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TOTAL EDGE IRREGULARITY STRENGTH OF JOIN OF PATH AND

COMPLEMENT OF A COMPLETE GRAPH

A. S. SARANYA1∗, K. R. SANTHOSH KUMAR1, §

Abstract. An edge irregular total k-labeling of a graph G is a labeling of the vertices
and edges of G with labels from the set {1, 2, ..., k} in such a way that any two different
edges have distinct weights. The weight of an edge uv is the sum of the label of uv
and the labels of vertices u and v. The minimum k for which the graph G has an edge
irregular total k-labeling is called the total edge irregularity strength of G. In this paper,
we determine the exact value of the total edge irregularity strength of Pn +Km.

Keywords: Edge Irregularity strength, Total edge irregularity strength, Join of two
graphs.

AMS Subject Classification: 05C78.

1. Introduction

Let G be a simple, finite and undirected graph with vertex set V (G) and edge set E(G).
A labeling (or valuation) of a graph is a map that relates the graph element to some num-
bers (usually to the positive or nonnegative integers). As the graph element, one can take
edge set, vertex set or union of vertex set and edge set. In the case that the graph element
is the union of vertex set and edge set, then the labeling is called total labeling. Various
kinds of graph labelings can be found on [5].

Chartrand, Jacobson, Lehel, Oellerman, Ruiz and Saba in [3] proposed a graph labeling
problem as the following: Assign positive integer labels to the edges of a simple connected
graph of order at least 3 in such a way that the graph becomes irregular, i.e, the weights
(label sums of edges incident with the vertex) of vertices are distinct. What is the min-
imum value of the largest label over all such irregular assignments? This parameter of a
graph G is well known as the irregularity strength of the graph G, s(G). Some interesting
results on the irregularity strength can be found in [1], [9], [10] and [12]. Bača et al.[2]
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defined an edge irregular total labeling f : V (G)∪E(G)→{1, 2, ..., k} of a graph G as the la-
beling of vertices and edges of G in such a way that for any different edges e and f , weights
of e and f are distinct. The weight of an edge e = xy is wt(xy) = f(x) + f(xy) + f(y).
The minimum k for which the graph G has an edge irregular total k- labeling is called the
total edge irregularity strength of the graph G, tes(G).

The lower bound and upper bound of the total edge irregularity strength of any graph
was given by Bača et al. [2] as:

Theorem 1.1. [2] Let G be a graph with vertex set V (G) and a non-empty edge set E(G).

Then ⌈ |E(G)|+2
3 ⌉≤tes(G)≤|E(G)|.

Theorem 1.2. [2] For any graph G with maximum degree ∆ = ∆(G),

tes(G)≥max{⌈ |E(G)|+2
3 ⌉, ⌈∆+1

2 ⌉}.

They also determined the total edge irregularity strength of path Pn, cycle Cn, star
Sn, wheel Wn and friendship graph Fn as: tes(Pn) = tes(Cn) = ⌈n+2

3 ⌉; tes(Sn) = ⌈n+1
2 ⌉;

tes(Wn) = ⌈2n+2
3 ⌉; and tes(Fn) = ⌈3n+2

3 ⌉. The definitions of various types of graphs
mentioned here can be found on [4].
The following conjecture presented by Ivancǒ and Jendrol’ gave the exact value of the
total edge irregularity strength for arbitrary graph.

Conjecture 1.1. [7] Let G be an arbitrary graph different from K5. Then tes(G) =

max{⌈ |E(G)|+2
3 ⌉, ⌈∆(G)+1

2 ⌉}.

The conjecture has been proved to be true for all trees by Ivancǒ and Jendrol’ [7]. While

Jendrol’, Mǐskuf, and Soták [8] proved: tes(K5) = 5; tes(Kn) = ⌈n2−n−4
6 ⌉, for n≥6 and

tes(Km,n) = ⌈mn+2
3 ⌉ for n,m≥2. Indriati et al. [6] determined the total edge irregu-

larity strength of generalized helm, that is tes(Hn
1) = ⌈4n+2

3 ⌉, tes(Hn
2) = ⌈5n+2

3 ⌉, and
tes(Hn

m) = ⌈ (m+3)n+2
3 ⌉ for n≥3 and m ≡ 0 (mod 3). Muthu Guru Packiam, Manimaran,

and Thuraiswamy [11] investigated how the addition of a new edge affects the total edge
irregularity strength of a graph.

Definition 1.1. [4] Let G and H be two graphs such that V (G) ∩ V (H) = ∅. The sum
(join) of G and H denoted by G +H is defined as a graph with vertex set V (G) ∪ V (H)
and edge set which contains all edges of G and H together with every vertex of G is joined
to every vertex of H and viceversa.

