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THE Y- INDEX AND COINDEX OF V C5C7[p, q] AND HC5C7[p, q]

NANOTUBES

M. ALSHARAFI1∗, A. ALAMERI2, Y. ZEREN1, §

Abstract. The Y-index and coindex are degree based molecular structure descriptors
that have been shown to give a high degree of predictability compare to Zagreb indices
and F-index and their coindices for some physicochemical properties of octane isomers.
In this paper, we studied the Y − index and Y − coindex for certain important chemi-
cal structures like line graphs of the V C5C7[p, q] and HC5C7[p, q] nanotubes and their
molecular complement graph. Moreover, we defined Y − polynomial of graph G and
applied it on the line graphs of the V C5C7[p, q] and HC5C7[p, q] nanotubes. These ex-
plicit formulae can correlate the chemical structure of molecular graph of nanotube to
information about their physical structure.

Keywords: Y-index, Y-coindex, V C5C7[p, q] nanotube, HC5C7[p, q] nanotube, molecular
graph, molecular complement graph.
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1. Introduction

Chemical graph theory is a mixture of chemistry and mathematics both play an impor-
tant role in chemical graph theory. Chemistry provides a chemical compound and graph
theory transform this chemical compound into a molecular graph which further studied
by different aspects such as topological indices[1]. Topological indices are the molecular
descriptors that describe the structures of chemical compounds and they help us to predict
certain physicochemical properties[2, 3]. In these frameworks, the molecular is represented
as a graph in which each atom is expressed as a vertex and covalent bounds between atoms
are represented as edges between vertices. Topological indices were introduced to deter-
mine the chemical and pharmaceutical properties. The first and second Zagreb indices can
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be regarded as one of the oldest graph invariants which was defined in (1972) by Gutman
and Trinajstić [4, 5]. The first and second Zagreb indices defined for a molecular graph G
as:

M1(G) =
∑

uv∈E(G)

[δG(u) + δG(v)], M2(G) =
∑

uv∈E(G)

δG(u) δG(v),

The first and second Zagreb coindices have been introduced by Ashrafi et al. [6] in (2010).
They are respectively defined as:

M1(G) =
∑

uv/∈E(G)

[δG(u) + δG(v)], M2(G) =
∑

uv/∈E(G)

δG(u) δG(v),

Furtula and Gutman in (2015) introduced forgotten index (F-index) [7] which defined
as:

F (G) =
∑

v∈V (G)

δG
3(v) =

∑
uv∈E(G)

(
δG

2(u) + δG
2(v)

)
Furtula et al. in (2015) defined forgotten coindex (F-coindex)[8] as the following:

F (G) =
∑

uv/∈E(G)

(
δG

2(u) + δG
2(v)

)
Alameri et al. [9, 10] in (2020) introduced Y − index, Y − coindex, and defined respec-

tively as follows:

Y (G) =
∑

uv∈E(G)

[δ3G(u) + δ3G(v)], Y (G) =
∑

uv/∈E(G)

[δ3G(u) + δ3G(v)]

In (2005) Li and Zheng [22] introduced the first general Zagreb index as:

Mα
1 (G) =

∑
v∈V (G)

δG
α+1(v) =

∑
uv∈E(G)

δαG(u) + δαG(v).

We note that, the first Zagreb index, the F-index and the Y-index are special cases from
the first general Zagreb index, when α = 1, 2, 3 respectively.

By Li and Gutman, the general Rendić index [23], defined as follows:

Rα(G) =
∑

uv∈E(G)

[δG(u) δG(v)]α.

And we see that, the Rendić, the second Zagreb, and the second Hyper-Zagreb indices
are special cases from the general Rendić index, when α = −1/2, 1, 2 respectively.

The general zeroth-order Randić coindex was defined in [24], as:

0R
α
(G) =

∑
uv/∈E(G)

[δαG(u) + δαG(v)].

Also, we note that, the first Zagreb coindex, the F-coindex and the Y-coindex are special
cases from the general zeroth-order Randić coindex, when α = 1, 2, 3 respectively, for more
detail, we refer to [24, 25].

