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APPROXIMATION BY NONLINEAR ¢-BERNSTEIN-CHLODOWSKY
OPERATORS

ECEM ACAR'*, SEVILAY KIRCI SERENBAY?, §

ABSTRACT. Max-Product algebra is new direction in constructive approximation of func-
tions by operators. In this study, we introduce the g-analog of Bernstein-Chlodowsky
operators using max-product algebra and investigate approximation properties of a se-
quence of these operators. Also, an upper estimate of the approximation error of the
form Cwi(f;1/v/n+ 1) with C > 0 obvious constant is obtained.
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1. INTRODUCTION

In recent years, many articles have focused on the problem of approximating continuous
functions using ¢-Calculus (see [2]-[4],[8]-[11]) and (p, g)-calculus (see [19]-[22]). Initially,
Lupas [10] and Philips [11] introduced the generalization of g-Bernstein operators and
investigated approximation of these operators. Then, Derriennic introduced many prop-
erties of the g-analogue of the Durrmeyer operators in [8]. Later, generalized g-Durrmeyer
operators were studied in [9], [12].

In addition to these studies, the nonlinear positive operators by means of discrete linear
approximating operators were introduced by Bede et al., in [6]. In [13]-[15]-[18] "max-
product kind operators” were introduced by using maximum in the name of sum in usual
linear operators and gave Jackson-type error estimate in terms of modulus of continuity.
Since max-product kind of approximation theory is a very rich and useful phenomena of
approximating continuous functions, researchers have turned to this new field in recent
years. Hspecially, Bernstein-Chlodowsky polynomials have not been studied so exten-
sively. The nonlinear Bernstein-Chlodowsky operators of max-product type are defined

! Harran University, Department of Mathematics, Sanlurfa, Turkey.
e-mail: karakusecem@harran.edu.tr; ORCID: https://orcid.org/0000-0002-2517-5849.
* Corresponding author.
e-mail: sevilaykirci@gmail.com; ORCID: https://orcid.org/0000-0001-5819-9997.
§ Manuscript received: November 13, 2021; accepted: March 16, 2022.
TWMS Journal of Applied and Engineering Mathematics, Vol.14, No.1 (© Isik University, Department
of Mathematics, 2024; all rights reserved.

42



E. ACAR, S. KIRCI SERENBAY: NONLINEAR Q-BERNSTEIN-CHLODOWSKY OPERATORS 43

by Giingor et al., in [13], as below

_ Vo haa(@)f (%)
Vico hns(z)

= () (£) ()

which 0 < z < b, and n is a sequence of positive real numbers such that lim,,_,., b, = cc.

In this study, we define nonlinear g-Bernstein-Chlodowsky operators of max-product
kind and give the approximation properties of these operators. Firstly, we indicate some
basic definition and general notations which will be used in this paper. We consider the
operations ”\/” (maximum) and ”.” (product) over the max-product algebra (R,V, ).
Let I C R be a finite or infinite interval, and set

CBy(I)={f:1—Ry;f continous and bounded on I}.

G (f) (@)

with

The general form of discrete max-product-type approximation operators
n (o ¢]
La(f)(@) = \/ En(@,2) f(x:),  Ln(f)(x) = \] Knl,2:) f (x2),
i=0 i=0

where n € N, f € CB4(I), Ky(.,z;) € CB4(I) and z; € I, for all i. These operators are
nonlinear positive operators satisfying pseudo-linearity property

Ln(a.fV B.9)(x) = a.Ln(f)(x) V B.Ln(g)(x),
where Vo, 8 € Ry, f,g:1 — R,. Additionally, the max-product operators are positive
homogenous, in other words YA > 0, L, (Af) = AL,(f) (for the other details one can see
[5]).
Now, let give some basic definition of the g-calculus. For the parameter ¢ > 0 and
n € N, we define the g-integer [n], as follow

L i g A _
o={ T £ 17 = 2
and g-factorial [n],! as
n]g! = [1]4[2l4..-[n]g for neN and [0],!=1. (3)

For integers 0 < k < n g-binomial is defined as

], = e @

2. CONSTRUCTION OF THE OPERATORS

In this section, we define nonlinear g-Bernstein-Chlodowsky operators of max-product
kind as below:

Vizo sl q)f (Sl
. B q

: ()

with
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where 0 < z < ap, a, is a sequence of positive numbers such that lim,_,- o, = oo and
lim,, 00 \/aﬁ =0,n €N, g€ (0,1), and the function f : [0, ] — R* is a contiuous.
q

The operators C)% (f) () are positive and continuous on the interval [0, a,] for a con-
tinuous function f : [0,a;,] — RT. Also, these operators satisfy the pseudo-linearity
property and these operators also are positive homogenous. Since it is esay to show that
CH(f) (0) = f(0) = 0 for all n, we may assume that 0 < z < .

