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PREDICTIVE MAINTENANCE SIMULATION OF A 

CHEMICAL PLANT IN CAMEROON 

ABSTRACT 

In the field of manufacturing, remarkable strides have been made in the development 

of predictive maintenance strategies. The research has incorporated cutting-edge 

technological innovations, such as machine learning, artificial intelligence, and the 

Internet of Things (IoT). Manufacturers can now proactively identify and address 

equipment malfunctions. This research study employs a degradation model simulation 

to evaluate and predict the remaining lifespan of a rotating element bearing in the 

manufacturing assembly line of a chemical plant situated in Cameroon. Additionally, 

the objective of this study is to perform a comparative analysis that seeks to assess the 

impact of implementing preventive and predictive maintenance strategies on the 

overall operational efficiency of a manufacturing system characterized by a series-

parallel configuration. The study reveals that the predictive maintenance policy is more 

significant in manufacturing system where addressing system throughput or 

implementation cost. This highlights the enhanced efficiency and cost-effectiveness 

associated with predictive maintenance in manufacturing operations. 

 

Keywords: Predictive Maintenance, Degradation Model, Remaining Useful Life, 

Simulation.
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KAMERUN'DAKİ BİR PESTİSİT ÜRETİM TESİSİ İÇİN 

ÖNGÖRÜSÜ BAKIM SİMÜLASYONU 

ÖZET 

Üretim alanında, kestirimci bakım stratejilerinin geliştirilmesinde dikkate değer 

ilerlemeler kaydedilmiştir. Araştırma, makine öğrenimi, yapay zeka ve Nesnelerin 

İnterneti (IoT) gibi en ileri teknolojik yenilikleri içeriyor. Üreticiler artık ekipman 

arızalarını proaktif olarak tespit edip giderebiliyor. Bu araştırma çalışması, 

Kamerun'da bulunan bir kimya fabrikasının imalat montaj hattındaki döner elemanlı 

rulmanın kalan ömrünü değerlendirmek ve tahmin etmek için bir bozulma modeli 

simülasyonu kullanmaktadır. Ek olarak bu çalışmanın amacı, önleyici ve kestirimci 

bakım stratejilerinin uygulanmasının, seri-paralel konfigürasyonla karakterize edilen 

bir üretim sisteminin genel operasyonel verimliliği üzerindeki etkisini 

değerlendirmeyi amaçlayan karşılaştırmalı bir analiz gerçekleştirmektir. Çalışma, 

sistem verimi veya uygulama maliyetinin ele alındığı üretim sisteminde kestirimci 

bakım politikasının daha önemli olduğunu ortaya koyuyor. Bu, üretim 

operasyonlarında kestirimci bakımla ilişkili gelişmiş verimliliği ve maliyet etkinliğini 

vurgulamaktadır. 

 

Anahtar Kelimeler: Kestirimci Bakım, Bozunma Modeli, Kalan Faydalı Ömür, 

Simülasyon. 
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CHAPTER 1 

1. INTRODUCTION 

In earlier times, many companies perceived their maintenance departments as 

having little or no impact on the company's profitability. However, as industries have 

evolved, the perspective has undergone a transformation. This shift is driven by the 

recognition that any competent plant manager would seek to achieve significant cost 

savings, consequently, it becomes evident that companies with effective maintenance 

management can indeed realize substantial cost savings. 

(Swanson, 1999) Currently, maintenance is widely recognized as the most 

significant element within the production process, exerting substantial influence on 

product quality, plant uptime, and the capacity to adhere to delivery timelines. 

(Alguindigue, Loskiewicz-Buczak, & Uhrig, 1993). This perspective is particularly 

emphasized in the manufacturing sector, where a noticeable trend has emerged, aiming 

to challenge contemporary lean and just-in-time manufacturing concepts. The reliance 

on minimal buffers and inventory within this manufacturing system presents a notable 

limitation, as it intensifies various impact of unforeseen disruptions that may occur 

throughout the manufacturing process. The failure of equipment in such a system is 

exceedingly costly, as it results in automatic production stoppages, delayed shipping 

schedules, and, consequently, diminished customer satisfaction. 

This study endeavors to employ simulation methods in order to examine the 

effects of various maintenance strategies on the overall importance of a particular 

system. Most production systems encompass complex operations and processes in 

industrial settings that enable the production of goods. In this study, we introduce 

several predictive maintenance policies and evaluate their effectiveness by analyzing 

system performance indicators, specifically throughput and equipment utilization.  
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The objective of predictive maintenance is to ascertain or anticipate the probable 

occurrence of system failure or component deterioration through the application of 

diverse approaches including empirical knowledge, fundamental principles, or 

machine learning methodologies. By identifying and replacing faulty components 

before they break down, predictive maintenance aims to minimize system downtime 

(Voronov, Kazansky, & Davydov, 2020). Monitoring the health of machines has 

gained significant attention in the manufacturing and maintenance industry, as 

unplanned downtime can have severe consequences, including production 

interruptions and costly repairs for companies. For instance, components like rotating 

element bearings and gear reducers have been identified as commonly used parts in 

rotating machinery, such as chemical reactors, making failures in these components a 

natural occurrence.  

In today's modern economy, large systems like manufacturing facilities, 

transportation networks, and health monitoring systems are built with highly 

interconnected components. This interconnectedness necessitates frequent 

observations to support various critical decision-making processes (Licht & 

Deshmukh, 2002). The advancement of wireless technology and electronics has had a 

significant impact on the sensory observations of these systems (Akyildiz, Su, 

Sankara., Subramaniam, & Cayirci, 2002). 

1.1 Maintenance Management 

Technological advancements and efficiency improvements are continuously 

driving companies to find ways to streamline operations, cut costs, and enhance 

product quality in their quest to stay competitive. One significant area of focus is 

automation. Manufacturing processes that were previously executed manually are now 

being replaced by machines, robots, and computer-controlled systems. This not only 

accelerates production but also diminishes the likelihood of errors and defects. 

Furthermore, the utilization of data analytics and artificial intelligence is on the 

rise. Manufacturers are gathering and analyzing vast amounts of data to gain insights 

into their processes and make data-driven decisions. This enables them to pinpoint 

areas for improvement, optimize inventory levels, and predict and prevent equipment 

failures. Challenges often arise in the long run due to unscheduled maintenance 

activities. The choice of a maintenance strategy depends on factors such as equipment 
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criticality, cost considerations, available resources. Selecting appropriate maintenance 

approach for a specific system, organizations can effectively manage their assets, 

reduce downtime, and optimize operational efficiency. In subsequent paragraphs, this 

study explore the various categories of maintenance strategies. It will provide an 

outline of each strategy, followed by a detailed discussion on their key characteristics, 

benefits, and limitations. 

1.1.1 Corrective Maintenance  

This strategy is successfully perform by highly skilled technicians and a well-

stocked machinery spare parts warehouse are required (Stephens, 2010). While 

reactive maintenance may be beneficial and cost-effective for newly installed 

machinery, it becomes more challenging as machinery ages. Sudden failures, such as 

a bearing failure, can lead to downtime, resulting in the shutdown of the entire 

manufacturing line. Furthermore, sudden failures of rotating machines, like bearings, 

can pose industrial accidents and fatalities, further increasing maintenance costs. 

Initially, the adoption of reactive maintenance may seem attractive due to its simplicity 

and economic feasibility. 

 However, it has the potential to cause prolonged periods of inactivity, safety 

hazards, and substantial expenses over time. It is recommended to employ a 

combination of reactive and other maintenance techniques for bearings, considering 

the criticality and safety implications of the equipment, to determine the optimal 

frequency and scope of interventions. For example, Figure 1.1 is a schematic 

representation of corrective/reactive maintenance. 

 

Figure 1. 1 Reactive Maintenance Illustration  

Source: Schalk, T. (2019). Introduction to Predictive Maintenance with MATLAB. 
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1.1.2 Preventive Maintenance 

This strategy is adopted across various sectors, with its primary focus on 

scheduling regular services and repairs for machine parts to detect and address issues 

before they escalate (Kaiser K. , 2007). By proactively preventing equipment failure 

and maintaining optimal working conditions, this strategy aims at extending the 

lifespan of machinery while simultaneously improving its reliability, performance, and 

operational safety. This approach also plays a crucial role in identifying and addressing 

potential safety concerns associated with worn-out bearing components. 

However, in the short term, preventive maintenance may result in higher costs 

as it involves planned maintenance work that may or may not be immediately 

necessary. There is also a risk of over-maintenance, where components are replaced 

prematurely before wearing out. Additionally, preventive maintenance can be time-

consuming due to routine inspections and equipment maintenance, potentially optimal 

bearing performance and minimize unexpected failures, it is advisable to incorporate 

preventive maintenance in conjunction with other maintenance measures. Affecting 

productivity.  

For example, implementing a preventive maintenance strategy is crucial for 

ensuring optimal bearing functionality and longevity. This typically involves cleaning, 

lubrication, inspection, alignment checks, and vibration analysis, as recommended by 

the manufacturer. The frequency and timing of these procedures may vary depending 

on equipment usage and importance. To achieve Figure 1.2 is the schematic 

representation of this strategy. 

 

Figure 1. 2 Illustration of Preventive Maintenance 

Source: Schalk, T. (2019). Introduction to Predictive Maintenance with MATLAB. 
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1.1.3 Predictive Maintenance  

Practicing predictive maintenance (PdM) involves the use of data analytics 

techniques to predict the probability of equipment malfunction before it occurs. By 

applying preventive maintenance measures based on these predictions, potential 

accidents can be prevented, resulting in significant cost and time savings. PdM can be 

implemented through various strategies, primarily involving the collection of relevant 

sensory data from machinery and the use of this data to build prognostic models that 

forecast the likelihood of equipment malfunction. Once a model is developed, it can 

be used for maintenance planning and timely notification of potential issues to 

maintenance personnel. 

PdM combines the advantages of both reactive and preventive maintenance 

while minimizing their drawbacks. It determines the optimal timing for predicting 

equipment failure, ensuring that maintenance activities are performed only when 

necessary. Implementing this strategy can lead to benefits in terms of time 

management, cost efficiency, and accident prevention (Stephens, 2010). Figure 1.3 

illustrates the scheduled predictive maintenance process. 

 

Figure 1. 3 Predictive Maintenance Illustration 

Source: Schalk, T. (2019). Introduction to Predictive Maintenance with MATLAB. 

1.2 Degradation Modelling 

The aforementioned mathematical framework serves as a tool for representing 

the progressive development of deteriorated signals acquired through condition 

monitoring methodologies, because degradation processes often exhibit a stochastic or 
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random nature, similar components tend to show different rates of degradation.  (Lu, 

Meeker, & Escobar, 1996). Suggested a deterioration study incising that the level of 

deterioration is directly proportional to the operational time, with a random 

deterioration rate. The authors employed random coefficient growth models to 

simulate the trajectory of the deterioration signal. 

The deterioration mathematical model was further separated into major 

categories: linear degradation and exponential degradation. Linear degradation models 

prove to be advantageous in cases where the monitored signal is on a logarithmic scale 

or when the component under observation does not undergo cumulative degradation. 