Then, Farahani et al. [11] computed the first and second Zagreb polynomials of V C5C7

and HC5C7 and their indices, B. Zhao et al. [12] computed the Redefined Zagreb in-
dices of V C5C7[p, q] and HC5C7[p, q]. Deng et al. [13] studied the topological indices of
the Pent-Heptagonal Nanosheets V C5C7 and HC5C7 and there are a lot of researchers
who have studied some topological indices on V C5C7 and HC5C7 nanotubes that cannot
be all mentioned here. In this study, we compute Y − index and Y − coindex of two
nanotubes V C5C7 and HC5C7 and their polynomials. Alameri et al. [9, 10] in (2020)
defined the (Y-index) and (Y-coindex) and studied their of some special graph and graph
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operation. Nanotubes play an important role in many applications such as Energy stor-
age, Bioelectronics and Optoelectronics [19]. Because of the unique structural, electrical,
optical, and mechanical properties, graphene nanosheets drew dramatic attention of aca-
demic and industrial research [13, 20, 21]. and as nanotubes introduced into graphene
could be extremely useful and exploited to generate novel, innovative, and useful materi-
als and devices. So, the property of V C5C7 and HC5C7 nanostructures has become an
active area of research [13]. Here we present the Y − index and Y − coindex and their
topological polynomials of V C5C7[p, q] and HC5C7[p, q] nanotubes which are useful for
surveying structure of nanotubes. Any unexplained terminology is standard, typically as
in [14, 15, 16, 17, 18].

2. Preliminaries

In this section, we give some basic and preliminary concepts which we shall use later.
In this paper, we consider a finite connected graph G that has no loops or multiple edges.
The vertex and the edge sets of a graph G are denoted by V (G) and E(G), respectively.
The degree of the vertex u ∈ V (G) is the number of edges that incident to u, and denoted
by δG(u). The size of a graph G is the number of edges in G and denoted by |E| = m
and the number of vertices of G is called the order of G and denoted by |V | = n. The
complement of G, denoted by G , is a simple graph on the same set of vertices V (G) in
which two vertices u and v are adjacent, i.e., connected by an edge uv, ⇐⇒ they are not
adjacent in G. Hence, uv ∈ E(G), ⇐⇒ uv /∈ E(G). Obviously E(G) ∪ E(G) = E(Kn),
and m = |E(G)| =

(
n
2

)
−m, the degree of a vertex u in G, is the number of edges incident

to u, denoted by δG(u) = (n− 1)− δG(u).

Proposition 2.1. [10] Let G be a simple graph on n vertices and m edges. Then,

Y (G) = n(n− 1)4 − 8m(n− 1)3 + 6(n− 1)2M1(G)− 4(n− 1)F (G) + Y (G),

Y (G) = (n− 1)F (G)− Y (G).

Theorem 2.1. [11] The first and second Zagreb indices of V C5C7[p, q] and HC5C7[p, q]
nanotube (Fig.1) and (Fig.2) respectively, is given by

M1(V C5C7[p, q]) = 12p[12q + 2],

M2(V C5C7[p, q]) = p[216q + 18],

M1(HC5C7[p, q]) = p[72q + 20],

M2(HC5C7[p, q]) = p[108q + 16].

3. Y-index and coindex of V C5C7[p, q] nanotube (p, q ≥ 1)

In this section, we compute the Y-index and coindex for line graphs of the V C5C7[p, q]
nanotubes and its molecular complement graph. Moreover, we define Y − polynomial of
graph G and apply it on the line graphs of the V C5C7[p, q] nanotubes.

Theorem 3.1. The Y − index of V C5C7[p, q] nanotube (Fig.1) is given by

Y (V C5C7[p, q]) = p[1296q + 96].