Additionally, we provide an error estimate for the operators Ca% (f) (x) defined by (5)
in terms of the modulus of continuity. Therefore, we need some notations an lemmas for
the proof of the main results.

For each k,j € {0,1,2,--- ,n} and = € [an[j]q a"[jH]"], we obtained in the following

[n+1]g” [nt1]q

structure
Sn,k(m’Q) a[nT[]kq]q - J"‘
Mk7n7j(x’q) = snj(x q) b (6)
_ Sn,k(xv Q) 7
My, (T,q) = m (7)

It can easily see that if £ > j + 1, then

$n.k (T, q) <% - fU)

Sn7j (1.7 q)

Mk,n,j (.I', Q) =

and if £ < j — 1, then

8n. k(75 q) (37 - afﬂﬁ]q)

$n,j (2)

9)

Mk,n,j (‘T7 Q) =

Additionally, for cach k,j € {0,1,2,--- ,n}, k > j+2 and x € [[‘;ﬂ{]ﬁ ‘*[n[iitfq]q] we will

obtain the following

Sn.k (2, q) (ﬁbﬁ}]‘; - l’)
Sn,j ('T7 Q)

and for each k,j € {0,1,2,--- ,n}, k< j—2and z € [%, af:l[it]lq]q}, we will get the

My j(x,q) = (10)

following

Snk (2, q) (95 - ?ﬁ[ﬂ‘;) ‘

sn,j(xa Q)

My j(z,q) = (11)

Lemma 2.1. Let g € (0,1), j €{0,1,--- ,;n} and x € [ﬁlz’ﬁ]ﬁ, af:l[ﬁ]qu] Then, we have
(1) for allk € {0,1,--- ,n} and k > j+ 2

_ 2 \ __
My pj(2,q) < My j(2,q) < (1 + an> M j(2,q)-
(2) for allk € {0,1,--- ,n} and k < j —2
— 2
My j(2,q) < My j(z,q) < <1 + q”> My i (7, q).

The proof process is similar to the book [7].
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Lemma 2.2. For all k,j € {0,1,2,--- ,n} and x € [O;L’:_[]l]]‘;, aﬁl[it]qu] we obtain the fol-

lowing inequalities:
Mimn,j (.%', Q) <L (12)

Proof. We have two cases for the proof of the above lemma: 1) k > j, 2) k < j. Case 1:

Let k > j. From the definition my, ; (z,¢) given (7) and since the function %ﬂikw is

nonincreasing on [;ﬂﬂl]]r; : aﬁ%[i—ilr}qu , we get
n—k on[i+1]
mk,n,j(fU) _ [k + 1]q . gy — q"_km > [k + l]q ‘ Qn — (g [n+1]qq
Miy1ng(2) 0=kl x = In—k, anli1lg
o [n+1]q

_[k + 1]q [n + 1]q - qnik[j + 1](1
TG+, -, =1

which indicates

M (T,q) = Mj10,5(T,q) = Mjy2n(T,q) > > Mg (T, q).
Case 2: Let k < j.

an[j]
Mps(@) _n-ktly  a ok, e
nTilg

_[n_k‘f‘l]q []]q
= [k]q [n + 1](1 — qn—k+1[j]q > 1.

which implies

M (2, q) 2 Mj1n,i(2,q) Z mjani(2,q) 2 = mon;(T,q).
Since m; p j(x,q) = 1, the proof of lemma is finished. O

Lemma 2.3. Let g€ (0,1), j €{1,2,---} and z € [[0;1[311}2, aﬁl[f:]qu]

(i) fke{j+2,j+3, - ,n—1} is such that [k + 1]g — /q*[k + 1] > [j + 1], then
M pj(x,q) > Mii1n,5(x,q) - -
(ii) Ifk € {1,2,---,j — 2} is such that [k]g++/q"[klg < [jlq, then My, j(x) > My_1 ().