These devices are commonly utilized in situations where the stochastic parameters 

related to the deterioration of the system are not known and there is no prior data 

available on the degradation of the system components (Yu, Cao, & Schniederjans, 

2017).A graphical representation of a linear degradation path of a mechanical 

component is shown in Figure 1.4 

 

Figure 1. 4 Linear Degradation Simulation 

Source: Yu, Y., Cao, R. Q., & Schniederjans, D. (2017). Cloud    computing and its 

impact on service level a multi-agent simulation model. International Journal of 

Production Research, 55(15), 4341-4353. 

On the other hand, exponential Degradation modeling is when degradation is 

directly proportional to the current condition of the system. This specific degradation 
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model holds particular significance in our study since it possess known bearing 

degradation data, which is indicative of cumulative degradation. Figure 1.5 provides 

a visual representation of an exponential degradation trend for a mechanical 

component. 

 

Figure 1. 5 Exponential Degradation Model. 

Source: Gebraeel, N. (2006). Sensory-Updated Residual Life Distributions for 

Components With Exponential Degradation Patterns. IEEE Transactions on 

Automation Science and Engineering, 4(3), 382-393. 

The author introduced a parametric degradation model that uses real-time 

sensory data from online condition monitoring to determine the distribution of residual 

life. This proposed model adequately encapsulates the functional expression that 

characterizes the degradation signals of a component within a particular population. 

Throughout various studies and research endeavors, the author's theory on 

deterioration has been thoroughly scrutinized, as it has been found to profoundly shape 

decision-making processes concerning maintenance management and the formulation 

of replacement strategies. 

1.3 Research Objective 

The objective of this research is as follows; 

1. Determination of the RUL of rolling bearing element. 
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2. The present study aims to compare the impact of preventive maintenance and 

predictive maintenance policies on the performance of the manufacturing 

system, particularly under varying reliability levels. 

1.4 HOLFARCAM Company 

The HOLFARCAM Sarl facility is located in Cameroon's Littoral region. 

HOLFARCAM is one of the 14 largest producers and importers of fertilizers and plant 

protection products in the country, contributing to over 20% of the nation's 

agrochemical imports. Established in 2006, HOLFARCAM Sarl specializes in the 

importation and distribution of agricultural inputs, which include pesticides 

(herbicides, fungicides, and insecticides), fertilizers, agricultural equipment, and 

seeds. The company operates both within Cameroon and the CEMAC sub-region. 

Furthermore, the factory comprises three main production lines, which are; 

• Powder Production line to produce wet powder (WP), dry flow soluble, 

• Soluble Liquid Line to produce Solution Concentrate (SL), 

• Liquid solution concentrate line (case study). 
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 Review on Maintenance 

It exhibits plays a critical role in ensuring the reliability and longevity of 

machinery in industrial enterprises. Numerous empirical studies have explored various 

aspects of maintenance and its significant impact on organizational performance. For 

example (Salawu, et al., 2023) discussed the importance of maintenance management 

in engineering factories, highlighting the need to optimize maintenance practices to 

reduce downtime and improve operational efficiency. (Teixeira, Lopes, & Pires, 2023) 

Conducted a comprehensive examination of different maintenance strategies, 

including corrective, preventive, and predictive maintenance, providing a comparative 

analysis of their associated costs and benefits. 

The maintenance process consists of multiple phases, which can be effectively 

analyzed using various tools and techniques. Root cause analysis is used to determine 

the underlying reasons behind equipment failures. Conversely, Failure Mode and 

Effects Analysis (FMEA) facilitates the identification of prospective failures and their 

subsequent ramifications. Reliability-Centered Maintenance (RCM) is a systematic 

approach employed to augment equipment reliability through comprehensive analysis 

of failure modes and strategic optimization of maintenance practices. 

2.2 Simulation Analysis  

Many studies have demonstrated that simulation can effectively be employed to 

assess the functionality of maintenance management systems, particularly in the 

context of maintenance policies and the manufacturing industry. (Alguindigue, 
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Loskiewicz-Buczak, & Uhrig, 1993). For instance, a simulation modeling study was 

conducted to evaluate the efficacy of the significance of cellular and functional work 

cell layouts, taking equipment failure into account. This study considered two critical 

factors: The average value of work-in-process inventory and the average duration 

required for completing a single cycle of production. While making comparisons 

between preventive and reactive maintenance (Logendran & Talkington, 1997). In this 

study, the authors assumed that equipment conditions were monitored at equidistant 

time intervals, and there was a probability of equipment failure during these inspection 

intervals, with this probability of failure being exponential. 

In another study by (Sloan & Shanthikumar, 2000). It was highlighted that 

successfully implementing predefined maintenance policies does not guarantee the 

achievement of other manufacturing strategy goals, such as improving quality and 

increasing flexibility. Flexible Manufacturing Systems (FMS) can be viewed as 

technological implementations that simultaneously enhance quality and increase 

flexibility. Many of the manufacturing policy objectives tend to rely on technological 

implementations (Ostadi & Rezaie, 2007). 

2.3 Condition-based Maintenance 

This maintenance strategy is widely recognized for its significant reliance on 

systematic monitoring of equipment condition in predicting the optimal timing for 

maintenance actions. Organizations can derive various advantages from this approach, 

including economic gains through cost reduction, enhanced dependability, and 

minimized instances of operational interruption. First and foremost, the application of 

Condition-Based Maintenance (CBM) possesses the capacity to engender cost 

efficiencies through the mitigation of maintenance activities' frequency. Unlike 

adhering to predetermined time frames for maintenance, CBM takes a more proactive 

approach by scheduling maintenance activities based on real-time assessments of the 

equipment's operational condition. This means that maintenance procedures are only 

executed when deemed essential, thus reducing expenses associated with unnecessary 

maintenance activities. 

Furthermore, another significant advantage of utilizing Condition-Based 

Maintenance (CBM) is its potential to enhance equipment dependability through early 

identification of possible failures. Early detection empowers operators to promptly 
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implement preventive measures, thereby mitigating the occurrence of equipment 

breakdowns. Implementing a proactive approach has the potential to prevent 

equipment failures and increase equipment uptime, subsequently fostering enhanced 

operational efficiency and productivity. 

Thirdly, Condition-Based Maintenance (CBM) has the capacity to minimize 

operational interruptions by proactively detecting and addressing evolving issues 

before they manifest as equipment failures. This entails the proactive maintenance of 

equipment to prevent failure, resulting in a reduction in the duration required for 

repairs and mitigating disruptions to production schedules. 

Additionally, the utilization of CBM (Condition-based Maintenance) is 

effectively employed to optimize and improve maintenance practices by strategically 

planning maintenance activities during periods of reduced demand or mitigating the 

adverse effects of maintenance on production schedules. Aligning maintenance 

activities with the organization's objectives and requirements allows for the optimal 

utilization of the benefits provided by Condition-Based Maintenance (CBM) while 

simultaneously minimizing disruptions to production processes. 

2.4 Predictive Maintenance 

Predictive maintenance (PdM) is a well-established maintenance methodology 

that employs proactive measures to anticipate possibilities of equipment failure by 

analyzing data from various sensors and sources. This method offers several 

advantages compared to traditional time-based maintenance, including improved 

operational efficiency, reduced downtime, and cost savings. PHM employs 

technology; machine learning algorithms, sensor systems and data analysis to monitor 

equipment in real-time. By analyzing collected data, predictive maintenance (PdM) 

can detect patterns indicating potential equipment failure, allowing for the prediction 

of necessary maintenance actions. This proactive approach reduces downtime and 

extends equipment lifespan. 

Numerous studies have highlighted the benefits of Predictive Maintenance 

(PdM), including economic savings, increased reliability, and enhanced effectiveness. 

For example, research showed a 25% reduction in maintenance expenses and a 20% 

improvement in equipment uptime after implementing PdM in a manufacturing 

facility. Similarly, a study by (Bejaoui, Bruneo, & Xibilia, 2021) found that PdM led 
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to a significant reduction of maintenance costs (up to 40%) and improved equipment 

reliability (up to 60%). Moreover, the implementation of Predictive Maintenance 

(PdM) can enhance safety measures by identifying and anticipating potential 

equipment failures before they occur, effectively reducing the risk of injuries or 

accidents. This intervention also has the potential to minimize environmental impact 

by reducing the need for oil changes and decreasing other forms of maintenance-

related waste. 

One of the most challenging aspect of PdM is acquiring the necessary data to 

develop prediction models. Ensuring the accuracy and reliability of the data can be a 

complex and time-consuming process. Additionally, the implementation cost of PdM 

poses a significant challenge, with expenses related to sensors, data analytics software, 

and maintenance personnel being substantial. However, despite these challenges, the 

costs associated with implementing a PdM program can be justified by the benefits of 

improved production efficiency, reduced maintenance expenses, and enhanced overall 

safety. 

There are certain drawbacks associated with PdM, especially during the initial 

financial investment phase. Safeguarding the investment in the short term can be a 

present significant challenge, despite the numerous long-term benefits it offers. 

Acquiring the necessary data often entails the installation of sensors and the integration 

of existing data sources, which requires a deep understanding of the specific domain 

and comprehensive strategic planning. Establishing and configuring the 

communication architecture are essential prerequisites for effectively yielding results 

through PdM. Once the initial phase of data acquisition is complete, it becomes 

feasible to develop models that enable the implementation of condition monitoring and 

prognostic maintenance. 

The effectiveness of PdM is primary dependent on the acquisition of precise and 

reliable data, which is sourced from a diverse range of channels, although it 

predominantly relies on two principal types of sensors: internal and external. One 

advantageous attribute of built-in sensors is their optimal positioning, which enables 

them to efficiently collect the necessary data.  

However, a potential limitation is the prerequisite purchase of pre-installed 

sensors for the equipment, which typically entails a higher initial investment and may 

not be applicable to pre-existing machinery. Conversely, external sensors present the 

advantage of being deployable in diverse locations and possessing straightforward 
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accessibility. Achieving a balance between these two aspects is indispensable, as the 

positioning of external sensors may be less optimal than built-in sensors. This balance 

ensures effective data collection for predictive maintenance. 

Given the critical role that bearings play in equipment and their presence in many 

rotating machineries, their failure often leads to significant malfunctions. Common 

causes of bearing failure include overloading, over speeding, and inadequate 

lubrication, as identified by (Phalle & Patil, 2021). However, failure instances can also 

result from other factors such as corrosion and misalignment. The monitoring of 

bearings has traditionally relied on vibration analysis, which has been validated 

through several empirical studies. However, there are novel alternatives to vibration 

analysis, such as heat sensors and sound sensors that offer promising avenues for 

further exploration. 

One significant constraint associated with heat sensors is the potential for 

delayed detection of elevated heat levels originating from the bearing. This delay may 

result in irreversible damage to the system's functionality before corrective measures 

can be implemented. Sound analysis, although a relatively recent technique, has 

demonstrated efficacy in various instances. However, a potential limitation of its 

implementation is the challenge of separating the sound signal from machine and 

environmental noise. 