In this paper, we determine the total edge irregularity strength of join of a path and the
complement of complete graph. i.e, tes(Pn +Km). This paper also supports Conjecture

1.1 by finding that tes(Pn +Km) = max{⌈ |E(Pn+Km)|+2
3 ⌉, ⌈∆(Pn+Km)+1

2 ⌉}.

2. Total Edge Irregularity Strength of Pn +Km

Pn +Km, where n≥1 and m≥ 1 is the join of a path Pn and complement of a
complete graph Km with n + m vertices and nm + n − 1 edges. When n = 1 and m>1
Pn +Km is a star, Sm = K1,m. Bača et al. in [2] determined the total edge irregularity
strength of a star graph Sm = K1,m on m+1 vertices, m > 1 as tes(K1,m) = ⌈m+1

2 ⌉. Here
we determine tes(Pn +Km) for n≥2 and m≥1. By Theorem 1.2,

tes(Pn +Km)≥max{⌈ |E(Pn+Km)|+2
3 ⌉, ⌈∆(Pn+Km)+1

2 ⌉}.
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As the maximum degree ∆(Pn +Km) =

{
m+ 1; n = 2

m+ 2; n>2
,

this implies that tes(Pn +Km)≥⌈n+nm+1
3 ⌉. To show that ⌈n+nm+1

3 ⌉ is an upperbound for

the tes(Pn +Km), we describe an edge irregular total ⌈n+nm+1
3 ⌉- labeling for Pn +Km.

Theorem 2.1. Let n≥2, then tes(Pn +K1) = ⌈2n+1
3 ⌉.

Proof. Let V (Pn +K1) = {u1, u2, ..., un, v} and
E(Pn +K1) = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {uiv : 1 ≤ i ≤ n}.
We have tes(Pn +K1)≥⌈2n+1

3 ⌉. Take k = ⌈2n+1
3 ⌉.

Then tes(Pn + K1) ≥ k. Now to prove the reverse inequality we show that there exists
a total edge irregular k- labeling f from V (Pn +K1) ∪ E(Pn +K1) to {1, 2, 3, ..., k} by
defining f as:
Case(1): n ≡ 0 (mod 3)

f(ui) =

{
k − ⌈ i+1

2 ⌉+ 1; 1 ≤ i ≤ ⌈2n−1
3 ⌉

n− i+ 1; ⌈2n−1
3 ⌉<i ≤ n.

f(v) = 1.

f(uiui+1) =

{
⌈2n−1

3 ⌉; 1 ≤ i < ⌈2n−1
3 ⌉

⌊k2⌋ − n+ i+ 1; ⌈2n−1
3 ⌉≤i≤n− 1.

f(uiv) =

{
k − ⌈ i

2⌉; 1 ≤ i ≤ ⌈2n−1
3 ⌉

1; ⌈2n−1
3 ⌉<i≤n.

Under this assignment the weights of edges are:
wt(uiui+1) = 2n+ 2− i for 1≤i<⌈2n−1

3 ⌉. These weights vary as {2n+ 1, 2n, ..., 4n3 + 3}.
wt(uiv) =

4n
3 + 3− i for 1≤i≤⌈2n−1

3 ⌉. These weights vary as {4n
3 + 2, ..., 2n3 + 3}.

wt(uiui+1) =
4n
3 + 2− i for ⌈2n−1

3 ⌉≤i≤n− 1. These weights vary as {2n
3 + 2, ..., n3 + 3}.

wt(uiv) = n+ 3− i for ⌈2n−1
3 ⌉ < i≤n. These weights vary as {n

3 + 2, ..., 3}.

Case(2): n ≡ 1 (mod 3) or n ≡ 2 (mod 3)

f(ui) =

{
k − ⌈ i

2⌉+ 1; 1 ≤ i ≤ ⌈2n−1
3 ⌉

n− i+ 1; ⌈2n−1
3 ⌉<i ≤ n.

f(v) = 1.

f(uiui+1) =

{
⌈2n−1

3 ⌉; 1 ≤ i < ⌈2n−1
3 ⌉

⌊k2⌋ − n+ i+ 1; ⌈2n−1
3 ⌉≤i≤n− 1.

f(uiv) =

{
k − ⌊ i

2⌋; 1 ≤ i ≤ ⌈2n−1
3 ⌉

1; ⌈2n−1
3 ⌉<i≤n.

