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HYPERGEOMETRIC FUNCTION REPRESENTATION OF THE

ROOTS OF A CERTAIN CUBIC EQUATION

M. I. QURESHI1, R. B. PARIS2, J. MAJID1∗, A. H. BHAT1, §

Abstract. The aim in this note is to obtain new hypergeometric forms for the functions
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where b is an arbitrary parameter, in terms of Gauss hypergeometric functions. An ap-
plication of these results (when b = 1

3
) is made to obtain the hypergeometric form of

the roots of the cubic equation r3 − r + 2
3

√
z
3

= 0. This complements the entry in the
compendium of Prudnikov et al. on page 472, entry (68) of the table, where only the
middle root (either real or purely imaginary) is given in hypergeometric form.
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1. Introduction and preliminaries

A remarkable large number of generalized hypergeometric functions and their exten-
sions have been given by many authors (see [3, 12]). These functions play a crucial role
in mathematical analysis, engineering and applied sciences. Abdus et al. [9] introduced
a new confluent hypergeometric gamma function and an associated confluent hypergeo-
metric Pochhammer symbol and studied their many properties like their integral repre-
sentations, derivative formulas, and generating function relations. The novel expansion of
beta function has been given by Musharraf et al.[1] by using multi-index Mittag-Leffler
function. Srivastava et al.[11] introduced an extended version of the Pochhammer symbol
and then introduced the corresponding extension of the τ -Gauss hypergeometric function
and studied their basic properties. Srivastava et al.[10] also gave the extended Pochham-
mer symbol by using extended gamma function involving Macdonald function. Further
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of Mathematics, 2024; all rights reserved.

395



396 TWMS J. APP. AND ENG. MATH. V.14, N.1, 2024

the authors gave the corresponding extension of the generalized hypergeometric function.
The families of generating functions and generating relations for the extended generalized
hypergeometric function have also been presented.

In the book by Prudnikov et al. [4, p. 472, entry(68)] the middle root (either real or
purely imaginary) of the cubic equation

r3 − r +
2

3

√
z

3
= 0 (1.1)

is given in hypergeometric form by
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; z]. (1.2)

Here, 2F1(z) denotes the Gauss hypergeometric function defined in terms of the Pochham-
mer symbol (a)n = Γ(a+ n)/Γ(a) by

2F1
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c

; z

]
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zn (|z| < 1)

and elsewhere in the complex z-plane cut along [1,∞) by analytic continuation. It is the
aim in this note to give hypergeometric representations for the other two roots of (1.1),
following recently published work in [2], [5]–[8]. This is achieved by obtaining similar
hypergeometric forms for the functions
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where b is an arbitrary parameter, thereby complementing those expressions given in [4,
p. 486].

From Mathematica, the roots of the cubic (1.1) can be expressed in the form
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Elementary considerations show that when 0 ≤ z ≤ 1 the roots are real; when z > 1 there
is one real root and a complex conjugate pair; when z < 0 all three roots are complex with
r2(z) being purely imaginary; see Table 1. When z is complex, it is sufficient to consider

only the upper half plane since the roots satisfy rj(z) = rj(z) (1 ≤ j ≤ 3), where the bar
denotes the complex conjugate.

In what follows we shall make use of the binomial theorem

(1− z)−b = 1F0

[
b
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]
=
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n!
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where |z| < 1 and b ∈ C, and |z| = 1 when <(b) < 0. We shall also require the Pfaff-
Kummer transformation
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and Euler’s linear transformation
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Table 1. Values of the roots rj(z) (accurate to 5dp) of the cubic (1.1) for z ∈ [−1, 1].

−0.2 −1.01046− 0.08372i 0.16744i 1.01046− 0.08372i
−0.4 −1.01983− 0.11555i 0.23109i 1.01983− 0.11555i
−0.6 −1.02835− 0.13846i 0.27691i 1.02835− 0.13846i
−0.8 −1.03619− 0.15673i 0.31346i 1.03619− 0.15673i
−1.0 −1.04347− 0.17207i 0.34414i 1.04347− 0.17207i

0 −1.00000 0.00000 1.00000
0.2 −1.07696 0.17777 0.89921
0.4 −1.10470 0.26127 0.84343
0.6 −1.12475 0.33611 0.78864
0.8 −1.14094 0.41653 0.72440
1.0 −1.15470 0.57735 0.57735

both holding provided c 6= 0,−1,−2, . . . and | arg(1− z)| < π.

2. Hypergeometric representation of certain functional forms

We have the following theorem:

Theorem 2.1. Let b be an arbitrary parameter and define the two functions
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Then the following identities hold:
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for z ∈ C\[1,∞). The upper or lower signs in (2.2) and (2.4) are chosen according as
0 ≤ arg z ≤ π or arg z < 0, respectively.

Proof. For convenience in presentation let us define Z := z/(z−1). Consider the expression
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by (1.5) and in the series decomposition we suppose that |Z| < 1. Employing the
identities
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we find
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Application of the Pfaff-Kummer transformation (1.6) then yields

H(b; z) = (z − 1)b/2
{

(1− z)−b/2F1(b; z)− bZ1/2(1− z)−b/2+1/2F2(b; z)
}
.

Using the fact that
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)
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where the upper or lower sign is taken according as 0 ≤ arg z ≤ π or arg z < 0,
respectively. The result (2.5) has been obtained under the assumption that |Z| < 1, but
may be extended by analytic continuation to z ∈ C\[1,∞).

Upon noting that Fj(−b; z) = Fj(b; z) (j = 1, 2), it follows immediately upon reversing
the sign of b that

H(−b; z) = e∓iπb/2
(
F1(b; z)∓ ib

√
zF2(b; z)

)
. (2.6)

Hence some routine algebra produces
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which are the results stated in (2.1) and (2.3). �

The proofs of (2.2) and (2.4) follow the same steps and so will be omitted.

3. Hypergeometric form of the roots of the cubic (1.1)

When b = 1
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where
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The alternative form of F1(
1
3 ; z) follows from Euler’s transformation (1.7).

We then obtain from (2.1) and (2.2) the desired hypergeometric forms of the roots given
in the following theorem:

Theorem 3.1.. The roots rj (1 ≤ j ≤ 3) in (2.1) and (2.2) of the cubic equation
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3
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where 0 ≤ arg z ≤ π, have the hypergeometric representations
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where the hypergeometric functions F1(
1
3 ; z) and F2(

1
3 ; z) are defined in (3.2). The roots

satisfy rj(z) = rj(z) (1 ≤ j ≤ 3) for conjugate values of z.

Proof. The results in (3.3) follow immediately by insertion of the first two formulas in
(3.1) (with the upper sign when 0 ≤ arg z ≤ π) into the expressions for the roots rj(z) in
(2.1) and (2.2). �

4. Conclusions

In this paper, we have obtained the hypergeometric forms of some new functions (not
recorded earlier) in terms of combinations of Gauss hypergeometric functions by using
series manipulation and the Pfaff-Kummer linear transformation. In addition, we have
also obtained the hypergeometric form of the two missing roots (not recorded in [4]) of
the cubic equation (1.1). The various functional forms have all been verified numerically
with the help of Mathematica.

We can obtain the hypergeometric forms of the real and complex roots of higher degree
polynomial equations in an analogous manner. Moreover, these results could have potential
applications in several fields of Applied Mathematics, Statistics and Engineering Sciences.
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