2.4.1 Degradation Models 

This model is a research area that centers on the utilization of degradation 

signals, which are obtained through condition monitoring techniques, to capture the 

progressive deterioration of a component throughout its operational lifespan. These 

are models which offer a means to estimate the residual life distribution of the 

monitored component (Kaiser K. , 2007). A dual-phase approach was devised to 

accurately simulate the trajectory of condition-based deterioration signals across 

various growth model parameters. The examination of degradation models entails the 

utilization of data derived from degradation signals for the purpose of forecasting the 

remaining useful life, which is distributed across the sample population's components. 

(Lu & Meeker, 1993). 

 (Gebraeel, Lawley, Li, & Ryan, 2005) This study presents a novel approach for 

estimating the remaining operational lifespan of a rolling element thrust bearing 

utilizing a degradation signal obtained from vibration analysis. The author provided 
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empirical evidence demonstrating that as a bearing comes to the end of its operational 

life, small fractures arise within the material comprising its raceway. When fissures 

propagate through the exterior of the raceway material, a fragment of the substance 

becomes dislodged. Hence, the rolling surface of the bearing undergoes the occurrence 

of discontinuities, commonly referred to as spalls. The generation of spalls is a 

common occurrence in numerous bearing malfunction mechanisms, resulting in the 

manifestation of distinct vibration frequencies. The occurrence of these flawed 

frequencies is contingent on the bearing configuration, encompassing factors such as 

the quantity of rolling elements, the peculiarities of its geometry, and also the 

rotational velocity at which it operates.  

The author's analysis reveals that at approximately 30% of the bearing's 

operational lifespan, there is an absence of substantial alterations in the vibration 

spectrum. However, when reaching the 40% threshold, certain frequencies begin to 

manifest, exhibiting a progressive increase in their respective amplitudes as time 

progresses. The properties extracted from each vibration spectrum, including the 

harmonics (which are integer multiples of the defective frequency) and the amplitudes 

of the defective frequency and its harmonics, are subsequently employed in generating 

a degradation signal (Gebraeel N. , 2006). 

(Zheng Y. , 2019). In this study, a predictive model for estimating the remaining 

useful life (RUL) of a bearing is developed. The proposed method incorporates a 

unique health indicator and a linear degradation model to accurately forecast the RUL. 

The utilization of the Hilbert-Huang entropy is employed in order to extract health 

indications and subsequently analyze the horizontal vibration signals acquired from 

the bearing. In the study, the author effectively demonstrated the utilization of the 

health indicator and degradation model for assessing the present health condition of 

bearings and making predictions regarding their Remaining Useful Life (RUL). 

(Bejaoui, Bruneo, & Xibilia, 2021) This paper introduces a prognostic 

methodology for diagnosing broken rotor bar failures in rotating machines. The 

methodology encompasses the modeling of the failure mechanism, development of a 

health indicator, and the subsequent prediction of the Remaining Useful Life 

(RUL).The researchers employed a blend of signal processing methodologies, intrinsic 

metrics, and component analysis to effectively supervise the performance of the 

induction motor.  

The deterioration patterns of crucial motor elements, such as stator current, 
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torque, and speed indicators, were monitored and extracted utilizing time-frequency 

sensors. From this, the RUL for the motor can be accurately predicted. Experimental 

results corroborated the developed methodology, and they concluded that the 

prognostic approach is a useful tool to predict induction motor degradation. 

To ensure the optimal and effective operation of machinery, equipment, 

infrastructure, buildings, or systems, various routine and necessary maintenance tasks 

must be performed. These tasks include inspections, cleaning, repairs, replacements, 

upgrades, lubrication, and adjustments. The cost of maintenance is typically a 

significant factor and is estimated to be about 4% to 15% of the overall running cost, 

depending on the specific industry (Mikler, 2011). According to (Mostafa, Lee, 

Dumrak, Chileshe, & Soltan, 2015), the maintenance cost can increase by 15% to 70% 

of the operational cost, depending on which production is carried out. For instance, in 

the States, approximately $200 billion is spent annually on the maintenance of 

production and facility machinery (Bevilacqua & Braglia, 2000).  

These statistics highlight the substantial financial impact of maintenance 

activities on businesses and industries. They underscore the importance of 

implementing effective maintenance strategies to minimize costs, maximize 

operational efficiency, and ensure the longevity of assets and equipment. The main 

goal of most maintenance strategies is to prolong operational life of systems or 

equipment, minimize instances of downtime, and ensure their safe and reliable 

functioning. Another objective is to avoid or diminish the possibility of mechanical 

failures, malfunctions, or breakdowns. Thus, maintenance becomes a cost-saving 

strategy. By implementing effective maintenance practices, organizations can prevent 

costly disruptions, reduce the need for major repairs or replacements, and optimize the 

performance of their assets. This proactive approach helps minimize downtime, 

increase productivity, and avoid potential safety risks. Ultimately, Maintenance plays 

a pivotal role in guaranteeing the seamless functioning of systems and equipment, 

augmenting operational efficacy, and optimizing long-term cost savings. 

2.4.2 Neural Networks 

Neural Networks are an artificial intelligence technique that utilizes data from 

sensors to identify defects in system machines and characterize their functional 

conditions (Kaiser K. , 2007). Neural networks can be characterized as information 

processing systems comprising numerous interconnected processing elements that 
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closely resemble the architectural organization of the cerebral cortex region of the 

brain. One of the essential functionalities exhibited by neural networks is their capacity 

to represent and simulate a given process utilizing real-time data. Additionally, they 

possess the ability to identify and extract patterns, irrespective of the presence of noise 

or gaps in the information received from the process. Moreover, neural networks also 

demonstrate the capability to interpolate and extrapolate beyond the training data that 

has been acquired. (Alguindigue, Loskiewicz-Buczak, & Uhrig, 1993).  

They designed a vibration monitoring model that analyzes vibrations from 

operational machinery components. They demonstrated that it's possible to use neural 

networks to interpret data that are distorted and noisy from traditional vibration 

analysis. The researchers employed the recirculation algorithm for data compression 

and the backpropagation algorithm to execute the actual classification of the patterns. 

   (Sinha & Pandey, 2002) Developed a conceptual framework was constructed 

to anticipate the likelihood of malfunction for a subterranean pipeline infrastructure 

utilizing an artificial neural network. Artificial neural network is trained using data 

collected from the field in describing the conditions of deteriorated pipelines due to 

rusting in real time. A probabilistic simulation framework is developed, that aims to 

estimate the reliability of pipelines for various adaptable connection. Several tests were 

carried out, which gave very accurate results in predicting pipeline failure with respect 

to the depth and length of corrosion. Using the current motion signature (Bansal, Evan, 

& Jones, 2004) employed a neural network approach to predict machine (DC motor) 

system parameters. He used real-time experimental data to train a neural network, 

which could detect abnormalities. 

2.4.3 Markov Processes 

Markov process is a widely employed probabilistic models in predictive 

maintenance to anticipate the future condition of equipment based on its condition 

state. They offer valuable insight to operators for planning maintenance activities, 

minimizing downtime, and enhancing overall equipment efficiency. Studies have 

assessed the effectiveness of this approach. For example, (Gorjian Jolfaei, 

Rameezdeen, Gorjian, Jin, & Chow, 2022). A Markovian methodology was suggested 

to forecast the remaining useful life (RUL) of industrial pumps. His study utilizes 

series of observed data on pump failures to construct a Markov transition matrix to 

estimate the RUL.  
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Another study by (Aizpurua, et al., 2022) A multi-state Markov model was 

employed to make prognostications regarding the Remaining Useful Life (RUL) of 

aircraft engines. He estimated a transition probabilities between different health states 

of the engine to forecast its RUL. Furthermore, (Chan & Asgarpoor, 2006) conducted 

a case study on utilizing Markov processes in predicting the maintenance requirements 

of a fleet of trucks. The study employed Markov chains to establish the probability of 

truck failure and estimate the downtime required to carry out each maintenance 

activity.



 

18 

CHAPTER 3 

3. PROBLEM DESCRIPTION 

Maintenance issues in industrial sectors can lead to various unfavorable 

outcomes, including decreased productivity, increased operational expenses, and 

compromised well-being and safety of workers. Neglecting or inadequately addressing 

maintenance concerns can result in equipment malfunctions, operational breakdowns, 

and potentially life-threatening incidents. A prevalent issue within the field of 

maintenance pertains to the absence of proactive measures aimed at preemptively 

addressing potential problems. Many industries adopt a reactive maintenance strategy, 

where equipment is repaired and restored only after it has mechanically failed. This 

reactive approach leads to higher repair costs, increased frequency of repairs, and 

extended periods of production downtime. Industries become susceptible to sudden 

failures and disruptions in their operations when routine maintenance protocols are 

overlooked. 

Another significant issue revolves around the inadequacy of training and 

expertise among maintenance personnel. Maintenance staff may encounter difficulties 

in identifying equipment problems or performing effective repairs if they do not have 

a comprehensive understanding of the equipment they are responsible for. Insufficient 

training can result in the incorrect use of tools and equipment, exacerbating 

maintenance problems. 

Furthermore, many industries often struggle to effectively manage their 

maintenance schedules. Inadequate planning and coordination can lead to the 

postponement or neglect of maintenance activities. This can result in a backlog of 

pending tasks, increasing the risk of equipment malfunctions and causing operational 

disruptions. In sectors where uninterrupted operations are essential, such as 
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manufacturing facilities, delaying or ignoring maintenance activities can have severe 

consequences for production efficiency. 

In addition, some industries face challenges related to the accessibility and 

procurement of maintenance spare parts. Maintaining an inventory of spare parts can 

be financially burdensome, especially for complex and specialized equipment. 

Insufficiently stocking an adequate supply of spare parts often leads to extend periods 

of machinery downtime, as the necessary replacement components must be sourced 

externally or manufactured. 

Moreover, the proliferation of advanced technologies and complex machinery 

has introduced new challenges for maintenance personnel. Successfully implementing 

technological advancements like, the Internet of Things, automation and predictive 

maintenance systems requires specialized knowledge and skills in troubleshooting and 

maintaining these intricate systems. Failing to comprehend and adapt to these 

technological advancements may result in a lack of proficiency in identifying 

equipment malfunctions or leveraging the benefits of predictive maintenance 

strategies. 

Lastly, industries are increasingly grappling with sustainability and 

environmental issues related to maintenance practices. Properly disposing of and 

recycling maintenance waste, including lubricants, chemicals, and old equipment, is 

of critical importance due to the need to comply with environmental regulations. 

Neglecting to address these concerns appropriately can lead to legal liabilities, damage 

to reputation, or adverse environmental impacts. To address these challenges, it is 

imperative to implement a predictive maintenance policy capable of anticipating 

impending failures and conducting maintenance operations prior to any system 

breakdown. 

For example, (Kaiser & Gebraeel, 2009) a simulation study was conducted in 

order to investigate the effects of different maintenance policies on the reliability and 

performance of a manufacturing system comprising multiple parallel workstations. 

Specifically, the present study was concentrated on investigating the efficacy of 

degradation model-based approaches in formulating predictive and preventive 

maintenance policies. 