Under this mapping the weights of edges are:
When n ≡ 1 (mod 3):
wt(uiui+1) = 2n+ 2− i for 1≤i < ⌈2n−1

3 ⌉. These weights vary as {2n+ 1, 2n, ..., 4n3 + 8
3}.

wt(uiv) =
4n
3 + 8

3 − i for 1≤i≤⌈2n−1
3 ⌉. These weights vary as {4n

3 + 5
3 , ...,

2n
3 + 7

3}.
wt(uiui+1) =

4n
3 + 5

3 − i for ⌈2n−1
3 ⌉≤i≤n− 1. These weights vary as {2n

3 + 4
3 , ...,

n
3 + 8

3}.
wt(uiv) = n+ 3− i for ⌈2n−1

3 ⌉ < i≤n. These weights vary as {n
3 + 5

3 , ..., 3}.
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When n ≡ 2 (mod 3):
wt(uiui+1) = 2n+2− i for 1≤i < ⌈2n−1

3 ⌉. These weights vary as {2n+1, 2n, ..., 4n3 + 10
3 }.

wt(uiv) =
4n
3 + 10

3 − i for 1≤i≤⌈2n−1
3 ⌉. These weights vary as {4n

3 + 7
3 , ...,

2n
3 + 11

3 }.
wt(uiui+1) =

4n
3 + 7

3 − i for ⌈2n−1
3 ⌉≤i≤n− 1. These weights vary as {2n

3 + 8
3 , ...,

n
3 + 10

3 }.
wt(uiv) = n+ 3− i for ⌈2n−1

3 ⌉ < i≤n. These weights vary as {n
3 + 7

3 , ..., 3}.

The weights of the 2n − 1 edges of Pn + K1 under the labeling f constitute the set
{3, 4, 5, ..., 2n + 1} and the function f is a mapping from V (Pn +K1) ∪ E(Pn +K1) into
{1, 2, ...k}. So we have tes(Pn+K1) ≤ k = ⌈2n+1

3 ⌉. Combining this with the lower bound,

we conclude that tes(Pn +K1) = k = ⌈2n+1
3 ⌉. □

Next we determine the total edge irregularity strength of the graph Pn +K2 for n≥2.

Theorem 2.2. Let n≥2, then tes(Pn +K2) = ⌈3n+1
3 ⌉.

Proof. Let V (Pn +K2) = {u1, u2, ..., un, v1, v2} and
E(Pn +K2) = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {uivj : 1 ≤ i ≤ n and j = 1, 2}.
We have tes(Pn +K2)≥⌈3n+1

3 ⌉. Take k = ⌈3n+1
3 ⌉. Thus tes(Pn +K2) ≥ k. Now to prove

the reverse inequality we define a k - labeling f : V (Pn +K2)∪E(Pn +K2) → {1, 2, ...k}
as:

f(ui) = i; 1≤i≤n.

f(v1) = 1, f(v2) = k.

f(uiv1) = i, f(uiv2) = k − 1; 1≤i≤n.

f(uiui+1) = 1; 1≤i≤n− 1.

Under this assignment the weight of edges are:
For 1≤i≤n, wt(uiv1) = 2i+ 1.
For 1≤i≤n− 1, wt(uiui+1) = 2i+ 2.
wt(u1v2) = 2n+ 2 and wt(unv2) = 3n+ 1.
The weights of the 3n − 1 edges of Pn + K2 under the k- labeling f constitute the set
{3, 4, ..., 3n+ 1} and are distinct. Thus f is a total edge irregular k- labeling and
tes(Pn +K2)≤k. This completes the proof. □

Theorem 2.3. For n≥4, tes(Pn +K3) = ⌈4n+1
3 ⌉.

Proof. Let V (Pn +K3) = {u1, u2, ..., un, v1, v2, v3} and
E(Pn + K3) = {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {uivj : 1 ≤ i ≤ n and j = 1, 2, 3}. We have

tes(Pn +K3)≥⌈4n+1
3 ⌉.

Take k = ⌈4n+1
3 ⌉.

Thus tes(Pn + K3) ≥ k. Now to prove the reverse inequality we define a k - labeling
f : V (Pn +K3)∪E(Pn +K3) → {1, 2, ...k} as:
Case(1): When n is even and n ≡ 0 (mod 3) or n ≡ 1 (mod 3)

f(ui) =

{
k − i+ 1; 1≤i≤n

2
n+2
2 − ⌈ i

2⌉;
n
2 < i≤n.

f(vj) =

{
k − ⌊ j2⌋

n
2 ; j = 1, 3

1; j = 2.
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f(uiui+1) =


n− ⌈k2⌉+ i; 1≤i<n

2

⌊k2⌋ − ⌊n+2
4 ⌋; i = n

2
n+2
2 ; n

2 < i≤n− 1.

f(uivj) =


⌊ |E|

3 ⌋; 1≤i≤n
2 ; j = 1, 3

⌊k2⌋+
n
2 ; 1≤i≤n

2 ; j = 2

⌊k2⌋ − ⌊ i
2⌋ − ⌊ j2⌋+ 1; n

2 < i≤n; j = 1, 3
n+2
2 − ⌊ i

2⌋;
n
2 < i≤n; j = 2.