Proof. (i) Let k € {j +2,j+3,-+- ,n—1} with [k + 1], — /¢*|k + 1]q > [j + 1]4. Then
we have

M n—k Cl(n[k‘]q —
Mk,n,j(xa q) _ [k + 1}q . Oy — q €T ‘ [n+1]q

M41,n,5(, ) [n — kg x % _

n—k an[k]q —x
Since the function h(x) = anqu T ngn[:j-]f]q is nonincreasing, it follows that
n+ilq
h(z) > h (Om[j + 1](1) _ n+1]q - qnfk[j + 1] . [klg — 1 + 1,
n+ 1], [+ 1] k+1g—1[j+1q

Then, since the condition [k + 1], — \/¢*[k + 1] > [j + 1], is congruent to [k + 1]q —
\/[k; + 1]2 — [E]g[k + 1]q > [j+1]4 and this inequality is equivalent to [k+1]q ([k]q — [J + 1]) >
[+ 1) ([k+ 1] —[j +1]q). Therefore, we obtain
Mk,n,j (.%‘, Q)
Mitim,(,q)

> 1.
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(ii) Let k € {1,2,--- ,j — 2} and [k]g + \/¢*[klq < [j]q- Then, we have

—~ _ anlk]q
Mypj(x) —[n—k+1]g z T et
Ve . o k Q, — g kg _ om[k—1]g "
r— an[k]q
Then, since the function r(x) = 7qff_k+1x . ain[ﬁ]f]q is nondecreasing on the interval
" " [nt1g

anjlg  anli+1]
T e |:[7L+1f]7 [n+1]qq:|, we g@t

Oén[j]q _ [j]q ) [j]q_[k]q
r@ 27 <[n T 1]q> Tt -G, e 1y

Smc‘z the condition [klq + /¢"[klq < [jlq implies [jlq ([ilq — [klq) = [Klq ([i]q — [k — 1]q),
we obtain

Mpn,j(x)
My _1,j()
Therefore, we prove the lemma. ]

> 1.

Lemma 2.4. Let indicate

wieo =[] GV TL(-0)™

s=1

ge(0,1),5€{0,1,2,---} and for all z € [[ﬁi]f afln[ﬂ]qu] we get

n
\/ Sk (@, @) = 502, )
k=0

Proof. Firstly, we demonstrate that for fixed n €e Nand 0 <k < k+1 <n, we get

anlj + 1]q} .

0 <spr+1(z,q) <spi(z,q) ifand onlyif =z € [O, i+ 1,

Let estimate the following inequality

n T k+1 T n—k—1 n I~ k T n—k
N ) B O M N o N G
+1 ¢ \On an/, ¢ \On an/,

after some simplifications,we can reduce the above inequality to

0 <z < tnlftl
- = [’fl + 1]q
Therefore, if we take £ = 0,1,--- ,n in the ineqaulity above, we get

sn1(z,q) < spo(x,q), if and only if =z € _0, n i"l]q_ )

r 2 b
sn2(2,q) < spi(x,q), if and only if =z € _0, m_ )

r 3 b
sn3(2,q) < spa(x,q), if and only if =z € _0, [zri it]lq_ )

and [ [k ]
) . Qp + 1 q

) < ) ) f d 1 f € 0’ 11 |2
Snkt+1(2,q) < spp(z,q), if and only if [n+1],
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and at last _
Spn—2(x,q) < sppn-3(x,q), ifandonlyif =z e _0, m] 7
Snn—-1(2,q) < sppn—2(x,q), ifandonlyif =z e :0, m] ’

Snn(®,q) < Spn—1(z,q), ifandonlyif =z e :0’ [Zri’[—nl}j]q} ‘

Eventually, we obtain

if xe _0, [njé—nl]q} then s, x(x,q) < spo(x,q),forall k=0,1,--- ,n;

if ze an o2y } then s, r(z,q) < spi(z,q),forall k=0,1 n;
_[n_i_l]qa [n+1]q n,k\T,q) > Sn,1\T,q), =Y 4 s Ty
[ a2 nl3

if ze [:i h}qv [:_i h]q} then s,%(x,q) < spa(z,q),forall k=0,1,--,n;

and in general

if e [[zﬂnl]jlq,an] then s,k(z,q) < spn(z,q),forall k=0,1,---,n,

which completes the proof of lemma. O
3. DEGREE OF APPROXIMATION BY C,(L],\g)(f)(:c)

In this section, we obtain the main results about the nonlinear g-Bernstein-Chlodowsky
operator of max-product kind using the Shisha-Mond Theorem given for nonlinear max-
product type operators in [5, 6].