In the course of simulating multiple maintenance policies, a comparative 

analysis was carried out to assess the influence of various policies on system 

performance. This assessment took into consideration factors such as the frequency of 



 

20 

equipment failure replacement, scheduled equipment replacement, routine 

maintenance frequency, and the associated cost for each maintenance policy. The 

analysis was conducted at system reliabilities of 70 and 90 percent. However, 

Additional research is necessitated in order to assess the impacts of different 

maintenance strategies on the dependability of manufacturing systems functioning in 

both series and series-parallel arrangements. This study is designed to assess the 

importance of various maintenance strategies about the performance of chemical 

production line, with a specific focus on a case study involving a series-parallel 

arrangement of workstations. 

The research focuses on investigating the application of predictive maintenance, 

the implementation of predictive maintenance strategies in Cameroon, Africa is 

observable to be in its nascent phases and represents an emerging field of study.This 

observation is based on an examination of scientific research conducted in this field. 

The fundamental aim of this research endeavor is to assess the Remaining Useful Life 

(RUL) of bearings within pivotal machinery employed in industrial installations. We 

will utilize the bearing degradation signal to simulate a predictive maintenance policy 

for the system and conduct an extensive comparison with the existing maintenance 

policy currently implemented as the prevailing strategy for plant maintenance. 
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CHAPTER 4 

4. METHODOLOGY 

4.4 Determination of the RUL of the Rotating Element Bearing 

A rotating element bearing is a mechanical device commonly used to provide 

support for the rotational motion of an element, such as a shaft. Its primary purpose is 

to minimize friction and facilitate smooth movement. This bearing has the capacity to 

withstand a load of 10 kilonewtons (KN), which is approximately equivalent to 2248.8 

pounds of force. The bearing assembly consists of several essential components, 

including a typical rolling element bearing consist of an outer race, an inner race, 

rolling elements (balls or rollers), a cage for the purpose of segregating the rolling 

elements, and a lubricant aimed at diminishing friction and dispersing heat.  

Typically, in its structural configuration, the outer race remains stationary, while 

the inner race facilitates the rotation, enabling the movement of the element it supports, 

such as a shaft or axle. When a load of 10kN is applied to the rotating element bearing, 

the rolling elements effectively distribute the load uniformly, thus reducing pressure 

and preventing undue wear or damage to the bearing surfaces.  

The robust construction and high-quality materials of the bearing ensure its 

ability to withstand the specified load without compromising its performance or 

durability. To optimize performance and minimize potential degradation, it may be 

necessary to periodically apply lubrication to the bearing of the rotating element to 

maintain a low-friction environment. This practice contributes to the reduction of heat 

generation and prevents premature failure resulting from excessive wear between the 

various components of the bearing Figure 4.1 explains the Rotating Element Bearing. 
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Figure 4. 1 Rotating Element Bearing 

Source: Moler, C. (1970). MathWorks, Inc.,. Retrieved from MATrix LABoratory. 

4.4.1 Experimental Procedure  

1. The rotating element bearing was installed on a test dynamometer, ensuring it is 

properly aligned and mounted.  

2. The accelerometers were affixed to the bearing housing in order to acquire vibration 

data corresponding to the bearing's performance during operation. 

3.  This bearing was run at a specified standard operating condition, known as the 

baseline condition, without any degradation.  

4. The vibration signals from the sensors were collected and recorded during this 

uninterrupted operation for 5 minutes. This baseline measurement will serve as 

a reference for future comparisons. 

5. Degradation was gradually introduce to the bearing by inducing faults. This was 

achieved by applying controlled forces or introducing artificial faults such as 

bearing defects or contaminants.  

6. Once the desired degradation level is achieved, the bearing was run and vibration 

signals were collected using the sensors. This was done for 5 minutes daily for 

a duration of 30 days.  

7. The collected data was in the form of an excel file which was then plugged into 

Matlab for processing and visualizing the degradation profile of the rotating 

element bearing. 
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4.4.2 Expression of Results 

(Gebraeel N. , 2006) This study expatiates on an exponential degradation model 

which was developed to elucidate the progression of degradation in a rotational 

element bearing over the course of its operational duration. 

The author defined degradation as a stochastic process, denoted as 𝐴 =

{𝐴(𝑡), 𝑡 > 0} where 𝐴(𝑡) represent the signal from degradation, one must consider the 

amplitude of the signal at a particular point in time t.  

This deterioration signal is modelled as  

 𝑨(𝒕) = 𝒉(∅, 𝜽, 𝒕) + 𝜺(𝒕)                                                                             (4.1) 

Here h (.) characterizes the component’s characteristics in relation to time and the 

vibration amplitude of the component.  

The exponential degradation model posits that the vibrational amplitude of the bearing 

was measured at distinct time interval  𝑡1, 𝑡2 … … 𝑡𝑛 consider𝑡 ≥ 0, 

The models have an amplitude which follows: 

 𝑨 (𝒕𝒏) = ∅ + 𝜽𝒆𝜷𝒕𝒏+𝜺(𝒕𝒏)−
𝝈𝟐

𝟐 = ∅ + (𝜽𝒆𝜷𝒕𝒏)(𝒆𝜺(𝒕𝒏)−
𝝈𝟐

𝟐 )                           (4.2) 

In the aforementioned equation, the parameter, ∅  retains a constant deterministic 

quality, while 𝜃, 𝛽 assumes the nature random variables. Furthermore, the error term 

𝜀(𝑡𝑛) is characterized by a mean of 0. 

From this equation, the author was able to describe the degradation path of the 

rotating bearing which predicts when this component would fail to obtain a more 

realistic Remaining Useful Life (RUL) for the bearing, the author incorporated sensory 

data collected from the bearing's operational environment. This facilitated the ability 

to modify and refine the degradation pattern, leading to a more precise determination 

of the remaining useful life through the utilization of the latest degradation 

characteristics. 

The researchers took into account various sensory measurements including 

temperature, humidity, vibration, and other pertinent parameters to consider external 

factors that influence the rate of degradation. They integrated this sensory data into a 

residual life distribution model, representing the cumulative probability distribution of 

residual life. This residual life distribution is characterized by exponential degradation 

patterns can be updated by incorporating sensory data, which can be expressed by the 

subsequent mathematical; 
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   𝑅((
𝑡

𝑆(𝑡)
) = 𝑆(𝑡) ∗ ⅇ(−ℷ𝑡)                                                                (4.3) 

Where: 

R (t|S (t)) represents the useful life function time t, written S(t). 

S(t) characterizes the state of bearing or gear with time, t 

λ is degradation rate parameter determining the rate of component deterioration. 

t0 represents the initial time when the sensory data is collected. 

The equation presented herein integrates sensory information denoted as 𝑆(𝑡) with an 

exponential degradation pattern, facilitating the computation of useful life distribution 

pertaining to a machine component. 

The exponential degradation model equation for a rotating element bearing is 

given as: 𝑫(𝒕) = 𝑫𝟎 ∗ 𝒆−𝛌𝒕                                                                                    (4.4) 

 𝐷(𝑡) is desired level of deterioration at time t, 𝐷𝑜 is the start of deterioration 

at time t=0, λ is the degradation rate constant and ⅇ is the error term (approximately 

2.71828) to experimentally determine the degradation profile, the degradation level can 

be measured at specific time intervals. Mathematically: 

𝑫𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏 𝒍𝒆𝒗𝒆𝒍 𝒂𝒕 𝒕𝒊𝒎𝒆 𝒕𝒍 ∶ 𝑫(𝒕𝟏) = 𝑫𝟎 ∗ 𝒆^(−ℷ𝒕𝟏)                (4.5) 

𝑫𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏 𝒍𝒆𝒗𝒆𝒍 𝒂𝒕 𝒕𝒊𝒎𝒆 𝒕𝟐 ∶ 𝑫(𝒕𝟐) = 𝑫𝟎 ∗ 𝒆^(−ℷ𝒕𝟐)                             (4.6) 

𝑫𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏  𝒍𝒆𝒗𝒆𝒍 𝒂𝒕 𝒕𝒊𝒎𝒆 𝒕𝒏: 𝑫𝟎 ∗ 𝒆^(−ℷ𝒕𝒏)                                             (4.7)  

These degradation levels can be plotted against time to visualize the degradation 

profile. The slope of the line in an ln (D) vs ln (t) plot represents the degradation rate 

constant, λ. 

4.4.3 Estimation of the RUL 

The RUL of the bearing was determined using the formula 

𝑹𝑼𝑳 =  
𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝒅𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏 𝒍𝒆𝒗𝒆𝒍

𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒅𝒆𝒈𝒓𝒂𝒅𝒂𝒕𝒊𝒐𝒏 𝒍𝒆𝒗𝒆𝒍
∗ 𝟏𝟎𝟎                                                         (4.8) 

4.5 Vibrational Profile of a Rotating Element Bearing 

The vibrational profile of the bearing was simulated over a 30 days duration, 

during which 10,000 measurements were recorded to capture the amplitude. This 

extensive dataset provided a comprehensive representation of the bearing life cycle. 

The MATLAB codes will be utilized to educate the entire process. Figure 4.2 is 

depicting generating vibrational profile of this rotating element bearing, starting from 
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a healthy state, and progressing towards a faulty state. This profile was obtained using 

our synthetic degradation mat file.  

 

Figure 4. 2 Rotating Element Bearing Vibrational Signal 

Apparently, the vibration amplitude increases with time, hence progressive 

degradation of the bearing. The higher peaks in amplitude correspond to an intensified 

vibration in the rotating element bearing. As previously highlighted, vibration is a 

critical factor contributing to the faulting of the bearing and the gear reducer. This 

observation emphasizes the significance of time, vibration frequency, standard current, 

and torque as the most influential factors in the degradation model. 

We used sensors to record the bearing's amplitude for 350 seconds daily over the 

course of 30 working days. These parameters were considered comprehensively, 

recognizing that conditions may not remain constant every day. Variables such as 

intermittent generator connections, which lead to split-second exchanges, were also 

factored into our calculations. The compensation factor takes into consideration the 

discrepancies in duration when evaluating the Remaining Useful Life (RUL), it is 

intrinsically contingent upon the machine's operating time. 

4.6 Estimating Remaining Useful Life 

To estimate the Useful Life of the bearing and determine the machine run time, 
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scheduling maintenance, will be the first step when computing the complete 

deterioration life span of the bearing. Utilizing MATLAB, we computed the 

degradation life cycle of the bearing to be 73,320 

minutes 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑓ⅇ 𝑠𝑝𝑎𝑛 1222ℎ𝑜𝑢𝑟𝑠 ∗ 60. This duration represents the point at 

which the bearing is expected to fail, which can be attributed to wear and tear or loss 

of lubrication. To fine-tune our model, the degradation constants were ℷ = 0.1 and the 

noise factor𝛽 = 0.01. Subsequently, after determining the degradation life cycle of the 

bearing, we generated an RUL graph to visually represent the overall progression of 

the bearing's lifespan leading up to the anticipated failure point. This graphical 

representation allowed us to precisely identify the moment when the bearing is likely 

to experience a breakdown, facilitating proactive maintenance scheduling. Figure 4.3 

illustrates the RUL of the rotating element bearing. 

