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Abstract

Upon discovering the wrongness of the statement ”although this
term does not cause any secularity for this order it will cause secular-
ity at higher order expansion, therefore, that term must vanish” by Su
and Mirie [4], in the present work, we studied the head- on collision of
two solitary waves propagating in shallow water by introducing a set
of stretched coordinates in which the trajectory functions are of order
of ε2, where ε is the smallness parameter measuring nonlinearity. Ex-
panding the field variables and trajectory functions into power series
in ε, we obtained a set of differential equations governing various terms
in the perturbation expansion. By solving them under non-secularity
condition we obtained the evolution equations and also the expressions
for phase functions. By seeking a progressive wave solution to these
evolution equations we have determined the speed correction terms
and the phase shifts. As opposed to the result of Su and Mirie [4] and
similar works, our calculations show that the phase shifts depend on
both amplitudes of the colliding waves.
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1 Introduction

It is well-known that long-time asymptotic behavior of two dimensional uni-
directional shallow water waves in the case of weak nonlinearity is described
by the Korteweg-de Vries (KdV) equation [1]. Since the inverse scattering
transform (IST) for exactly solving the KdV equation was found by Gard-
ner, Green, Kruskal and Miura [2], the interesting features of the collision
between solitary waves has been revealed: When two solitary waves approach
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closely, they interact, exchange their energies and positions with one another,
and then separate off, regaining their original wave forms. Throughout the
whole process of the collision, the solitary waves are remarkably stable enti-
ties preserving their identities through interaction. The unique effect due to
the collision is their phase shifts [3]. It is believed that this striking colliding
property of solitary waves can only be preserved in an integrable system.

According to IST, all KdV solitary waves travel in the same direction,
under the boundary conditions vanishing at infinity [2, 3], so for overtaking
collision between solitary waves, one can use the IST to obtain the overtaking
colliding effect of solitary waves. However, for the head-on collision between
solitary waves one must employ some kind of asymptotic expansion to solve
the original field equations. In this regard a fundamental approach to study
head-on collision problems had been performed by Su and Mirie [4], in which
the Poincaré-Lighthill-Kuo (PLK) method had been employed to study the
asymptotic analysis of such collision problems. Several researchers, including
myself (HD), utilizing their method studied the head-on collision of solitary
waves in various media [5-12]. The most attractive point of the method of
Su and Mirie [4] is the statement that ”although this term does not cause
any secularity at this order but it will cause to secularity at higher order
expansion, therefore, that term must vanish”. But our calculations for higher
order expansion show that the term mentioned in their work does not cause
any secularity in the solution; it rather occurs in the next order equation.
This means the order of trajectory functions should be ε2, not ε.

In the present work, based on the above argument, we studied the head-on
collision of two solitary waves propagating in the shallow water by introducing
a set of stretched coordinates in which the trajectory functions are of order
of ε2. Taking the non-dimensional form of the field equations used by Su and
Mirie [4] and expanding the field variables and trajectory functions into power
series of ε we obtained a set of differential equations governing the various
terms in the perturbation expansion. By solving these equations under the
non-secularity conditions we obtained the evolution equations which give
the solitary wave solutions for both right and left going waves. Moreover,
by deriving non-secular solutions for ε3 order equations we obtained some
restrictions which makes it possible to determine the trajectory functions of
order ε2. Using the conventional definition of phase shifts we determined the
expressions of phase shifts of right and left going waves. As opposed to the
results of previous studies our calculation shows that the phase shifts depend
on both amplitudes of colliding waves.
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2 Basic Equations

We consider a plane irrotational flow of an incompressible fluid. Let ψ?(x?, y?, t?)
be the velocity potential related to the velocity components u? and v? in the
x? and y? directions, respectively, by

u? =
∂ψ?

∂x?
, v? =

∂ψ?

∂y?
. (1)

The incompressibility of the fluid requires that ψ? must satisfy the Laplace
equation

∂2ψ?

∂x?2
+
∂2ψ?

∂y?2
= 0. (2)

Figure 1: The geometry of the shallow water wave problem.

The boundary conditions to be satisfied are:

∂ψ?

∂y?
= 0 at y? = 0,

∂h?

∂t?
+
∂ψ?

∂x?
∂h?

∂x?
− ∂ψ?

∂y?
= 0 on y? = h?,

∂ψ?

∂t?
+

1

2

[(
∂ψ?

∂x?

)2

+

(
∂ψ?

∂y?