Theorem 3.1. Let f : [0, ay] — Ry be a bounded and continuous function and Cﬁb{\g)(f)(x)
are the max-product q-Bernstein-Chlodowsky operators given in (5). Then, we get the
following estimation

CE e - )| <4 (14 ) <f; [:‘H]) (13)
whichn € N, ¢ € (0,1), z € [0, ] and

wi (f;0) = sup {|f(z) = F)|; 2,y € [0,an], [z —y| < 3}
Proof. Since C}L{\g)(eo)(x) = 1, by using the Shisha-Mond Theorem

CHe) — 10| < (14 5-CEP (@) ) (:60). (1)

where @, (t) = |t — z|. Estimation of the following term is enough for the proof of lemma:

n anlk
Vk:o Sn,k(xa q) [n[]q}q - x’

\/Z:(] SnJg(.’E, Q)

Let € [C:flbi]ﬁ’ "‘[’;jﬂfq}q , where j € {0,1,--- ,n} is fixed and arbitrary. By Lemma 2.4,

Ang(@) = O () (2) =

we get

An,q(x) = \/ Mk,n,j(xaQ)'
k=0
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Initially, for j = 0 we obtain A, ,(x) < ay/[n], for all z € [0, [n?f-iﬁ]q}’ SO we can

claim that j = {1,2,---,n}. We will find an upper estimate for each M}, j(x), where
j€{0,1,---,n}is fixed, z € [mbl]]z O‘f;[ﬂqu] and k € {0,1,-- ,n}. Under the circum-
stances, the proof will be divided into 3 cases:

Dke{j—1,4,j+1} 2k>j+2 and 3)k<j—2

anljlg anlj+llg
[n+1]g”  [nt1]q

Case 1) If k = j then M;,, j(z,q) = % - x‘ Since z € [
that M;, j(x,q) < [nii’hq

}, one can see

If k= j+1 then Mjt15,,(z,q) = mjtin;(z,q) (%}tl}q - x) From Lemma 2.2, we
have mji1.,,j(x,q) > 1, it refers to
an[] =+ 1]q an[] + 1](1 an[j]q
Mjipnj(e,q) <—— —x < -
T [n]q [n]q [n+1]q
_%n ([J + gl + 1)g = [1lglnlq) < 3ap,
[n]q[n + 1](1 T [n+ 1]q

If k =j—1then Mj_1,(z,q) =mj_1n,;(x,q) (x — m) By Lemma 2.2, we have

[nlq
mj—1m,;(x,q) > 1, it refers to

o[ 1] < anli +1]g  anli — 1]
[n]q  [n+1]g [n]q
_an ([ +1gln]q — [ — Ygln + 1) 2ai,

= g + 1, Sty

Mj_1p,j(z) <z

Case 2) Subcase (a) Let take [k], — /[k + 1] < [j]q and using Lemma 2.2, we obtain

Vi _ anlklg anlklg

Mkm,j('rvq) _mk,n,j(xvq) <[n+ 1]q _37) < [n+ 1}q —
Coalbly  oulily _ anlkly o0 (e - v+ T),
Tty [+l T R+ [n+1]q
_an [k + 1], < o

[n+1],

\/[n—i—l]q'

Subcase (b) Let [k + 1], — \/qF[k + 1] > [j + 1]4. Since the function g(k) = [k + 1], —