Proof. By definition of the Y − index Y (G) =
∑

uv∈E(G)

[
δ3G(u) + δ3G(v)

]
, and by replacing

eachG with V C5C7[p, q], which yield to Y (V C5C7[p, q]) =
∑

uv∈E(V C5C7[p,q])

[
δ3V C5C7[p,q]

(u)+

δ3V C5C7[p,q]
(v)
]
, and the partitions of the vertex set and edge set V (V C5C7[p, q]),

E(V C5C7[p, q]), of V C5C7[p, q] nanotubes are given in (Table 1,2) respectively [11], such
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that the parameter p is denoted as the number of pentagons in the first row of V C5C7[p, q]
and q is denoted as the number of repetitions. So, for any p, q ∈ N, there exist 6p ver-
tices and 16p edges in each period of V C5C7[p, q] which are neighboring at the end of the
Nano-Structure. for any graph G, its vertex set V (G) and edge set E(G) are divided into
several partitions:
for any r ∈ N, 2δ(G) ≤ r ≤ 2∆(G), let Er = e = uv ∈ E(G) : δ(u) + δ(v) = r; for any
s ∈ N, δ2(G) ≤ s ≤ ∆2(G), let E∗s = e = uv ∈ E(G) : δ(u)δ(v) = s; for any t ∈ N, δ(G) ≤
t ≤ ∆(G), let Vt = v = v ∈ V (G) : δ(v) = t; Then, the edge set of V C5C7[p, q] is divided
into two edge partitions based on the sum of degrees of the end vertices as:

E5(V C5C7[p, q]) = E∗6 = {e = uv ∈ E(V C5C7[p, q]) : δ(u) = 2, δ(v) = 3},

E6(V C5C7[p, q]) = E∗9 = {e = uv ∈ E(V C5C7[p, q]) : δ(u) = 3, δ(v) = 3},

We see that |V (V C5C7[p, q])| = 16pq + 6p and |E(V C5C7[p, q])| = 24pq + 6p.

Figure 1. molecular graph of a V C5C7[p, q] nanotube.

Table 1. The edge partition of V C5C7[p, q] nanotubes.

Edge partition E5 = E∗6 E6 = E∗9
Cardinality 12p 24pq − 6p

Table 2. The vertex partition of V C5C7[p, q] nanotubes.

Vertex partition V2 V3

Cardinality 3p+ 3p 16pq

Thus:

Y (V C5C7[p, q]) =
∑

uv∈E(V C5C7[p,q])

[
δ3V C5C7[p,q]

(u) + δ3V C5C7[p,q]
(v)
]

=
∑

uv∈E∗
6 (V C5C7[p,q])

[
δ3V C5C7[p,q]

(u) + δ3V C5C7[p,q]
(v)
]

+
∑

uv∈E∗
9 (V C5C7[p,q])

[
δ3V C5C7[p,q]

(u) + δ3V C5C7[p,q]
(v)
]

= 35|E∗6(V C5C7[p, q])|+ 54|E∗9(V C5C7[p, q])|
= 1296pq + 96p.
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�

Definition 3.1. The Y-polynomial of graph G defined as

Y (G, x) =
∑

uv∈E(G)

x[δ
3
G(u)+δ3G(v)]

Theorem 3.2. The Y − polynomial of V C5C7[p, q] nanotube (Fig.1) is given by

Y (V C5C7[p, q], x) = 6p
[
2x35 + [4q − 1]x54

]
.

Proof. By definition of the Y-polynomial of graph G above. and as (Theorem 3.1) the
partitions of the vertex set and edge set V (V C5C7[p, q]), E(V C5C7[p, q]), of V C5C7[p, q]
nanotube are given in (Table 1,2) respectively we have,

Y (V C5C7[p, q], x) =
∑

uv∈E(V C5C7[p,q])

x
[δ3

V C5C7[p,q]
(u)+δ3

V C5C7[p,q]
(v)]

=
∑

uv∈E∗
6 (V C5C7[p,q])

x
[δ3

V C5C7[p,q]
(u)+δ3

V C5C7[p,q]
(v)]

+
∑

uv∈E∗
9 (V C5C7[p,q])

x
[δ3

V C5C7[p,q]
(u)+δ3

V C5C7[p,q]
(v)]

= |E∗6(V C5C7[p, q])|x35 + |E∗9(V C5C7[p, q])|x54

= 12px35 + [24pq − 6p]x54

= 6p
[
2x35 + [4q − 1]x54

]
.

We can also get the Y − index of V C5C7[p, q] nanotube by derivating the formula
Y-polynomial of V C5C7[p, q] nanotube above as:

Y (V C5C7[p, q]) =
∂Y (V C5C7[p, q], x)

∂x
|x=1 =

∂
[
12px35 + 6p[4q − 1]x54

]
∂x

|x=1

= 1296pq + 96p.