Case(2): When n is even and n ≡ 2 (mod 3)

f(ui) =

{
k − i+ 1; 1≤i≤n

2
n+2
2 − ⌈ i

2⌉;
n
2 < i≤n.

f(vj) =

{
k − ⌊ j2⌋

n
2 ; j = 1, 3

1; j = 2.

f(uiui+1) =


n− ⌊k2⌋+ i; 1≤i<n

2

⌈k2⌉ − ⌊n+2
4 ⌋; i = n

2
n+2
2 ; n

2 < i≤n− 1.

f(uivj) =


⌈ |E|

3 ⌉; 1≤i≤n
2 ; j = 1, 3

⌈k2⌉+
n
2 ; 1≤i≤n

2 ; j = 2

⌈k2⌉ − ⌊ i
2⌋ − ⌊ j2⌋+ 1; n

2 < i≤n; j = 1, 3
n+2
2 − ⌊ i

2⌋;
n
2 < i≤n; j = 2.

Under this assignment the weight of edges of Pn +K3, when n is even are:
For 1≤i≤n

2 , j = 1, 3, wt(uivj) =
17n
4 − i− nj

4 + 2.
The weights corresponds to the elements of {4n+ 1, ..., 3n+ 2}.
For 1≤i<n

2 , wt(uiui+1) = 3n+ 2− i.

The weights corresponds to the elements of {3n+ 1, ..., 5n2 + 3}.
For 1≤i≤n

2 ; j = 2, wt(uivj) =
5n
2 + 3− i.

The weights corresponds to the elements of {5n
2 + 2, ..., 2n+ 3}.

For n
2 < i≤n; j = 1, 3, wt(uivj) =

11n
4 + 7

2 − i− j
2(

n
2 + 1).

The weights corresponds to the elements of {2n+ 2, ..., 3n2 + 3, 3n2 + 1, ...n+ 2}.
For i = n

2 , wt(uiui+1) =
3n
2 + 2.

For n
2<i≤n− 1, wt(uiui+1) =

3n
2 + 2− i.

The weights corresponds to the elements of {n+ 1, ..., n2 + 3}.
For n

2 < i≤n; j = 2, wt(uivj) = n+ 3− i.
The weights corresponds to the elements of {n

2 + 2, ..., 3}.

Case(3): When n is odd and n ≡ 0 (mod 3) or n ≡ 1 (mod 3)

f(ui) =

{
k − i+ 1; 1≤i≤⌈n2 ⌉
n+1
2 − ⌊ i

2⌋; ⌈n2 ⌉ < i≤n.

f(vj) =

{
k − ⌊ j2⌋⌈

n
2 ⌉; j = 1, 3

1 j = 2.
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f(uiui+1) =


n− ⌈k2⌉+ i− 1; 1≤i<⌈n2 ⌉
⌊k2⌋ − ⌈ i+1

2 ⌉; i = ⌈n2 ⌉
n+1
2 ; ⌈n2 ⌉ < i≤n− 1.

f(uivj) =


⌊ |E|

3 ⌋; 1≤i≤⌈n2 ⌉; j = 1, 3

⌊k2⌋+
n−3
2 ; 1≤i≤⌈n2 ⌉; j = 2

⌊k2⌋ − ⌈ i
2⌉; ⌈n2 ⌉ < i≤n; j = 1, 3

n+3
2 − ⌈ i

2⌉; ⌈n2 ⌉ < i≤n; j = 2.

Case(4): When n is odd and n ≡ 2 (mod 3)

f(ui) =

{
k − i+ 1; 1≤i≤⌈n2 ⌉
n+1
2 − ⌊ i

2⌋; ⌈n2 ⌉ < i≤n.

f(vj) =

{
k − ⌊ j2⌋⌈

n
2 ⌉; j = 1, 3

1; j = 2.

f(uiui+1) =


n− ⌊k2⌋+ i− 1; 1≤i<⌈n2 ⌉
⌈k2⌉ − ⌈ i+1

2 ⌉; i = ⌈n2 ⌉
n+1
2 ; ⌈n2 ⌉ < i≤n− 1.

f(uivj) =


⌈ |E|

3 ⌉; 1≤i≤⌈n2 ⌉; j = 1, 3

⌈k2⌉+
n−3
2 ; 1≤i≤⌈n2 ⌉; j = 2

⌈k2⌉ − ⌈ i
2⌉; ⌈n2 ⌉ < i≤n; j = 1, 3

n+3
2 − ⌈ i

2⌉; ⌈n2 ⌉ < i≤n; j = 2.

Under this assignment the weight of edges of Pn +K3, when n is odd are:

For 1≤i≤⌈n2 ⌉; j = 1, 3, wt(uivj) =
17n
4 − i− (n+1)j

4 + 9
4 .