)2
]

+ g(h? − h0) = 0 on y? = h?, (3)

where g is gravity acceleration of the earth. At this stage it is convenient to
introduce the following non-dimensional quantities

x? = h0x, y? = h0y, t? =

(
h0
g

)1/2

t,

h? = h0(1 + ζ), ψ? =
(
gh30
)1/2

ψ (4)
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where h0 is the still water level from the horizontal bottom. Introducing (4)
into (2)-(3), the following non-dimensional equations are obtained

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0, (5)

∂ψ

∂y
= 0 at y = 0,

∂ζ

∂t
+
∂ψ

∂x

∂ζ

∂x
− ∂ψ

∂y
= 0 at y = 1 + ζ,

∂ψ

∂t
+

1

2

[(
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2
]

+ ζ = 0 at y = 1 + ζ. (6)

Here we seek a power series solution for ψ of the form

ψ =
∞∑
n=0

an(x, t)y2n. (7)

Introducing (7) into the Laplace equation (5) we obtain

a1 = − 1

2!

∂2a0
∂x2

, a2 =
1

4!

∂4a0
∂x4

, .... (8)

Denoting the value of ψ(x, y, t) at y = 0 by Ψ(x, t), the solution (7) can be
written as follows

ψ =
∞∑
n=0

(−1)n
∂2nΨ

∂x2n
y2n. (9)

The solution (9) also satisfies the boundary condition at y = 0. Using the
other boundary conditions we obtain

∂ζ

∂t
+

∂

∂x

{
(1 + ζ)w +

∞∑
n=1

(−1)n
(1 + ζ)2n+1

(2n+ 1)!

∂2nw

∂x2n

}
= 0, (10)

∂w

∂t
+

∂

∂x

{
ζ +

w2

2
+
∞∑
n=1

(−1)n
(1 + ζ)2n

(2n)![
∂2nw

∂t∂x2n−1
+

1

2

2n∑
m=0

(−1)m
(

2n

m

)
∂mw

∂xm
∂2n−mw

∂x2n−m

]}
= 0, (11)

where w =
∂ψ

∂x
and

(
2n

m

)
are the binomial coefficients.
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Following Su and Mirie [4], we introduce the following stretched coordi-
nates

ε
1
2k(x− CRt) = ξ − εkθ(ξ, η), (12)

ε
1
2 l(x+ CLt) = η − εlφ(ξ, η), (13)

where ε is the smallness parameter representing the order of nonlinearity,
k and l are the dimensionless wave numbers of order unity for the right
and left going waves, respectively, and CR and CL, are the speeds of right
and left going waves, θ(ξ, η) and φ(ξ, η) are two unknown functions to be
determined from the solution. Then, the following differential operators can
be introduced:

∂

∂t
+ CR

∂

∂x
=
ε
1
2

D
(CR + CL)

[
l
∂

∂η
+ εkl

(
∂θ

∂η

∂

∂ξ
− ∂θ

∂ξ

∂

∂η

)]
, (14)

∂

∂t
− CL

∂

∂x
= −ε

1
2

D
(CR + CL)

[
k
∂

∂ξ
+ εkl

(
∂φ

∂ξ

∂

∂η
− ∂φ

∂η

∂

∂ξ

)]
, (15)

where

D =

(
1− εk∂θ

∂ξ

)(
1− εl∂φ

∂η

)
− ε2kl ∂θ

∂η

∂φ

∂ξ
. (16)

Introducing (14) and (15) into (10) and (11) we obtain[
∂

∂t
± CR,L

∂

∂x

]
[w ± ζ] +

∂

∂x
F± = 0, (17)

where F± is defined by

F± = ±(1− CR,L)(w ± ζ) +
w2

2
± ζw

+
∞∑
n=1

(−1)n
(1 + ζ)2n

(2n)!