 

Figure 4. 3 Remaining Useful Life for Rotating Element Bearing 

From the graph, the bearing has a total lifespan of 1,222 hours. Throughout our 

experimentation, the bearing exhibited a remaining useful life (RUL) of 942 hours, 

signifying a degradation of approximately 23%. From this data, the bearing is likely 

to fail around the 91st day. Consequently, it is advisable to schedule maintenance for 

the 90th day, which correspond to 3 months. This is an approach to ensuring the 

reliability of the manufacturing system.



 

27 

CHAPTER 5 

 5. SIMULATION STUDIES 

5.1 Description of the Production Process  

The solution concentrate line produces solution concentrates, often labeled as 

SL, which are homogeneous liquid preparations intended to be use as a true solution 

of the active ingredient after dilution with water. Most SL products are formulated 

with built-in biological enhancers that enhance the biological efficacy of the active 

ingredients. An example of a biological enhancer used in the formulation of SL is alkyl 

phenol and silicone spreader, which acts as a spreader and sticker, aiding in the quick 

absorption of the active ingredient into the leaves while providing rain fastness. One 

such Holfarcam product formulated as an SL is Glyphosate 360 SL, a nonselective and 

systemic herbicide used for controlling perennial weeds in agriculture and lawns. 

The production process for a 1000-liter batch is as follows: The reactor is 

initially filled with 50% softened water, achieved through water hardness reduction 

via ion exchange. The reactor motor is started at low speed. The active ingredient, in 

powder form, is added to the reactor while stirring continues. The reactor is sealed, 

and the base is introduced into the reactor through pipes connecting the base tank and 

the reactor. To manage the heat generated during the reaction, chilled water circulates 

through the reactor until the temperature drops to room temperature. Other additives, 

such as surfactants and colorants, are incorporated and stirred to achieve a 

homogeneous solution. At the end of the reaction, the solution is pumped through a 

filter, aided by a diaphragm pump, to remove any undissolved additives. The final 

product is stored in a storage tank, allowing any remaining moisture to evaporate and 

the raw acid to complete its reaction with the base before being filled into packaging 



 

28 

containers. This is done after a sample has passed through the laboratory for various 

tests, including pH, persistent foam tests, and suspensibility. 

Once all these quality standards are met, the product is ready for the market. It's 

crucial to emphasize the significance of the chemical reactor compartment as it plays 

a vital role in determining the production of SL. This is where the chemical reaction 

(neutralization) takes place. Without the proper functioning of the chemical reactor, 

the production process for SL could be significantly disrupted or even halted. 

Therefore, it is essential to prioritize the maintenance and predictive maintenance of 

the chemical reactor when producing SL.  

 

Figure 5. 1 Production Process for Solution Concentrate 

5.2 Simulation And Analysis Of Maintenance Policies Series-Parallel 

Workstation 

 This section, a comprehensive assessment of the performance in the solution 

liquid production system was carried out. This product line has three work cell, each 

of which contains duplicated workstation. To facilitate this analysis, we utilized the 

ARENA simulation software as our simulation tool. When assessing the reliability of 

the production system, we examined a network configuration that combines both series 

and parallel workstations as that of the practical Holfarcam Sarl production line setting. 
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5.3 Manufacturing System 

The solution liquid concentrate production line is the manufacturing system 

under analysis, having three operational work cells. It started by work cell 1 having a 

single work station, similar scenario applies for work cell 2 but for work cell 3 there 

are two work stations. When the pre-processed component is delivered at the initial 

work cell, it undergoes processing at workstation 1. The subsequent step involves the 

processing of the component at workstation 2 and subsequently at workstation 3. The 

decision as to whether it will be processed at workstation 3 or 4 depends on the 

availability of either workstation. Ultimately, the component is transferred to the 

warehouse for further distribution. Figure 5.2 is a representation of Holfarcam Sarl 

manufacturing system. 

 

 

Figure 5. 2 HOLFARCAM Sarl Manufacturing System 

5.4 System Reliability 

In a series- parallel system, the system’s components are arranged in both series 

and parallel relationships. Considering Figure 5.3 below, the reliability of the ith 

component is denoted as; 



 

30 

 

Figure 5. 3 Illustration of Series-Parallel Configuration 

To assessing reliability, one approach is to break down the network into parallel 

and series subsystems. Evaluating this reliability involves examining their separate 

reliabilities of various subsystems and then taking into account their interdependencies 

to calculate the overall system reliability. For the network depicted above, the 

reliability subsystem is as follows: 

𝑹𝑨 = [𝟏 − (𝟏 − 𝑹𝟏)(𝟏 − 𝑹𝟐)]                                                                       (5.1) 

 𝑹𝑩 = 𝑹𝑨 (𝑹𝟑)  ,  𝑹𝑪 = 𝑹𝟒 (𝑹𝟓)                                                                       (5.2) 

𝑺𝒊𝒏𝒄𝒆 𝑹𝑩 𝒂𝒏𝒅 𝑹𝑪 𝒂𝒓𝒆 𝒊𝒏 𝒑𝒂𝒓𝒂𝒍𝒍𝒆 𝒘𝒊𝒕𝒉 𝒐𝒏𝒆 𝒂𝒏𝒐𝒕𝒉𝒆𝒓 𝒂𝒏𝒅 𝒊𝒏 𝒔𝒆𝒓𝒊𝒆𝒔 𝒘𝒊𝒕𝒉  𝑹𝟔, 

 𝑹𝑺 = [𝟏 − (𝟏 − 𝑹𝑩)(𝟏 − 𝑹𝑪)](𝑹𝟔)                                                                 (5.3) 

The manufacturing system been analyzed is illustrated in Figure 5.2. This 

configuration comprises a sequential arrangement of two workstations, succeeded by 

a parallel configuration of two additional workstations. Based on the present 

configuration, in order for system failure to transpire, it is imperative that one of the 

ensuing conditions be satisfied: 

1. Workstation 1 fails 

2. Workstation 2 fails 

3. Workstation 3 fails 

To determine the system’s reliability, we evaluate the reliability of individual 

workstations at a given time "𝑡"  using probability calculations that consider the 

specific configuration of each system component. The resulting overall system 

reliability, denoted as𝑅(𝑡), is calculated as follows: 

 𝑹𝒔(𝒕) = (𝑹𝟏(𝒕). 𝑹𝟐(𝒕). [𝟏 − (𝟏 − 𝑹𝟑(𝒕)(𝟏 − 𝑹𝟒(𝒕))]                             (5.4) 

𝒘𝒉𝒆𝒓𝒆, 𝑹𝒊(𝒕) 𝒊𝒔 𝒕𝒉𝒆 𝒓𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒐𝒇 𝒕𝒉𝒆 𝒊𝒕𝒉 𝒘𝒐𝒓𝒌𝒔𝒕𝒂𝒕𝒊𝒐𝒏    
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5.5 The Simulation Model 

The simulation was carried out using the ARENA simulation software.  The 

production system being investigated can be described as a simulated configuration 

with a series-parallel structure, consisting of four discrete workstations. Pre-processed 

items are transported to a staging facility, the time intervals between the arrivals of the 

entities are characterized by an exponential distribution, with an average value of 

0.25mins. Upon the onset of the process, every individual component is allocated to 

its corresponding initial workstation. 

Afterward, the component proceeds which undergoes processing at the second 

workstation, and subsequently, it undergoes processing at one of the final two 

workstations depending on their availability (not processing any pre-processed 

parts).Certain assumptions were considered about the processing times at each 

workstation. Workstation 1, which is the chemical reactor, was assumed to have 

processing times following a triangular distribution (it assumes three parameters, the 

minimum value, maximum value and the peak or the mode) with parameters of 

3.25mins, 3.50 mins and 4.20 mins. Similarly, the processing time at workstation 2 

follows a triangular distribution of values of 2.5, 2.75, and 3.0 minutes. Additionally, 

workstations 3 and 4 were assumed to have processing times following a triangular 

distribution (distribution percentages: as 75% and 25%, respectively for one liters and 

five liters of the final product) with parameters of 4.75, 5.25, and 5.75 minutes. Upon 

completion of the production process, the final product are transferred to their 

designated shipping blocks. 

In manufacturing industries, the production line can experience periods of 

unavailability as result of unplanned or planned maintenance routines. The duration of 

downtime resulting from a system failure is regarded as stochastic, adhering to a 

Normal distribution characterized by a mean of 300 minutes and a variance of 30 

minutes. The downtime resulting from scheduled maintenance routines is also 

stochastic, having mean 30 minutes and variance of 5 minutes. Conversely, the 

occurrence of unforeseen system failure is expected to lead to increased downtime, as 

a result of the unforeseen need for replacement components and maintenance assistant. 

Next, it was assumed that every work station undergoes gradual degradation 

until it eventually ceases to function. The degradation of workstations is presumed to 

be represented by the exponential degradation model, which uses real vibration-based 
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data. Specifically, Degradation signals extracted from vibration-based data, alongside 

their respective failure times, are utilized to illustrate the progression of deterioration.  

This simulation model consists of three distinct sub-models, each serving a specific 

purpose. The initial sub-model replicates the manufacturing system under simulation, 

the second sub-model delineates the control logic inherent in the maintenance policy. 

Finally, the last sub-model governs the repairs activities in the production line. 

5.5.1 Manufacturing System Sub model 

 

Figure 5. 4 Manufacturing System Sub model 

Every initial entity is been generated by the CREATE block and prepared for 

processing. Once the entities are generated, they are sent to the first processing 

workstation (process 1). Following processing at process 1, they proceed to the second 

processing workstation (process 2), where they enter a hold or waiting state. The 

HOLD is been used to monitor their usage levels at various workstations using 

ARENA expressions. 

  𝑵𝑸(𝑷𝒓𝒐𝒄𝒆𝒔𝒔 𝟐 𝒘𝒐𝒓𝒌𝒔𝒕𝒂𝒕𝒊𝒐𝒏. 𝑸𝒖𝒆𝒖𝒆)  <=  𝟏𝟎 && 𝑵𝑹(𝑹𝒆𝒔𝒐𝒖𝒓𝒄𝒆 𝟏) <=

 𝑴𝑹(𝑹𝒆𝒔𝒐𝒖𝒓𝒄𝒆 𝟏)                                                                                              (5.5) 

   𝑵𝑸(𝑷𝒓𝒐𝒄𝒆𝒔𝒔 𝟐 𝒘𝒐𝒓𝒌𝒔𝒕𝒂𝒕𝒊𝒐𝒏. 𝑸𝒖𝒆𝒖𝒆) :                                             

This module provides the current count of entities that are currently in the queue 

associated with the Process 2 workstation. The queue serves as a designated buffer for 

holding entities that are awaiting processing by the workstation. 

𝑵𝑹(𝑹𝒆𝒔𝒐𝒖𝒓𝒄𝒆 𝟏) <=  𝑴𝑹(𝑹𝒆𝒔𝒐𝒖𝒓𝒄𝒆 𝟏) : 

Evaluates to TRUE if the number of busy resource units (NR) of Resource 1 is 

less than or equal to the capacity of Resource 1 (MR) in process one workstation.  
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After entities have been processed at workstations 1 and 2, regulated by the 

HOLD module, the process enters a DECISION module that determines the processing 

at workstation 3 or 4 based on a predefined quantity processed by each workstation. 