The weights corresponds to the elements of {4n+ 1, ..., 3n+ 1}.
For 1≤i<⌈n2 ⌉, wt(uiui+1) = 3n− i+ 1.

The weights corresponds to the elements of {3n, ..., 5n2 + 3
2}.

For 1≤i≤⌈n2 ⌉; j = 2, wt(uivj) =
5n
2 + 3

2 − i.

The weights corresponds to the elements of {5n
2 + 1

2 , ..., 2n+ 1}.
For ⌈n2 ⌉ < i≤n; j = 1, 3, wt(uivj) =

11n
4 − i− (n+1)j

4 + 7
4 .

The weights corresponds to the elements of {2n, ..., 3n2 + 3
2 ,

3n
2 − 1

2 , ..., n+ 1}.
For i = ⌈n2 ⌉, wt(uiui+1) =

3n
2 + 1

2 .

For ⌈n2 ⌉<i≤n− 1, wt(uiui+1) =
3(n+1)

2 − i.

The weights corresponds to the elements of {n, ..., n2 + 5
2}.

For ⌈n2 ⌉ < i≤n; j = 2, wt(uivj) = n+ 3− i.

The weights corresponds to the elements of {n
2 + 3

2 , ..., 3}.
From the above two cases, the weights of the edges of Pn +K3, n≥4 under the labeling
f constitute the set {3, 4, ..., 4n + 1} and are distinct. So f is a total edge irregular k-
labeling. Thus tes(Pn +K3)≤k. Combining this with the lower bound, we conclude that
tes(Pn +K3) = ⌈4n+1

3 ⌉. □

Theorem 2.4. For m ≥ 3, tes(P2 +Km) = ⌈2m+3
3 ⌉ and tes(P3 +Km) = ⌈3m+4

3 ⌉.
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Proof. (1) Let V (P2 + Km) = {ui : 1≤i≤2} ∪ {vj : 1≤j≤m} and E(P2 + Km) =

{u1u2} ∪ {uivj : 1≤i≤2 and 1≤j≤m}. We have tes(P2 +Km)≥⌈2m+3
3 ⌉.

Take k = ⌈2m+3
3 ⌉.

Thus tes(P2 +Km) ≥ k. Now we define a k - labeling f : V (P2 +Km)∪E(P2 +Km) →
{1, 2, ...k} as : f(u1) = k, f(u2) = 1.

f(vj) =

{
k − ⌊ j2⌋; 1≤j≤m and j odd
j
2 ; 1≤j≤m and j even.

Case(1): When m ≡ 0 (mod 3) or m ≡ 1 (mod 3)

f(u1u2) = ⌈k
2
⌉.

f(u1vj) =

{
⌈ |E|

3 ⌉; 1≤j≤m and j odd

⌈k2⌉+ 1; 1≤j≤m and j even.

f(u2vj) =

{
⌈k2⌉ − 1; 1≤j≤m and j odd

1; 1≤j≤m and j even.

Case(2): When m ≡ 2 (mod 3)

f(u1u2) = ⌊k
2
⌋.

f(u1vj) =

{
⌊ |E|

3 ⌋; 1≤j≤m and j odd

⌊k2⌋+ 1; 1≤j≤m and j even.

f(u2vj) =

{
⌊k2⌋ − 1; 1≤j≤m and j odd

1; 1≤j≤m and j even.

Under this assignment the weight of edges of P2 +Km are:
For 1≤j≤m and j odd, wt(u1vj) = 2m+ 3− ⌊ j2⌋.
When m is even, weights={2m+ 3, ..., 3m2 + 4}.
When m is odd, weights={2m+ 3, ..., 3m2 + 7

2}.
For 1≤j≤m and j even, wt(u1vj) = m+ 3 + j

2 .

When m is even, weights={3m
2 + 3, ...,m+ 4}.

When m is odd, weights={3m
2 + 5

2 , ...,m+ 4}.
wt(u1u2) = m+ 3.

For 1≤j≤m and j odd, wt(u2vj) = m+ 2− ⌊ j2⌋.
When m is even, weights={m+ 2, ..., m2 + 3}.
When m is odd, weights={m+ 2, ..., m2 + 5

2}.
For 1≤j≤m and j even, wt(u2vj) = 2 + j

2 .
When m is even, weights={m

2 + 2, ..., 3}.
When m is odd, weights={m

2 + 3
2 , ..., 3}.

The weights of the 2m + 1 edges of P2 + Km, m≥3 under the labeling f constitute the
set {3, 4, ..., 2m+ 3} and f is a mapping from V (P2 +Km)∪E(P2 +Km) into {1, 2, ..., k}.
Thus f is a total edge irregular k- labeling and tes(P2+Km)≤k. Combining this with the
lower bound, we conclude that tes(P2 +Km) = ⌈2m+3

3 ⌉.