[
∂2nw

∂t∂x2n−1
± (1 + ζ)

2n+ 1

∂2nw

∂x2n

+
1

2

2n∑
m=0

(−1)m
(

2n

m

)
∂mw

∂xm
∂2n−mw

∂x2n−m

]
. (18)

For our future purposes it is convenient to introduce the following change of
dependent variables

w + ζ = 2εα, w − ζ = −2εβ. (19)
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Then, the equation (17) takes the following form

2ε(CR + CL)

[
l
∂α

∂η
+ εkl

(
∂θ

∂η

∂α

∂ξ
− ∂θ

∂ξ

∂α

∂η

)]
+

{
k
∂

∂ξ
+ l

∂

∂η
+ εkl

[
∂

∂η
(θ − φ)

∂

∂ξ
− ∂

∂ξ
(θ − φ)

∂

∂η

]}
F+ = 0. (20)

A similar expression is valid for β provided that (α, β), (ξ, η), (k, l), (θ, φ)
and (F+, F−) are replaced with each other. We shall assume that the field
quantities may be expanded into asymptotic series in ε as follows

α(ξ, η) = α0 + εα1 + ε2α2 + ... ,

β(ξ, η) = β0 + εβ1 + ε2β2 + ... ,

θ(ξ, η) = εθ1 + ε2θ2 + ... ,

φ(ξ, η) = εφ1 + ε2φ2 + ... ,

CR = 1 + εaR1 + ε2a2R2 + ... ,

CL = 1 + εbL1 + ε2b2L2 + ... . (21)

Here it is to be noted that the terms θ0 and φ0 in Su and Mirie’s [4] work are
set equal to zero. This means that in the present work the order of trajectory
functions is assumed to be of order ε2.

Introducing (21) into (20) and setting the coefficients of like powers of ε
equal to zero the following sets of differential equations are obtained

O (ε) equations:

∂α0

∂η
= 0,

∂β0
∂ξ

= 0 (22)

the solution of which yields

α0 = af(ξ), β0 = bg(η), (23)

where f(ξ) and g(η) are two unknown functions to be determined from the
solution.

O
(
ε2
)
equations:

4l
∂α1

∂η
+

1

3
k3α

′′′

0 +
2

3
l3β

′′′

0 − l(α0 + β0)β
′

0

+ (3kα0 − kβ0 − 2akR1)α
′

0 = 0. (24)
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Integrating equation (24) with respect to η and setting the secular terms
equal to zero we obtain

R1 =
1

2
, k2 = 3a, f

′′′
+ 3ff

′ − f ′
= 0, (25)

and

α1 =
7

8
b2g2 +

ab

4
fg − b2

2
g + a2F1(ξ) +

abk

4l
f

′
M(η), (26)

where M(η) is defined by

M(η) =

η∫
g(η

′
)dη

′
. (27)

Similar expressions are valid for β1 by making proper changes between α1 ↔
β1, f ↔ g, etc. The result will be as follows

L1 =
1

2
, l2 = 3b, g

′′′
+ 3gg

′ − g′
= 0, (28)

and

β1 =
7

8
a2f 2 +

ab

4
fg − a2

2
f + b2G1(η) +

abl

4k
g

′
N(ξ), (29)

where N(ξ) is defined by

N(ξ) =

ξ∫
f(ξ

′
)dξ

′
. (30)

Here F1(ξ) and G1(η) are two unknown functions whose governing equations
are to be obtained from the higher order expansions, R1 and L1 are the speed
correction terms of order ε for the right and left going waves, respectively.

Su and Mirie [4] stated that the terms f ′M(η) in equation (26) and g′N(ξ)
in equation (29) do not cause any secularity at this order but they will cause
secularity in the next order equations. Therefore, these terms should be elim-
inated by introducing the functions εθ0(η) and εφ0(ξ) in trajectory functions.
But as will be shown in the solution of the next order differential equations
these terms do not cause any secularity; therefore, εθ0(η) and εφ0(ξ) must
vanish.
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O
(
ε3
)
equations:

From the master equation (10), for this order, the following equation is ob-
tained

4l
∂α2

∂η
+ ak

∂3

∂ξ3
(α1 − β1)− 3bk

∂3

∂ξ∂η2
(α1 − β1) + kα0

∂

∂ξ
(3α1 − β1)

− 2bl
∂3

∂η3
(α1 − β1)− l

∂

∂η
[β0(α1 + β1)]− kβ0

∂

∂ξ
(α1 + β1)− ak

∂α1

∂ξ

+ (bl + 3lα0)
∂α1

∂η
+ 3kα

′

0α1 − lα0
∂β1
∂η
− kα′

0β1 −
3

10
a2kα

(v)
0

− 9

20
b2lβ

(v)
0 +

(
3

4
a2k + 3akβ0

)
α

′′′

0 +

(
3

4
b2l + 6blα0 + 3blβ0

)
β

′′′

0

+ 3akα
′

0α
′′

0 +
(

3bkα
′

0 + 6blβ
′

0

)
β

′′

0 + 4kl
∂θ1
∂η

α
′

0 − 2a2kR2α
′

0 = 0. (31)