�

Theorem 3.3. The F − index of V C5C7[p, q] nanotube (Fig.1) is given by

F (V C5C7[p, q]) = 48p[1 + 9q].

Proof. By definition of forgotten index (F-index) and Theorem (3.1). Then,

F (V C5C7[p, q]) =
∑

uv∈E(V C5C7[p,q])

[
δ2V C5C7[p,q]

(u) + δ2V C5C7[p,q]
(v)
]

=
∑

uv∈E∗
6 (V C5C7[p,q])

[
δ2V C5C7[p,q]

(u) + δ2V C5C7[p,q]
(v)
]

+
∑

uv∈E∗
9 (V C5C7[p,q])

[
δ2V C5C7[p,q]

(u) + δ2V C5C7[p,q]
(v)
]

= 13|E∗6(V C5C7[p, q])|+ 18|E∗9(V C5C7[p, q])|
= 48p[1 + 9q].

�
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Corollary 3.1. The Y − index of complement V C5C7[p, q] nanotube (Fig.1) is given by

Y (V C5C7[p, q]) = [16pq + 6p](16pq + 6p− 1)4 − 8(24pq + 6p)(16pq + 6p− 1)3

+ 6(16pq + 6p− 1)2[144pq + 24p]

− 4(16pq + 6p− 1)[48p+ 432pq] + 1296pq + 96p.

Proof. By (Proposition 2.1) we have

Y (G) = n(n− 1)4 − 8m(n− 1)3 + 6(n− 1)2M1(G)− 4(n− 1)F (G) + Y (G),

And F (V C5C7[p, q]) = 48p[1 + 9q] given in (Theorem 3.3)above. M1(V C5C7[p, q]) =
144pq + 24p and the partitions of the vertex set and edge set of (V C5C7[p, q]) nanotubes
are given in [11].∑

|V (V C5C7[p, q])| = 16pq + 6p,
∑
|E(V C5C7[p, q])| = 24pq + 6p

and Y (V C5C7[p, q]) = 1296pq + 96p given in Theorem (3.1)above. Thus

Y (V C5C7[p, q]) =
∑
|V (V C5C7[p, q])|

(∑
|V (V C5C7[p, q])| − 1

)4
− 8

∑
|E(V C5C7[p, q])|

(∑
|V (V C5C7[p, q])| − 1

)3
+ 6

(∑
|V (V C5C7[p, q])| − 1

)2
M1(V C5C7[p, q])

− 4
(∑

|V (V C5C7[p, q])| − 1
)
F (V C5C7[p, q]) + Y (V C5C7[p, q])

= [16pq + 6p](16pq + 6p− 1)4 − 8(24pq + 6p)(16pq + 6p− 1)3

+ 6(16pq + 6p− 1)2[144pq + 24p]

− 4(16pq + 6p− 1)[48p+ 432pq] + 1296pq + 96p.

�

Corollary 3.2. The Y − coindex of V C5C7[p, q] nanotube (Fig.1) is given by

Y (V C5C7[p, q]) = 48p[9q + 1][p(16q + 6)− 1]− p[1296q + 96].

Proof. By (Proposition 2.1) we have Y (G) = (n − 1)F (G) − Y (G), F (V C5C7[p, q]) =
48p[1 + 9q] given in Theorem (3.3) and Y (V C5C7[p, q]) = 1296pq + 96p given in Theorem
(3.1)above. and since n =

∑
|V (V C5C7[p, q])| = 16pq + 6p. Then,

Y (V C5C7[p, q]) =
(∑

|V (V C5C7[p, q])| − 1
)
F (V C5C7[p, q])− Y (V C5C7[p, q])

= 48p[16pq + 6p− 1][1 + 9q]− 1296pq − 96p.

�

Proposition 3.1. Let G be a simple graph on n vertices and m edges. Then,

Y (G) = 4m(n− 1)3 − 3(n− 1)2M1(G) + 3(n− 1)F (G)− Y (G).