(2) Let V (P3 +Km) = {ui : 1≤i≤3} ∪ {vj : 1≤j≤m} and

E(P2 +Km) = {uiui+1 : 1≤i≤2} ∪ {uivj : 1≤i≤3 and 1≤j≤m}. We have
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tes(P3 +Km)≥⌈3m+4
3 ⌉. Take k = ⌈3m+4

3 ⌉.
Thus tes(P3 +Km) ≥ k. Now we define a k - labeling f : V (P3 +Km)∪E(P3 +Km) →
{1, 2, ...k} as :

f(ui) =

{
k; i = 1

4− i; i = 2, 3.

f(vj) =

{
k − ⌊ j2⌋; 1≤j≤m and j odd
j
2 ; 1≤j≤m and j even.

f(uiui+1) =

{
m; i = 1

2; ⌊m2 ⌋ i = 2.

f(uivj) =


m; i = 1; 1≤j≤m and j odd

k; i = 1; 1≤j≤m and j even

m− ⌈ j2⌉; i = 2, 3; 1≤j≤m and j odd
j
2 ; i = 2, 3; 1≤j≤m and j even.

Under this assignment the weight of edges of P3 +Km are:
For 1≤j≤m and j odd, wt(u1vj) = 3m+ 9

2 − j
2 .

When m is even, weights={3m+ 4, ..., 5m2 + 5}.
When m is odd, weights={3m+ 4, ..., 5m2 + 9

2}.
For 1≤j≤m and j even, wt(u1vj) = 2m+ 4 + j

2 .

When m is even, weights={5m
2 + 4, ..., 2m+ 5}.

When m is odd, weights={5m
2 + 7

2 , ..., 2m+ 5}.
wt(u1u2) = 2m+ 4.
For i = 2, 3; 1≤j≤m and j odd , wt(uivj) = 6 + 2m− i− j.
When m is even, weights={2m+ 3, ...,m+ 4}.
When m is odd, weights={2m+ 3, ...,m+ 3}.
wt(u2u3) = 3 + 2⌊m2 ⌋.
When m is even, weight=m+ 3.
When m is odd, weight=m+ 2.
For i = 2, 3; 1≤j≤m and j even, wt(uivj) = 4− i+ j.
When m is even, weights={m+ 2, ..., 3}.
When m is odd, weights={m+ 1, ..., 3}.

The weights of the edges of P3 + Km, m≥3 under the labeling f constitute the set
{3, 4, ..., 3m+ 4} and are distinct. Thus f is a total edge irregular k- labeling and
tes(P3+Km)≤k. Combining this with the lower bound, we conclude that tes(P3+Km) =
⌈3m+4

3 ⌉. □

Finally, the total edge irregularity strength of Pn +Km for n≥4 and m≥4 :

Theorem 2.5. For n,m ≥ 4, tes(Pn +Km) = ⌈n+nm+1
3 ⌉.

Proof. Let V (Pn +Km) = {ui : 1≤i≤n} ∪ {vj : 1≤j≤m} and

E(Pn +Km) = {uiui+1 : 1≤i≤n− 1} ∪ {uivj : 1≤i≤n and 1≤j≤m}.
We have tes(Pn +Km)≥⌈n+nm+1

3 ⌉. Take k = ⌈n+nm+1
3 ⌉.

Thus tes(Pn +Km) ≥ k. Now we define a k - labeling f : V (Pn +Km) ∪ E(Pn +Km) →
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{1, 2, ...k} as :

f(ui) =

{
k − i+ 1; 1≤i≤⌊n2 ⌋
n− i+ 1; ⌊n2 ⌋ < i≤n.

f(vj) =

{
k − ⌊ j2⌋⌊

n
2 ⌋; 1≤j≤m and j odd

1 + ⌊ j−1
2 ⌋⌊n2 ⌋; 1≤j≤m and j even.

Case(1): When n is even and |E| ≡ 0 (mod 3) or |E| ≡ 1 (mod 3)

f(uiui+1) =


⌈ |E|

3 ⌉−n
2 ⌈

m
2 ⌉+ i; 1≤i<n

2

⌈k2⌉; i = n
2

n
2 ⌊

m
2 ⌋+ i− n+ 1; n

2 < i≤n− 1.

f(uivj) =


⌈ |E|

3 ⌉; 1≤i≤n
2 ; 1≤j≤m and j odd

⌈k2⌉+
n
2 ; 1≤i≤n

2 ; 1≤j≤m and j even

⌈k2⌉ −
n
2 ;

n
2 < i≤n; 1≤j≤m and j odd

1; n
2 < i≤n; 1≤j≤m and j even.