When the equation (31) is integrated with respect to η there might be two

types of secularities. The first type of secularity is of the form

η∫
M(η

′
)dη

′

and the second type is proportional to η. Luckily, the coefficient of

η∫
M(η

′
)dη

′

vanishes identically and the coefficient of η gives the following evolution equa-
tion for F1(ξ)

F
′′

1 + (3f − 1)F1 = (2R2 −
19

20
)f +

9

8
f 2 +

1

4
f 3. (32)

F1 = f
′

is one of the solution of homogeneous equation in (32). Therefore,
the first term on the right-hand side causes to secularity in the solution of
F1 and the coefficient of f must vanish

R2 =
19

40
. (33)

The solution of the remaining parts gives

F1 = f − 1

8
f 2. (34)

Similarly, for the left going wave one obtains

L2 =
19

40
, G1 = g − 1

8
g2. (35)
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Here R2 and L2 are the speed correction terms of order ε2. Introducing (34)
and (35) into the expressions of α1 and β1 we have

α1 =
1

8
(7b2g2 − a2f 2)− 1

2
(b2g − 2a2f) +

ab

4
fg +

abk

4l
f

′
M, (36)

β1 =
1

8
(7a2f 2 − b2g2)− 1

2
(a2f − 2b2g) +

ab

4
fg +

abl

4k
g

′
N. (37)

Inserting (36) and (37) into the equation (31) the function α2 is found to be

α2 =
3

16
a2bfg − 9

8
ab2fg + 2ab2fg2 +

1

32
a2bf 2g − 7

10
b3g +

43

32
b3g2

+
1

32
b3g3 +

3ab2k2

16l2
fg − 9ab2k2

32l2
f 2g +

abk

16l
[35af − 9a− b] f ′

M

+
abl

16k

[
afg

′ − 2bg
′
+ 7bgg

′
+
ak

l
f

′
g

]
N +

7ab2k

16l
f

′
∫
g2dη

′

+
ab2k2

16l2

[
f − 3

2
f 2

] ∫
gMdη

′
+
ab2k

16l
f

′
∫
g

′
Mdη

′ − akf ′
θ1

+ a3F2(ξ). (38)

A similar expression may be given for β2. Recalling the expression of g(η),

i.e., g = sech2(
η

2
) and M =

η∫
g(η

′
)dη

′
, the following relations may be ob-

tained ∫
gMdη

′
= −2g,

∫
g

′
Mdη

′
=

2

3
M(g − 1),∫

g2dη
′
=

2

3
M(g + 2). (39)

Since the coefficients of the above terms in (38) are all functions of ξ, the
products of them with the integration constants can be inserted into the
function F2(ξ). Substituting (39) into (38) and using the relations k2 = 3a
and l2 = 3b we have

α2 =
1

4
a2bfg − 9

8
ab2fg + 2ab2fg2 − 1

16
a2bf 2g − 7

10
b3g

+
43

32
b3g2 +

1

32
b3g3 +

abk

16l
[35af − 9a+ 3b+ 3bg] f

′
M − akf ′

θ1

+
abl

16k

[
afg

′ − 2bg
′
+ 7bgg

′
+
ak

l
f

′
g

]
N + a3F2(ξ). (40)
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By making a proper substitution a similar expression may be given for β2 as

β2 =
1

4
ab2fg − 9

8
a2bfg + 2a2bf 2g − 1

16
ab2fg2 − 7

10
a3f

+
43

32
a3f 2 +

1

32
a3f 3 +

abl

16k
[35bg − 9b+ 3a+ 3af ] g

′
N − blg′

φ1

+
abk

16l

[
bf

′
g − 2af

′
+ 7aff

′
+
bl

k
fg

′
]
M + b3G2(ξ). (41)

Now if we set θ1 and φ1 in (40) and (41) equal to zero and try to obtain
solution for α3 from O(ε4) equation we have the following type of secularity

a3bk2

64l2

(
−243f 4 + 324f 3 − 108f 2 + 324f(f

′
)2 − 108(f

′
)2
) η∫

Mdη
′
. (42)

However, by choosing the unknown function θ1 in equation (40) as

θ1 =
9ab

4l
f

η∫
−∞

g(η
′
)dη

′
(43)

this secularity can be removed. Similarly, from (41) the unknown function
φ1 may be given by

φ1 =
9ab

4k
g

ξ∫
+∞

f(ξ
′
)dξ

′
. (44)

