, Near Kanota, Agra Road, Jaipur-303012, Rajasthan, India. e-mail: goyal.praveen2011@gmail.com; ORCID: https://orcid.org/ 0000-0001-7556-8942.
 § Manuscript received: October 03, 2021; accepted: October 29, 2021. TWMS Journal of Applied and Engineering Mathematics, Vol.13, No. 4 (C) Işık University, Department of Mathematics, 2023; all rights reserved.