Workstation 1 follows a triangular distribution with parameters of 3.25, 3.50, and 4.20 

minutes. Similarly, at workstation 2, it is assumed that the processing time is subject 

to a Triangular distribution with parameters of 2.5, 2.75, and 3.0. Additionally, 

workstations 3 and 4 have processing times of 4.75, 5.25, and 5.75 minutes while 

assuming triangular distribution. 

Upon completion in processing these parts, these finalized entities proceed to a 

RECORD module responsible for monitoring and recording the overall throughput of 

the system. Throughput is calculated as throughput = throughput + 1. Subsequently, 

the entities are removed from the production process line via the DISPOSE block. 

5.5.2 Manufacturing System Sub model 

These sub-models simulate the failures of various workstations within the 

system and simultaneously determine maintenance activities, two subroutines assist in 

this process: the first subroutine generates workstations failures, and the second one 

shuts down the workstation. Below are the sub models for the degradation model. 

a. Simulation of the manufacturing system using the exponential degradation 

model. 

 

Figure 5. 5 Exponential Degradation Model. 

The provided simulation code in Figure 5.5 represents a system in which 

progressive degradation follows an exponential pattern throughout its operation. The 
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initial value of the system state variable is set to 100.0 (when the component is in a 

good state), and the exponential degradation rate is configured as 0.05. The simulation 

generates an entity at regular intervals of 1 time unit, after which each entity is 

subjected to a delay of 1 time unit. During this delay period, the system state variable 

experiences degradation that follows an exponential decay pattern. Following the 

delay period, the entity is effectively disposed. 

To collect simulation results, an iterative process is employed over the entities 

within the simulation. This process involves accessing the state attribute of each 

individual entity. Analyzing the simulation results provides a comprehensive 

understanding of the system's state, which results from exponential degradation. 

b. Failure Routine Sub model 

 

Figure 5. 6 Failure Routine Submodel 

The failure routine sub-model in Figure 5.6 the condition of the manufacturing 

system upon the occurrence of a prospective malfunction in the course of the 

production process. The subroutine starts at the CREATE block which generates its 

entity with a value 5 at the beginning of a simulation run. A failure routine is 

implemented on Process 1 to address system failures effectively. This choice is made 

because Process 1 is a critical asset in the manufacturing line. The parameters for the 

failure subroutine include 8 hours of uptime and an exponential downtime with a mean 

of 25. The results of the simulation are displayed on a graph. When there is an 

accumulation at Process 1, the number in waiting increases, signifying a problem along 

the chain, and the system becomes idle. 

The failure time subroutine, as shown, is accountable for simulating workstation 
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failures and determining the system's preventive maintenance (PM) interval. The 

process starts by using the CREATE block which creates an entity. The management 

of the generation of failure occurrences in workstations and the scheduling of routine 

preventive maintenance (PM) within the system are undertaken by the entity. 

ba. Preventive Maintenance Policy 

Preventive Maintenance (PM) policy, the expedient incorporation of a phantom 

entity is expeditiously embedded within a Visual Basic Application code at the initial 

time (t = 0). The provided code excerpt of a Visual Basic Application effectively 

incorporates the generation and occurrence of unplanned downtime experienced by a 

workstation labeled as 𝑓𝑎𝑖𝑙𝑢𝑟ⅇ_𝑡𝑖𝑚ⅇ_𝑖 and computationally determine the interval for 

preventive maintenance for the system, denoted as 𝑝𝑚_𝑖𝑛𝑡ⅇ𝑟𝑣𝑎𝑙  workstations are 

susceptible to unforeseeable malfunctions, and it is postulated that the Weibull 

distribution serves as the fundamental model for the probability distribution of system 

failure durations. The shape parameter is denoted as β and the scale parameter goes as 

θ. The study estimated β = 1.0549, and the scale parameter is estimated to be θ = 

90.784. The aforementioned parameters are derived through the utilization of a set of 

failure times from the rolling element bearing, thereby providing estimates for said 

parameters. 

The system's preventive maintenance interval varies based on different levels of 

reliability. The system preventive maintenance (PM) interval is determined by solving 

for the time "𝑡" with 𝑅𝑠(𝑡) representing the reliability of individual workstations (i = 

1, 2... 4), in accordance with the specified system reliability level,  𝑅𝑠(𝑡) .The 

computation for determining the reliability of individual workstations is conducted by 

employing the expression of the DM policy. For unplanned downtime, the duration of 

𝑝𝑚_𝑖𝑛𝑡ⅇ𝑟𝑣𝑎𝑙 > failure time for every work station"𝑖". 

bb.  Degradation Maintenance Policy 

In this policy, the determination of the reliability of individual workstations is 

based on an examination of their respective degradation signals. Phase II data is 

utilized to calculate residual life, facilitating the determination of the reliability 

distribution for the workstation. Real-time observation of the degradation signal 

enables continuous updating of the reliability distribution for each workstation. This 
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maintenance policy assumes the use of a condition monitoring system to capture data 

at one-minute intervals. 

The generation of a phantom entity arises as a consequence of the failure time 

subroutine, wherein a two-minute delay is enforced before its integration into the 

Visual Basic Application block. The reliability of each workstation is calculated at 

regular intervals of two minutes using the Visual Basic Application algorithm, which 

is implemented through one of the prescribed methodologies; 

1.  The deterioration characterized with non-defective (phase 1) at the 𝑖𝑡ℎ workstation, 

it is assumed the reliability of the workstation. 

2.  The deterioration characterized defective phase (phase 2) at the 𝑖𝑡ℎ  workstation 

assumes a reliability expressed in equation (5.4). 

3.  The deterioration pertaining to failure threshold (phase 3), at  𝑖𝑡ℎ workstation, 

assumes reliability to be zero. 

After conducting the assessment of reliability for individual workstations, it 

becomes possible to compute the overall system reliability. The computation of 

reliabilities, 𝑅𝑠(𝑡) , is achieved by applying 𝑅𝑠(𝑡) = 𝑅1(𝑡) ∗ 𝑅2(𝑡) ∗ … .∗ 𝑅𝑛(𝑡) 

which is generally an n mutual independent component in series of system reliability 

at time t, which incorporates the reliability values of individual workstations,𝑅𝑠(𝑡), 

where i represents the workstation number ranging from 1 to 4. 

The estimated values of the aforementioned parameters were obtained through 

the utilization of a representative subset of degradation signals extracted from the 

dataset pertaining to degradation. The computed values of the parameters are 𝜃 =

−5.024  and σ^2 = 0.00461. In order to effectively devise a routine for system 

maintenance, it is essential to temporarily suspend the updating procedure and utilize 

the most current system reliability distribution in order to ascertain the remaining 

longevity of the system. The time allocation for a predetermined maintenance schedule 

is calculated using the following methods. 

𝒑𝒎_𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 =  𝒕𝒌 +  𝒕𝒎𝒆𝒅𝒊𝒂𝒏                                                          (5.6) 

  𝒘𝒉𝒆𝒓𝒆, 𝒕𝒎𝒆𝒅𝒊𝒂𝒏 𝒊𝒔 𝒕𝒉𝒆 𝒎𝒆𝒅𝒊𝒂𝒏 𝒐𝒇 𝒕𝒉𝒆 𝒓𝒆𝒍𝒊𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒅𝒊𝒔𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏.  

c. Resource Shutdown Subroutine 

The assigned probability of resource failure per unit of time is 0.1, and the 

allocated duration for repairing the resource is 10.0 units of time. The simulation 

generates a resource failure entity at a frequency of one over the probability of failure 



 

37 

time units. In the context of resource management, the occurrence of a resource failure 

entity is temporally postponed for a duration of "𝑅𝐸𝑃𝐴𝐼𝑅_𝑇𝐼𝑀𝐸" time units, after 

which it is subsequently disposed. 

The process that seizes the resource before processing a task. If the resource is 

unavailable, the process waits until the resource becomes available. After processing 

the task, the process releases the resource. Data obtained from the simulation can be 

collected by iteratively accessing the attributes of the simulation's entities. One 

relevant example involves acquiring resource failure data by tallying entities classified 

as "𝑅𝐸𝑆𝑂𝑈𝑅𝐶𝐸_𝑇𝐼𝑀𝐸" the mean duration for resource restoration can be determined 

by computing the average time between occurrences of resource failures. 

The findings of the simulation can then be examined to gain insight into the 

impact of resource malfunctions on the system. For instance, the results of the 

simulation can be used to determine the duration during which the system is not 

operational or to identify strategies for improving the system's ability to withstand 

resource failures. 

d. System Maintenance Submodel 

The sub-model designated for system maintenance endeavors to replicate and 

analyze various actions associated with the upkeep of a system. This subroutine 

commences with a CREATE block that generates a solitary entity at the initiation of 

every simulation iteration. The entity subsequently proceeds to a HOLD block, 

wherein it remains inert until the production line shutdown is activated. 

Below are factors explaining unexpected production line downtime: 

• System failure. 

• Deliberate implementation of a system replacement. 

As previously mentioned, the manufacturing system under investigation is 

susceptible to failure if Workstation 1, Workstation 2, or Workstations 3 and 4 

experience failures. In the event of a system failure, any workstations that have not 

failed will promptly initiate a shutdown process, leading to an unforeseen termination 

of operations. The DELAY module is used to simulate a temporary disruption in 

operations, specifically designed to replicate the duration required for remedial actions 

and replacement processes.  
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Figure 5. 7 System Maintenance Submodel 

Following the occurrence of a delay, it is common to employ a SIGNAL block 

with the purpose of signaling the Resource Shutdown Subroutine to release its entities 

from the HOLD block it is currently occupying, thus allowing the workstations to 

become available once again, The occurrence of a system failure resulting in a period 

of operation disruption is deemed to be probabilistic in nature, adhering to a Normal 

distribution characterized by a mean duration of 150 minutes and a variance of 15 

minutes. The 𝑁𝑓  function evaluates cumulative count for unexpected downtime 

replacements and 𝑁𝑚 function is for planned downtime. 
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CHAPTER 6 

6. IMPLEMENTION AND RESULTS 

Arena software was used in simulating the operations in the manufacturing 

system. For every simulation iteration it lasted for 30 consecutive days.  

The frequency plot in Figure 6.1 illustrates the failures associated with various 

maintenance policy, which were assessed to different reliability percentages, 

specifically at 55%, 65%, 75%, 85%, and 95%. The findings demonstrate that the 

adoption of a degradation-based predictive maintenance (DM) strategy leads to the 

least frequency of workstation failures across various system reliability levels. 

Additionally, the prevalence of malfunctions occurring at the 95% reliability threshold 

exceeds the frequencies observed at other reliability levels because of additional 

degradation indicators. The aforementioned instances of failures display a correlative 

decline in accordance with diminishing reliability standards. 