Corollary 3.3. The Y − coindex of complement V C5C7[p, q] nanotube (Fig.1) is given by

Y (V C5C7[p, q]) = 4[24pq + 6p]
[
16pq + 6p− 1

]
)
3
− 3[144pq + 24p]

[
16pq + 6p− 1

]2
+ 3

(
16pq + 6p− 1

)
[48p(1 + 9q)]− 1296pq − 96p.
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Proof. By (Proposition 3.1) we have

Y (G) = 4m(n− 1)3 − 3(n− 1)2M1(G) + 3(n− 1)F (G)− Y (G),

F (V C5C7[p, q]) = 48p[1 + 9q] given in (Theorem 3.3) and Y (V C5C7[p, q]) = 1296pq + 96p
given in (Theorem 3.1)above. and as (Corollary 3.1) the partitions of the vertex set and
edge set of (V C5C7[p, q]) nanotubes. Then,

Y (V C5C7[p, q]) = 4
∑
|E(V C5C7[p, q])|

[∑
|V (V C5C7[p, q])| − 1

]3
− 3

[∑
|V (V C5C7[p, q])| − 1

]2
M1(V C5C7[p, q])

+ 3
[∑

|V (V C5C7[p, q])| − 1
]
F (V C5C7[p, q])− Y (V C5C7[p, q])

= 4[24pq + 6p]
[
16pq + 6p− 1

]
)
3
− 3[144pq + 24p]

[
16pq + 6p− 1

]2
+ 3

(
16pq + 6p− 1

)
[48p(1 + 9q)]− 1296pq − 96p.

�

Table 3. Some topological indices values of H = V C5C7[p, q] nanotubes.

p q M1(H) M2(H) F (H) Y (H) Y (H)

1 1 168 234 480 1392 8.688× 103

1 2 312 450 912 2688 31.056× 103

1 3 456 666 1344 3984 67.248× 103

2 1 336 468 960 2784 38.496× 103

2 2 624 900 1824 5376 131.424× 103

2 3 912 1332 2688 7968 279.648× 103

3 1 504 702 1440 4176 89.424× 103

3 2 936 1350 2736 8064 301.104× 103

3 3 1368 1996 4032 11952 637.200× 103

In (Table 3.) some index and coindex values of V C5C7[p, q] nanotubes. formulas re-
ported in (Theorem 3.1), (Theorem 3.2) and (Corollary 3.2) for the V C5C7[p, q] nanotube.
In table it show that values of first and second Zagreb indices, F − index, Y − index and
Y − coindex are in increasing order as the values of p, q increase.

4. Y-index and coindex of V C5C7[p, q] nanotube (p, q ≥ 1)

In this section, we compute the Y-index and coindex for line graphs of the HC5C7[p, q]
nanotubes and its molecular complement graph. Moreover, we apply Y − polynomial on
the line graphs of the HC5C7[p, q] nanotubes.

Theorem 4.1. The Y − index of HC5C7[p, q] nanotube (Fig.2) is given by

Y (HC5C7[p, q]) = p[648q + 80]

Proof. By definition of the Y − index and by [11] the partitions of the vertex set and edge
set V (HC5C7[p, q]), E(HC5C7[p, q]), of HC5C7[p, q] nanotubes are given in (Table 4,5)
respectively, such that the parameter p is denoted as the number of pentagons in the first
row of HC5C7[p, q] and q is denoted as the number of repetitions. So, for any p, q ∈ N,
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there exist 12p edges and 8p vertices in each period of HC5C7[p, q] which are adjacent at
the end of the Nano-Structure. for any graph G, its vertex set V (G) and edge set E(G)
are divided into several partitions:
for any r ∈ N, 2δ(G) ≤ r ≤ 2∆(G), let Er = e = uv ∈ E(G) : δ(u) + δ(v) = r; for any
s ∈ N, δ2(G) ≤ s ≤ ∆2(G), let E∗s = e = uv ∈ E(G) : δ(u)δ(v) = s; for any t ∈ N, δ(G) ≤
t ≤ ∆(G), let Vt = v = v ∈ V (G) : δ(v) = t; Then, the edge set of HC5C7[p, q] is divided
into three edge partitions based on the sum of degrees of the end vertices as:

E4(HC5C7[p, q]) = E∗4 = {e = uv ∈ E(HC5C7[p, q]) : δ(u) = 2, δ(v) = 2},

E5(HC5C7[p, q]) = E∗6 = {e = uv ∈ E(HC5C7[p, q]) : δ(u) = 2, δ(v) = 3},

E6(HC5C7[p, q]) = E∗9 = {e = uv ∈ E(HC5C7[p, q]) : δ(u) = 3, δ(v) = 3},

We see that |V (HC5C7[p, q])| = 8pq + 5p and |E(HC5C7[p, q])| = 12pq + 5p.