¢*[k + 1], is nondecreasing on the interval = € [ﬁbﬂi}ﬁj a[ﬂﬁijq , it follows that there

exist k = {0,1,2,--- ,n} of maximum value such that

k+1) —\/¢*lk+ 1], < [+ 1],
. Let take k* = k + 1, for all k£ > k* one get

[k + 1]:1 - qk[k + 1](1 > [j + 1]q'
Let substitute

blg = [k +1]g — qj - qE[k + 1gs
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then one obtain

an[k*]q x> < O‘n[E+ 1] -

Mk*,n,j(xa Q) :mk*,n,j(xa Q) <[7’L + 1] [’I’L + 1]
q q

_ _ wlF+1],—g" — /¢ [k+1
<an[k5+1]q_ nJ <an[k+1]q_a ([ Pl Tl ]q>

T n+1, R+l [n+1] [n+1]
an <gj +1/qF[k + 1]q> o (1 +1/[k+ 1]q> any/[E + 1],
= < <
[n+ 1], - [n+ 1], - n+ 1],

20,
SV

Moreover, we have k* > j + 2, Indeed, this is a consequence of the fact that the function
g is nondecreasing on the interval [0, a,] and it is easy to see that g(j +1) < j.
By Lemma 2.3 (i) it follows that Mg, (z) = Mgy, (x) 2+ = Mnp ().

Therefore, we obtain My, j(z) < [20‘:1] for any k € {E—l— 1L,k+2,--- ,n}. Thus, for
nTllq

the same k’s, it follows from Lemma 2.1 that
2(1+ 72 ) an
n+1]

My 5(x) <

Case 3) Subcase (a) Let [k]q + \/¢* k]q > [j]q- Then, we obtain
an [klq ) < anlj + 1] an[klq

My j(x,q) =mpp (2, q) <37 —

[n+ 1] [n+1] [n+ 1]
:an([j]q+qj) . an[k]q
n+1]q n+1],

By hypotesis, we get

Qn ([k]q + \/m + qj> an [kl

Migin () < CESIP T+l
o (VITH+0) _an (VIFlg+1) _ an (VG +1)
- [n+ 1], - [n+ 1], B [+ 1l

Qn V [] - 2](1 +1 Qp 2\/3 2a,
= . < . < :
Vin+1]g Vin+1]g Vin+t1ly In+1g ~ VIn+1]
Subcase (b) Now let [k];++/q* 1[k]y < [j]q- Let k = {0,1,2,--- ,n} be the minimum value

such that [F], + /¢ [Fly = [jly- Then k. = k — 1 satisfies [k — 1]y +/a*2[% — 1], < [jl,
and

—

My (22 0) =y, 5(2,0) (m B

anlk —1] _omli+1y anlk — 1],
n+1]y ) = [n+1]g [n+1]q

con (ot @) anlk— 1],

[n+ 1], n+1],
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Also, we have [E]q +1/¢*1k]q > [j]q then, we obtain

o ([Fly + /517, + j) .
o (B FBvat) ooy,
L A [n+ 1], [n+ 14
an (q’“ +/dF 1kl + qj> an (2 + [%]q) 50
= < < L
[n+1lq [n+1], [n+ 1],
Also, in this case we have j > 2, which implies k., < j — 2. By Lemma 2.3 (ii), we get
ME_LW.(:U, q) > ME—2,n,j (z,q) > -+ > Mo j(z,q). Therefore, we obtain
3o,

Mk,n,j (SC, Q) S

forany k<j—2 and J;E[O‘U]q anlj + ]q]

n+1]q n+1y" [n+1]

Hence, in subcases(a) and subcases(b) we have ]/\4\]@’”7]‘(56, q) < j’% From (9) and (11) it

is obvious that My, j(z,q) < ]\/an] (x,q) so we obtain My, j(z) < \/3% Consequently,
collecting all the above estimates, we obtain

(o 6an " anljly  anli+ 1 _ i
Mot = s, € [[n+1]q’ [n+1], ] 0B

which implies that

2(1+ 721) an

Apq(z) < Vo € |0,ay],neN
nale) € =L € [,
e 2(“‘#1)@71 . .
and indicating 0,, = # in (14), we get the estimate
nTllg

2 a,
O (f) () — f(x)‘ <4 (1 + W) wi (f; M) ,¥n € N,z € [0, ayy).

4. CONCLUSIONS

In this study, nonlinear max-product type g-Bernstein-Chlodowsky operators are de-
fined and some upper estimates of approximation error for some subclasses of functions
are obtained.
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