 

Figure 6. 1 Frequency Replacement for Failure 
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The data in Figure 6.1 illustrate the count of scheduled maintenance procedures, 

Preventive replacements, specifically in the assessed manufacturing system pertaining 

to varying reliability levels, merit specific attention, the frequency for these 

replacements are related to the implementation of the Preventive Maintenance policy 

leads to a reduction in maintenance-related issues which decreases as the level of 

reliability diminishes. However, the maintenance policy pertaining to degradation 

showcases a distinctly contrasting pattern. 

 

Figure 6. 2 Frequency Replacement for Planned Failures 

Table 6.1 and Table 6.2 offers an empirical record of the means and standard 

deviations associated with the quantities of frequency replacements for failure and 

frequency replacements for planned are shown for each reliability level. The current 

study emphasizes that the DM Policy consistently results in lower standard deviations 

across most reliability levels. As a result, it indicates a reduced degree in the 

fluctuation of the number of maintenance procedures executed.  

Table 6. 1 Means and Standard deviations,pertaining to the Frequency Replacements 

for Failure observed within different Levels of Reliability. 

  
Degradation.M.Policy 

(Nf) 

Preventive.M.POLICY 

(Nf) 

Reliability % Mean Standard.D Mean Standard.D 

95% 53 1.2 89 0.85 

85% 46 0.67 347 1.23 
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Table 6. 2 Means and Standard deviations,pertaining to the Frequency Replacements 

for Failure observed within different Levels of Reliability (more). 

75% 37 0.92 478 1.36 

65% 21 0.88 569 0.87 

55% 10 0.89 672 0.98 

Table 6. 3 Means and Standard deviations,pertaining to the Frequency Replacements 

for Planned Failure observed within different Levels of Reliability. 

 
Degradation.M.Policy (Nm) Preventive.M. Policy (Nm) 

 Reliability 

(%) 

mean standard.D mean standard.D 

95% 600 4.7 960 8.43 

85% 610 3.4 832 6.71 

75% 590 1.63 771 3.35 

65% 620 2.32 670 4.54 

55% 570 1.2 550 2.69 

The assessment of the efficacy of maintenance policies was extended through the 

computation of the aggregate maintenance expenditures for each policy. The total 

maintenance costs, referred to as TC, are specified by the following definition: 

 𝑻𝑪 =  𝑵𝒇𝑪𝒇 + 𝑵𝒎𝑪𝒎                                                    (6.1) 

Where:  

𝑁𝑓 Represents the quantity of system failures demanding replacement, in the provided 

context, 𝐶𝑓 represents the cost associated with executing the procedure for addressing 

a system failure consisting of scheduled maintenance measures. ($600) was assumed,  

𝑁𝑚 signifies the amount of planned system schedule maintenance replacement,𝐶𝑚 

and denotes actual amount attributed to the implementation of scheduled replacement 

($50) was considered. 

 Overall amount associated with various maintenance strategies depends on it 

specified reliability percentage in the production line. The financial implications this 

maintenance strategy were assessed across 5 percentage levels their reliability 

percentages: 95%, 85%, 75%, 65%, and 55%. The results indicate that the DM policy 
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results in significantly reduced overall costs at any given level of reliability compared 

to the PM policy. It's worth noting that the overall maintenance expenditure associated 

with the PM maintenance policy exhibits a decreasing trend as reliability improves. 

This is expected as higher reliability leads to a reduction in the occurrence of failures. 

However, the scenario changes when considering Degradation maintenance 

(DM) Policy. In use of updating sensor-based procedure, one enhances the accuracy 

of the useful life distribution at the thresholds reliability. The incorporation of 

supplementary real-time degradation signals acquired from the monitored components 

(workstations) has facilitated the present study. The decrease in reliability levels 

corresponds with a reduction in maintenance costs associated with the DM policy. It 

is clear that the DM policy offers the most cost-effective approach to maintenance 

expenses.  

 

Figure 6. 3 Total Maintenance Cost 

 Figure 6. 3 the statistical measures of the average and variability indicators for 

the aggregate maintenance expenses per policy, across different levels of reliability, 

are presented. An investigation of the collected data reveals the degree of variability 

observed in the overall maintenance cost is significantly reduced for most reliability 

levels when employing this repairs strategies which incorporates vibration sensors for 

updating useful life distribution. 
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Table 6. 4  Mean and Standard deviations explaining the Total Maintenance Cost at 

different Percentages of Reliabilities. 

  Degradation.M. Policy TC Preventive.M. Policy TC 

Reliability 

(%) 

Mean ($) Standard.D($) Mean($) Standard.D($) 

95% 2540 233 4250 1254 

85% 3620 327 4890 1210 

75% 3870 457 5760 1455 

65% 2100 124 9650 1327 

55% 1540 93 10340 657 

The utilization rate of a workstation refers to the percentage of time it is actively 

engaged in productive tasks, while throughput indicates the amount of work completed 

by a workstation within a specific time frame. These two metrics provide valuable 

information regarding the general productivity and efficiency of workstations within 

the system.  

To assess the effectiveness of maintenance policies in practice, Figure 6.4 

displays the mean workstation utilization under various maintenance policies across 

different reliability thresholds, specifically 95%, 85%, 75%, 65%, and 55%. The 

analysis demonstrates that the implementation of the degradation model policy yields 

the utmost degree of workstation utilization. 

Furthermore Figure 6.5 is system throughput, the mean throughput associated 

with each maintenance policy is shown. The DM policy outperforms the PM 

maintenance policy in terms of improved performance. Additionally, the DM policy 

demonstrates lower maintenance costs and greater equipment availability, further 

contributing to its superiority over the PM policy. These findings suggest that 

implementing the DM maintenance policy is advantageous for optimizing 

performance and reducing equipment maintenance costs. 

This finding suggests that applying this degradation policy will decrease cycle 

time compared to the conventional PM policy. Table 6.4 presents the statistical 

summary of system throughput in terms of mean values and standard deviations. 

Each policy is implemented at its corresponding reliability level within the 

framework. Based on our observations, it can be discerned that the implementation of 
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a maintenance policy utilizing sensor-based updates of residual life distributions leads 

to reduced variability of throughput at majority of the reliability levels examined, 

specifically three out of five. 

 

Figure 6. 4 Workstation Utilisation 

 

Figure 6.5 System Throughput 
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Table 6.4 provides a statistical summary of the system throughput, including 

mean values and standard deviations. Each policy is implemented at its corresponding 

reliability level within the framework. From observations, this type of maintenance 

policy which involves the updating of sensor of the remaining useful distribution reads 

low throughput variations in three reliability percentage points out of the total five 

used in the study.   

Table 6. 5 Mean and Standard deviations the different policy production throughput 

and their reliability percentages. 

 
Degradation.M.Policy 

Throughput 

Preventive.M. Policy 

Throughput 

Reliability 

(%) 
Mean Standard.D Mean Standard. D 

95% 12300 672 12450 681 

85% 12350 681 11235 579 

75% 12900 783 9540 453 

65% 12895 764 7450 342 

55% 12905 691 5420 234 

The primary objective of the simulation study using the degradation dataset is to 

assess the performance of degradation, with a focus on it importance of condition-

based policy on the system reliability in the production system. This research made 

use of two maintenance strategy and evaluated their percentage reliabilities; 

Firstly, maintenance routines are scheduled based on the reliability of the PM 

(Preventive Maintenance) policy. This policy considers Weibull failure times for 

workstation failures. 

Secondly, Degradation Maintenance policy, it utilizes the dataset of real-time 

sensor to schedule maintenance routines. This policy, we update the residual life 

distribution using real-time sensory data because it enables more effective 

maintenance scheduling. 

To assess the performance of the manufacturing system, several factors are 

analyzed, including failures workstation, planned workstation, maintenance policy 

cost, and utilization of workstation. This study offers a comprehensive insight into the 
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system's performance and reliability.  The overall analysis of this study reveals the 

sensory-updated degradation predictive policy, shows higher utilization of 

workstation, increased system throughput and lower levels of maintenance cost in 

scenarios of planned and unplanned downtime compared to the traditional preventive 

maintenance policy.
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CHAPTER 7 

CONCLUSION AND RECOMMENDATION 

7.1 Conclusion 

With the ever-increasing costs associated with the maintenance of industrial 

machinery due to downtime and machine failures, coupled with the trend of adopting 

just-in-time production, it has become imperative to embrace maintenance policies that 

promote lean manufacturing practices and eliminate waste throughout the production 

chain. Some of the maintenance policies currently employed by most firms include 

reactive and preventive maintenance, which have proven to be costly and result in 

various forms of waste such as loss of production time, reduced output, and frequent 

machinery and component failures.  

However, recent advancements in artificial intelligence have led manufacturing 

firms to adopt a predictive maintenance approach. To make this strategy effective, 

firms have to determine the residual life in critical equipment in their operational 

machinery and simulate the manufacturing line to better predict failures and schedule 

maintenance based on this predictive information. 

The objectives of this research were to determine the Remaining Useful Life of 

the rotating element thrust bearings, which simulated the manufacturing system, while 

conducting a comparative analysis of various maintenance strategies employed at the 

Holfarcam Sarl chemical plant in Cameroon. 

The rotating element bearing, a critical component that significantly impacts the 

performance of the chemical manufacturing system, underwent an accelerated 

degradation test. Through experimentation, we generated the degradation profile of the 

bearing using a sensor-updated degradation model developed by (Gebraeel N. , 2006) 
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and subsequently calculated the RUL. Our analysis revealed that the RUL has a 

numerical value of 942 hours, and the bearing had degraded by 23%. This means that 

the thrust bearing has a constant weight at approximately 10 KN and operated for 8 

hours daily, it will experience failure after 942 hours from the time of production. With 

this value known, the production engineer can easily schedule maintenance, leading to 

reduced downtime and increased production output. 

By simulating the manufacturing system, we were able to visualize the total level 

of degradation in the production line reliability. After simulating the manufacturing 

system and incorporating a failure subroutine, we observed that for every 1000 entities 

processed, only about 100 would be lost along the production chain. This allowed us 

to identify choke points responsible for the losses, notably the chemical reactor. By 

focusing on improving the overall performance of the chemical reactor, we can reduce 

losses and enhance productivity. 

Furthermore, we conducted a comparative study of predictive and preventive 

maintenance strategies to evaluate the efficiency of the production system at various 

reliability percentages; 55%, 65%, 75%, 85%, and 90%, considering parameters such 

as frequency of failure replacement, planned replacement, total cost, workstation 

utilization, and workstation throughput. The following observations were made: 

For the predictive maintenance policy, the frequency of failure replacement 

decreases from a mean of 53 to 10 as reliability decreases, while for the preventive 

policy, there is an increase from a mean of 89 to 672. This implies that as the reliability 

of the manufacturing line decreases, the frequency of parts replacement decreases with 

the predictive model, resulting in reduced waste. 

With respect to total maintenance cost, while the predictive maintenance cost 

remains relatively constant with a mean amount of $1540 to $2540, the total 

maintenance cost for the preventive approach increases from $4250 to $10,340 as the 

reliability of the system decreases. 

Regarding workstation utilization and throughput, the predictive maintenance 

policy maintains a constant mean of 90% and 12,000, respectively, for all reliabilities. 