Figure 2. molecular graph of a HC5C7[p, q] nanotube.

Table 4. The edge partition of HC5C7[p, q] nanotubes.

Edge partition E4 = E∗4 E5 = E∗6 E6 = E∗9
Cardinality p 8p 12pq − 4p

Table 5. The vertex partition of HC5C7[p, q] nanotubes.

Vertex partition V2 V3

Cardinality 5p 8pq
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Thus:

Y (HC5C7[p, q]) =
∑

uv∈E(HC5C7[p,q]

[
δ3HC5C7[p,q]

(u) + δ3HC5C7[p,q]
(v)
]

=
∑

uv∈E∗
4 (HC5C7[p,q])

[
δ3HC5C7[p,q]

(u) + δ3HC5C7[p,q]
(v)
]

+
∑

uv∈E∗
6 (HC5C7[p,q])

[
δ3HC5C7[p,q]

(u) + δ3HC5C7[p,q]
(v)
]

+
∑

uv∈E∗
9 (HC5C7[p,q])

[
δ3HC5C7[p,q]

(u) + δ3HC5C7[p,q]
(v)
]

= 16|E∗4(HC5C7[p, q])|+ 35|E∗6(HC5C7[p, q])|+ 54|E∗9(HC5C7[p, q])|
= 16p+ 280p+ 54[12pq − 4p].

�

Theorem 4.2. The Y − polynomial of HC5C7[p, q] nanotube (Fig.2) is given by

Y (HC5C7[p, q], x) = p
[
x16 + 8x35 + [12q − 4]x54

]
.

Proof. By definition of the Y − polynomial of graph G above. and as (Theorem 4.1) the
partitions of the vertex set and edge set of (HC5C7[p, q]) nanotubes. Thus,

Y (HC5C7[p, q], x) =
∑

uv∈E(HC5C7[p,q])

x
[δ3

HC5C7[p,q]
(u)+δ3

HC5C7[p,q]
(v)]

=
∑

uv∈E∗
4 (HC5C7[p,q])

x
[δ3

HC5C7[p,q]
(u)+δ3

HC5C7[p,q]
(v)]

+
∑

uv∈E∗
6 (HC5C7[p,q])

x
[δ3

HC5C7[p,q]
(u)+δ3

HC5C7[p,q]
(v)]

+
∑

uv∈E∗
9 (HC5C7[p,q])

x
[δ3

HC5C7[p,q]
(u)+δ3

HC5C7[p,q]
(v)]

= |E∗4(HC5C7[p, q])|x16 + |E∗6(HC5C7[p, q])|x35 + |E∗9(HC5C7[p, q])|x54

= px16 + 8px35 + [12pq − 4p]x54

= p
[
x16 + 8x35 + [12q − 4]x54

]
.

We can also get the Y − index of HC5C7[p, q] nanotube by derivating the formula
Y − polynomial of HC5C7[p, q] nanotube above as:

Y (HC5C7[p, q]) =
∂Y (HC5C7[p, q], x)

∂x
|x=1 =

∂
[
px16 + 8px35 + p[12q − 4]x54

]
∂x

|x=1

= 80p+ 648pq.

�

Theorem 4.3. The F − index of HC5C7[p, q] nanotube (Fig.2) is given by

F (HC5C7[p, q]) = p[216q + 40].
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Proof. By definition of forgotten index (F-index) and as (Theorem 4.1) the partitions of
the vertex set and edge set V (HC5C7[p, q]), E(HC5C7[p, q]), of HC5C7[p, q] nanotubes are
given in (Table 4,5) respectively. Then,

F (HC5C7[p, q]) =
∑

uv∈E(HC5C7[p,q]

[
δ2HC5C7[p,q]

(u) + δ2HC5C7[p,q]
(v)
]

=
∑

uv∈E∗
4 (HC5C7[p,q])