Case(2): When n is even and |E| ≡ 2 (mod 3)

f(uiui+1) =


⌊ |E|

3 ⌋−n
2 ⌈

m
2 ⌉+ i; 1≤i<n

2

⌊k2⌋; i = n
2

n
2 ⌊

m
2 ⌋+ i− n+ 1; n

2 < i≤n− 1.

f(uivj) =


⌊ |E|

3 ⌋; 1≤i≤n
2 ; 1≤j≤m and j odd

⌊k2⌋+
n
2 ; 1≤i≤n

2 ; 1≤j≤m and j even

⌊k2⌋ −
n
2 ;

n
2 < i≤n; 1≤j≤m and j odd

1; n
2 < i≤n; 1≤j≤m and j even.

Under this assignment the weight of edges of Pn +Km when n is even are:
For 1≤i≤n

2 , 1≤j≤m and j odd, wt(uivj) =
5n
4 + nm− i− nj

4 + 2.

When m is even, weights={n+ nm+ 1, ..., n+ 3nm
4 + 2}.

When m is odd, weights={n+ nm+ 1, ..., 3n4 + 3nm
4 + 2}.

For 1≤i<n
2 , wt(uiui+1) = n+ nm− n

2 ⌈
m
2 ⌉+ 2− i.

When m is even, weights={n+ 3nm
4 + 1, ..., n2 + 3nm

4 + 3}.
When m is odd, weights={3n

4 + 3nm
4 + 1, ..., n4 + 3nm

4 + 3}.
For 1≤i≤n

2 ; 1≤j≤m and j even, wt(uivj) =
n
2 + nm

2 + nj
4 + 3− i.

When m is even, weights={n
2 + 3nm

4 + 2, ..., n2 + nm
2 + 3}.

When m is odd, weights={n
4 + 3nm

4 + 2, ..., n2 + nm
2 + 3}.

For i = n
2 , wt(uiui+1) =

n
2 + nm

2 + 2.

For n
2 < i≤n; 1≤j≤m and j odd, wt(uivj) =

5n
4 + nm

2 − i− nj
4 + 2.

When m is even, weights={n
2 + nm

2 + 1, ..., n2 + nm
4 + 2}.

When m is odd, weights={n
2 + nm

2 + 1, ..., n4 + nm
4 + 2}.

For n
2<i≤n− 1, wt(uiui+1) = n+ n

2 ⌊
m
2 ⌋+ 2− i.

When m is even, weights={n
2 + nm

4 + 1, ..., nm4 + 3}.
When m is odd, weights={n

4 + nm
4 + 1, ..., nm4 − n

4 + 3}.
For n

2 < i≤n; 1≤j≤m and j even, wt(uivj) =
n
2 + 3 + nj

4 − i.
When m is even, weights={nm

4 + 2, ..., 3}.



A. S. SARANYA, K. R. SANTHOSH KUMAR: TOTAL EDGE IRREGULARITY STRENGTH OF ... 319

When m is odd, weights={nm
4 − n

4 + 2, ..., 3}.

Case(3): When n is odd and |E| ≡ 0 (mod 3)

f(uiui+1) =


|E|
3 −⌊n2 ⌋⌈

m
2 ⌉+ i; 1≤i<⌊n2 ⌋

⌊ |E|
6 ⌋+ ⌈m2 ⌉; i = ⌊n2 ⌋

⌈n2 ⌉⌊
m
2 ⌋+ i− n+ 1; ⌊n2 ⌋ < i≤n− 1.

f(uivj) =


|E|
3 ; 1≤i≤⌊n2 ⌋; 1≤j≤m and j odd

⌊k2⌋+ ⌈m+n
2 ⌉; 1≤i≤⌊n2 ⌋; 1≤j≤m and j even

⌊k2⌋+ ⌈m−n
2 ⌉ − ⌊ j2⌋; ⌊n2 ⌋ < i≤n; 1≤j≤m and j odd

j
2 ; ⌊n2 ⌋ < i≤n; 1≤j≤m and j even.

Case(4): When n is odd and |E| ≡ 1 (mod 3)

f(uiui+1) =


⌈ |E|

3 ⌉−⌊n2 ⌋⌈
m
2 ⌉+ i; 1≤i<⌊n2 ⌋

⌈ |E|
6 ⌉+ ⌊m2 ⌋; i = ⌊n2 ⌋

⌈n2 ⌉⌊
m
2 ⌋+ i− n+ 1; ⌊n2 ⌋ < i≤n− 1.

f(uivj) =


⌈ |E|

3 ⌉; 1≤i≤⌊n2 ⌋; 1≤j≤m and j odd

⌈k2⌉+ ⌈m+n
2 ⌉; 1≤i≤⌊n2 ⌋; 1≤j≤m and j even

⌈k2⌉+ ⌈m−n
2 ⌉ − ⌊ j2⌋; ⌊n2 ⌋ < i≤n; 1≤j≤m and j odd

j
2 ; ⌊n2 ⌋ < i≤n; 1≤j≤m and j even.