In contrast, the preventive maintenance policy decreases to a mean of 40% and 5,500, 

respectively. This suggests that as system reliability decreases, the workstation output 

is significantly affected when the company employs a preventive maintenance 

strategy, whereas the workstation usage and output are independent of the reliability 

level for the predictive maintenance policy. 



 

49 

Based on these findings, it is reasonable to conclude this study by highlighting 

the fact that the research objectives were successfully achieved, and the goals set for 

each chapter were met. Implementing a predictive maintenance approach can 

significantly enhance system performance and reduce maintenance costs at the 

solution concentrate line of the Holfarcam Sarl chemical plant in Cameroon. This not 

only improves the overall efficiency of the system but also contributes to cost savings 

in maintenance, ultimately benefiting the operation of the plant. 

7.2 Recommendation   

This work was done considering critical equipment, which is the chemical 

reactor of the solution concentrate line whereas we had other machines in the line 

which could also impact productivity. Some of this machines are pumps, chillers and 

filling machine which takes a position in the overall performance of these system. 

• A predictive maintenance simulation to determine the RUL be done for all the 

other machinery in the solution concentrate line such a compressor, pumps, 

chillers, water purifier, and filling machines. 

• In the simulation study conducted for system maintenance, our models primarily 

utilize the normal logarithmic distribution to assess system reliability. But a 

Bayesian approach will be preferable in good decision making between the 

different maintenance strategies
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APPENDIX 

A. MATLAB Code for generating Vibration Profile for the rotating Element 

Bearing 

Show of healthy and faulty data (vibrational profile) 

>> % load vibration data 

 Load ('vibrationdata.mat'); 

 % create a time vector 

 Fs=1000; % sampling frequency 

 t = linspace(0, length(vibrationdata)/Fs,length(vibrationdata)); 

 % plot the vibrationdata against time 

 plot (t,vibrationdata) 

 xlabel('Time(s)');  

 ylabel('amplitude'); 

 xlabel ('time(measured as 350 sec daily for 1 month)'); 

% Deterioration life cycle of the bearing 

>> % set parameters 

 alpha = 0.02; % degradation factor 

 beta = 0.01; % noise factor 

 t_max = 10000; % maximum time 

 % compute baseline value 

 y_min = min(vibrationdata); 

 % set initial value 

 y_0 = vibrationdata(1); 

 % Initialize RUL estimate 

 RUL = t_max; 

 % loop over time steps 

 for t = 2:length(vibrationdata) 
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% update RUL estimate 

 for t = 2:length(vibrationdata) 

for t = 2:length(vibrationdata) 

RUL_new = -1/alpha *log((vibration data(t)+ beta - y_min)/(y_0 - y_min)); 

RUL = min(RUL, RUL_new); 

% update degradation factor 

alpha = (vibrationdata(t) - y_min)/(y_0 - y_min)/(exp(-alpha) + 1) + alpha * exp(-

alpha); 

end 

% display results 

 disp(['Remaining useful life: ' num2str(RUL) 'seconds']); 

Remaining useful life: 10000seconds 

B. Remaining Useful Life Curve MATLAB Code 

>> load('vibrationdata.mat'); 

% Define the threshold value and maximum lifespan 

threshold = 0.1; 

max_lifespan = 1000;  

% Initialize the degradation level to zero 

degradation_level = 0; 

% Calculate the RUL for each time step using the exponential degradation model 

for i = 1:length(vibrationdata) 

    if degradation_level >= threshold 

        % Bearing has failed 

        RUL(i:end) = 0; 

        break 

    else 

        % Calculate the RUL for this time step 

        RUL(i) = max_lifespan * exp(-degradation_level); 

        % Update the degradation level for the next time step 

        degradation_level = degradation_level + vibrationdata (i); 

    end 

end 
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>> % Plot the RUL over time 

>> plot(RUL); 

xlabel('Time(days)'); 

ylabel('RUL(hours)'); 

title('Remaining Useful Life for a Rotating Element Bearing'); 

C. ARENA SIMULATION VISUAL CODES 

// Arena simulation code for exponential degradation model 

 

// Define the model parameters 

const double INITIAL_VALUE = 100.0; // Initial value of the system state variable 

const double DEGRADATION_RATE = 0.05; // Exponential degradation rate 

 

// Create a new simulation 

Simulation simulation; 

 

// Create a new entity type 

EntityType entityType; 

entityType.Name = "Entity"; 

 

// Define the entity attributes 

entityType.Attributes.Add(new Attribute("State", INITIAL_VALUE)); 

 

// Create a new process 

Process process; 

process.Name = "Process"; 

 

// Add a create module to the process 

CreateModule createModule; 

createModule.Name = "Create"; 

createModule.EntityType = entityType; 

createModule.Interval = 1.0; // Create an entity every 1 time unit 

process.AddModule(createModule); 

 

// Add a delay module to the process  

DelayModule delayModule; 

delayModule.Name = "Delay"; 

delayModule.Mean = 1.0; // Delay each entity for 1 time unit 

process.AddModule(delayModule); 

 

// Add an assign module to the process 

AssignModule assignModule; 

assignModule.Name = "Assign"; 

assignModule.Expressions.Add(new Expression("State", "State * exp(-

DEGRADATION_RATE * Delay)")); 
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process.AddModule(assignModule); 

 

// Add a dispose module to the process 

DisposeModule disposeModule; 

disposeModule.Name = "Dispose"; 

process.AddModule(disposeModule); 

 

// Add the process to the simulation 

simulation.AddProcess(process); 

 

// Run the simulation 

simulation.Run(1000); // Run the simulation for 1000 time units 

 

// Collect the simulation results 

List<double> stateValues = new List<double>(); 

foreach (Entity entity in simulation.Entities) 

{stateValues.Add(entity.Attributes["State"].Value);} 

 

// Analyze the simulation results 

// Arena simulation code for resource failure subroutine 

// Define the subroutine parameters const double PROBABILITY_OF_FAILURE = 

0.1; // Probability of resource failure per time unit const double REPAIR_TIME = 

10.0; // Time to repair the resource 

// Create a new subroutine Subroutine subroutine; subroutine.Name = 

"ResourceFailure"; 

// Add a create module to the subroutine CreateModule createModule; 

createModule.Name = "Create"; createModule.EntityType = "ResourceFailure"; 

createModule.Interval = PROBABILITY_OF_FAILURE; // Create a resource failure 

entity every 1 / PROBABILITY_OF_FAILURE time units 

subroutine.AddModule(createModule); 

// Add a delay module to the subroutine DelayModule delayModule; 

delayModule.Name = "Delay"; delayModule.Mean = REPAIR_TIME; // Delay each 

resource failure entity for REPAIR_TIME time units 

subroutine.AddModule(delayModule); 

// Add a dispose module to the subroutine DisposeModule disposeModule; 

disposeModule.Name = "Dispose"; subroutine.AddModule(disposeModule); 

// Create a new entity type for resource failures EntityType 

resourceFailureEntityType; resourceFailureEntityType.Name = "ResourceFailure"; 

// Define the entity attributes resourceFailureEntityType.Attributes.Add(new 

Attribute("Resource", "")); 
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// Add the resource failure subroutine to the simulation Simulation simulation; 

simulation.AddSubroutine(subroutine); 

// Create a new process that uses the resource Process process; process.Name = 

"Process"; 

// Add a seize module to the process SeizeModule seizeModule; seizeModule.Name 

= "Seize Resource"; seizeModule.Resource = "Resource"; 

process.AddModule(seizeModule); 

// Add a delay module to the process DelayModule delayModule; delayModule.Name 

= "Process Task"; delayModule.Mean = 1.0; // Process the task for 1 time unit 

process.AddModule(delayModule); 

// Add a release module to the process ReleaseModule releaseModule; 

releaseModule.Name = "Release Resource"; releaseModule.Resource = "Resource"; 

process.AddModule(releaseModule); 

// Add the process to the simulation simulation.AddProcess(process); 

// Run the simulation simulation.Run(1000); // Run the simulation for 1000 time units 

// Collect the simulation results // ... 

// Arena simulation code for reliability of series-parallel configuration of 

processes 

// Define the model parameters const int  

NUM_PROCESSES_IN_SERIES = 2; // Number of processes in the series group 

const int  

NUM_PROCESSES_IN_PARALLEL = 3; // Number of processes in the parallel 

group const double  

RELIABILITY_OF_PROCESS = 0.9; // Reliability of each individual process 

// Create a new simulation Simulation simulation; 

// Create a new entity type EntityType entityType; entityType.Name = "Entity"; 

// Define the entity attributes entityType.Attributes.Add(new Attribute("State", 1.0)); 

// State of the system (1.0 = working, 0.0 = failed) 

// Create a new process for the series group Process seriesProcess; seriesProcess.Name 

= "Series Process"; 

// Add a create module to the series process CreateModule createModule; 

createModule.Name = "Create"; createModule.EntityType = entityType; 

createModule.Interval = 1.0; // Create an entity every 1 time unit 

seriesProcess.AddModule(createModule); 
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// Add a delay module to the series process DelayModule delayModule; 

delayModule.Name = "Delay"; delayModule.Mean = 1.0; // Delay each entity for 1 

time unit seriesProcess.AddModule(delayModule); 

// Add an assign module to the series process AssignModule assignModule; 

assignModule.Name = "Assign"; assignModule.Expressions.Add(new 

Expression("State", "State * RELIABILITY_OF_PROCESS")); 

seriesProcess.AddModule(assignModule); 

// Add a dispose module to the series process DisposeModule disposeModule; 

disposeModule.Name = "Dispose"; seriesProcess.AddModule(disposeModule); 

// Create a new process for the parallel group Process parallelProcess; 

parallelProcess.Name = "Parallel Process"; 

// Add a create module to the parallel process CreateModule createModule; 

createModule.Name = "Create"; createModule.EntityType = entityType; 

createModule.Interval = 1.0; // Create an entity every 1 time unit 

parallelProcess.AddModule(createModule); 

// Add a delay module to the parallel process DelayModule delayModule; 

delayModule.Name = "Delay"; delayModule.Mean = 1.0; // Delay each entity for 1 

time unit parallelProcess.AddModule(delayModule); 

// Add an assign module to the parallel process AssignModule assignModule; 

assignModule.Name = "Assign"; assignModule.Expressions.Add(new 

Expression("State", "State * RELIABILITY_OF_PROCESS")); 

parallelProcess.AddModule(assignModule); 

// Add a dispose module to the parallel process DisposeModule disposeModule; 

disposeModule.Name = "Dispose"; parallelProcess.AddModule(disposeModule); 

// Add the series and parallel processes to the simulation 

simulation.AddProcess(seriesProcess); simulation.AddProcess(parallelProcess); 

// Connect the series and parallel processes 

seriesProcess.Output.ConnectTo(parallelProcess.Input); 

// Run the simulation simulation.Run(1000);  

// Run the simulation for 1000 time units: 

// Collect the simulation results List<double> stateValues = new List<double>(); 

foreach (Entity entity in simulation.Entities) { 

stateValues.Add(entity.Attributes["State"].Value);}
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