In order to remove the secularity of type two in the solution of α3, the
following equation must be satisfied for F2(ξ)

F
′′

2 + (3f − 1)F2 =(2R3 −
55

56
)f − 591

64
f 4 +

(
201

16
+

3

8a

)
f 3

−
(

393

160
+

3

8a

)
f 2. (45)

From the solution of this equation we obtain

R3 =
55

112
, F2 =

197

160
f 3 −

(
217

160
+

3

16a

)
f 2 +

(
43

40
+

1

8a

)
f. (46)

Similarly, for other unknowns we have

L3 =
55

112
, G2 =

197

160
g3 −

(
217

160
+

3

16b

)
g2 +

(
43

40
+

1

8b

)
g. (47)
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Here R3 and L3 correspond to ε3 order speed correction terms. Then, the
final solution for α2 and β2 take the following form

α2 =
1

4
a2bfg − 9

8
ab2fg + 2ab2fg2 − 1

16
a2bf 2g +

1

32
b3g3 +

43

32
b3g2

− 7

10
b3g +

197

160
a3f 3 −

(
217

160
a3 +

3

16
a2
)
f 2 +

(
43

40
a3 +

1

8
a2
)
f

+
abk

16l
(−af − 9a+ 3b+ 3bg) f

′
M +

abl

16k

(
afg

′ − 2bg
′
+ 7bgg

′

+
ak

l
f

′
g

)
N, (48)

β2 =
1

4
ab2fg − 9

8
a2bfg + 2a2bf 2g − 1

16
ab2fg2 +

1

32
a3f 3 +

43

32
a3f 2

− 7

10
a3f +

197

160
b3g3 −

(
217

160
b3 +

3

16
b2
)
g2 +

(
43

40
b3 +

1

8
b2
)
g

+
abl

16k
(−bg − 9b+ 3a+ 3af) g

′
N +

abk

16l

(
bf

′
g − 2af

′
+ 7aff

′

+
al

k
fg

′
)
M. (49)

Thus, for this order the trajectories of the solitary waves become

ε
1
2k(x− CRt) = ξ − ε2kθ1 +O(ε3),

ε
1
2 l(x+ CLt) = η − ε2lφ1 +O(ε3). (50)

To obtain the phase shifts after a head-on collision of solitary waves charac-
terized by a and b are asymptotically far from each other at the initial time
(t = −∞), the solitary wave a is at ξ = 0, η = −∞, and the solitary wave b
is at η = 0, ξ = +∞, respectively. After the collision (t = +∞), the solitary
wave b is far to the right of solitary wave a, i.e., the solitary wave a is at
ξ = 0, η = +∞, and the solitary wave b is at η = 0, ξ = −∞. Using (43),
(44) and (50) one can obtain the corresponding phase shifts ∆a and ∆b as
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follows:

∆a = ε1/2k(x− CRt) |ξ=0,η=∞ −ε1/2k(x− CRt) |ξ=0,η=−∞

= −ε2kab
4l

9f(0)

+∞∫
−∞

g(η
′
)dη

′

= −ε29kab

4l

+∞∫
−∞

g(η
′
)dη

′
, (51)

∆b = ε1/2k(x+ CLt) |η=0,ξ=−∞ −ε1/2k(x+ CLt) |η=0,ξ=∞

= ε2
lab

4k
9g(0)

+∞∫
−∞

f(ξ
′
)dξ

′

= ε2
9lab

4k

+∞∫
−∞

f(ξ
′
)dξ

′
. (52)

Using the explicit expressions of f(ξ) and g(η) the phase shifts are obtained
as

∆a = −ε29kab

l
, ∆b = ε2

9lab

k
. (53)

Here, as opposed to the results of previous works on the same subject the
phase shifts depend on the amplitudes of both waves.

3 Conclusion

Starting with non-dimensional field equations derived in Su and Mirie [4],
introducing the stretched coordinates with trajectory functions of order ε2

and expanding the field variables and trajectory functions into power series
in ε we obtained a set of differential equations governing the various terms
in perturbation expansion. By solving these differential equations under the
restriction of non-secular solution we obtained evolution equations governing
the colliding solitary waves and trajectory functions. Using the conventional
definition of phase shifts we obtained the explicit expressions of them. As
opposed to the result of previous works on the same subject in our case the
phase shifts are found to be depend on amplitudes of both waves. We further
noticed that the order of phase shift is ε2 rather than ε.
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