Case(5): When n is odd and |E| ≡ 2 (mod 3)

f(uiui+1) =


⌊ |E|

3 ⌋−⌊n2 ⌋⌈
m
2 ⌉+ i; 1≤i<⌊n2 ⌋

⌊ |E|
6 ⌋+ ⌈m2 ⌉; i = ⌊n2 ⌋

⌈n2 ⌉⌊
m
2 ⌋+ i− n+ 1; ⌊n2 ⌋ < i≤n− 1.

f(uivj) =


⌊ |E|

3 ⌋; 1≤i≤⌊n2 ⌋; 1≤j≤m and j odd

⌊k2⌋+ ⌊m+n
2 ⌋; 1≤i≤⌊n2 ⌋; 1≤j≤m and j even

⌊k2⌋+ ⌊m−n
2 ⌋ − ⌊ j2⌋; ⌊n2 ⌋ < i≤n; 1≤j≤m and j odd

j
2 ; ⌊n2 ⌋ < i≤n; 1≤j≤m and j even.

Under this assignment the weight of edges of Pn +Km when n is odd are:

For 1≤i≤⌊n2 ⌋, 1≤j≤m and j odd, wt(uivj) =
5n
4 + nm− i− (n−1)j

4 + 7
4 .

When m is even, weights={n+ nm+ 1, ..., n+ 3nm
4 + m

4 + 2}.
When m is odd, weights={n+ nm+ 1, ..., 3n4 + 3nm

4 + m
4 + 9

4}.
For 1≤i<⌊n2 ⌋, wt(uiui+1) = n+ nm− (n−1

2 )⌈m2 ⌉+ 2− i.

When m is even, weights={n+ 3nm
4 + m

4 + 1, ..., n2 + 3nm
4 + m

4 + 7
2}.

When m is odd, weights={3n
4 + 3nm

4 + m
4 + 5

4 , ...,
n
4 + 3nm

4 + m
4 + 15

4 }.
For 1≤i≤⌊n2 ⌋; 1≤j≤m and j even, wt(uivj) =

n
2 + nm

2 + m
2 + (n−1)j

4 + 7
2 − i.

When m is even, weights={n
2 + 3nm

4 + m
4 + 5

2 , ...,
n
2 + nm

2 + m
2 + 7

2}.
When m is odd, weights={n

4 + 3nm
4 + m

4 + 11
4 , ...,

n
2 + nm

2 + m
2 + 7

2}.
For i = ⌊n2 ⌋, wt(uiui+1) =

n
2 + nm

2 + m
2 + 5

2 .

For ⌊n2 ⌋ < i≤n; 1≤j≤m and j odd, wt(uivj) =
5n
4 + nm

2 + m
2 − i− (n+1)j

4 + 9
4 .

When m is even, weights={n
2 + nm

2 + m
2 + 3

2 , ...,
n
2 + nm

4 + m
4 + 5

2}.
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When m is odd, weights={n
2 + nm

2 + m
2 + 3

2 , ...,
n
4 + nm

4 + m
4 + 9

4}.
For ⌊n2 ⌋<i≤n− 1, wt(uiui+1) = n+ ⌈n2 ⌉⌊

m
2 ⌋+ 2− i.

When m is even, weights={n
2 + nm

4 + m
4 + 3

2 , ...,
nm
4 + m

4 + 3}.
When m is odd, weights={n

4 + nm
4 + m

4 + 5
4 , ...,

nm
4 − n

4 + m
4 + 11

4 }.
For ⌊n2 ⌋ < i≤n; 1≤j≤m and j even, wt(uivj) =

n
2 + 5

2 + (n+1)j
4 − i.

When m is even, weights={nm+m
4 + 2, ..., 3}.

When m is odd, weights={nm+m
4 − n

4 + 7
4 , ..., 3}.

From the above cases, the weights of the n+nm− 1 edges of Pn+Km, for n≥4 and m≥4
under the labeling f constitute the set {3, 4, ..., n + nm + 1} and are distinct. Thus f is
a total edge irregular k- labeling and tes(Pn + Km)≤k. Combining this with the lower
bound, we conclude that tes(Pn +Km) = ⌈n+nm+1

3 ⌉. □

3. Conclusion

The exact value of the total edge irregularity strength is known only for few classes of
graphs. The lower and upper bound of the total edge irregularity strength of a graph was
found earlier. In this paper, we obtained the exact value of total edge irregularity strength
of join of path and complement of complete graph. We found that the lower bound itself
is its total edge irregularity strength. Similar results can be obtained for other classes of
graphs also. Future study can be done to find the exact value of total edge irregularity
strength of join of path and complete graph.
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