[
δ2HC5C7[p,q]

(u) + δ2HC5C7[p,q]
(v)
]

+
∑

uv∈E∗
6 (HC5C7[p,q])

[
δ2HC5C7[p,q]

(u) + δ2HC5C7[p,q]
(v)
]

+
∑

uv∈E∗
9 (HC5C7[p,q])

[
δ2HC5C7[p,q]

(u) + δ2HC5C7[p,q]
(v)
]

= 8|E∗4(HC5C7[p, q])|+ 13|E∗6(HC5C7[p, q])|+ 18|E∗9(HC5C7[p, q])|
= 8p+ 104p+ 18[12pq − 4p].

�

Corollary 4.1. The Y-index of complement HC5C7[p, q] nanotube (Fig.2) is given by

Y (HC5C7[p, q]) = [8pq + 5p](8pq + 5p− 1)4 − 8(12pq + 5p)(8pq + 5p− 1)3

+ 6(8pq + 5p− 1)2[72pq + 20p]

− 4(8pq + 5p− 1)[216pq + 40p] + 80p+ 648pq.

Proof. By (Proposition 2.1) we have

Y (G) = n(n− 1)4 − 8m(n− 1)3 + 6(n− 1)2M1(G)− 4(n− 1)F (G) + Y (G),

And F (HC5C7[p, q]) = 216pq+40p given in Theorem (4.3), M1(HC5C7[p, q]) = 72pq+20p
and the partitions of the vertex set and edge set of (HC5C7[p, q]) nanotubes are given in
[11]. ∑

|V (HC5C7[p, q])| = 8pq + 5p,
∑
|E(HC5C7[p, q])| = 12pq + 5p

and Y (HC5C7[p, q]) = 80p+ 648pq given in (Theorem 4.1) above. Then,

Y (HC5C7[p, q]) =
∑
|V (HC5C7[p, q])|

(∑
|V (HC5C7[p, q])| − 1

)4
− 8

∑
|E(HC5C7[p, q])|

(∑
|V (HC5C7[p, q])| − 1

)3
+ 6

(∑
|V (HC5C7[p, q])| − 1

)2
M1(HC5C7[p, q])

− 4
(∑

|V (HC5C7[p, q])| − 1
)
F (HC5C7[p, q]) + Y (HC5C7[p, q])

= [8pq + 5p](8pq + 5p− 1)4 − 8(12pq + 5p)(8pq + 5p− 1)3

+ 6(8pq + 5p− 1)2[72pq + 20p]

− 4(8pq + 5p− 1)[216pq + 40p] + 80p+ 648pq.

�

Corollary 4.2. The Y-coindex of HC5C7[p, q] nanotube (Fig.2) is given by

Y (HC5C7[p, q]) = p[216q + 40][p(8q + 5)− 1]− p[648q + 80].
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Proof. By (Proposition 2.1) we have Y (G) = (n− 1)F (G)− Y (G), and by (Corollary 4.1)
we obtian,

Y (HC5C7[p, q]) =
(∑

|V (HC5C7[p, q])| − 1
)
F (HC5C7[p, q])− Y (HC5C7[p, q])

= [8pq + 5p− 1][216pq + 40p]− 80p− 648pq.

�

Corollary 4.3. The Y-coindex of complement HC5C7[p, q] nanotube (Fig.2) is given by

Y (HC5C7[p, q]) = 4[12pq + 5p]
(

8pq + 5p− 1
)3
− 3
(

8pq + 5p− 1
)2

[72pq + 20p]

+ 3
(

8pq + 5p− 1
)

[216pq + 40p]− 80p− 648pq.

Proof. By (Proposition 3.1) we have

Y (G) = 4m(n− 1)3 − 3(n− 1)2M1(G) + 3(n− 1)F (G)− Y (G),

F (HC5C7[p, q]) = 216pq + 40p given in (Theorem 4.3) above. and Y (HC5C7[p, q]) =
80p+ 648pq given in (Theorem 4.1), and since

n =
∑
|V (HC5C7[p, q])| = 8pq + 5p, m =

∑
|E(HC5C7[p, q])| = 12pq + 5p

Then,

Y (HC5C7[p, q]) = 4
∑
|E(HC5C7[p, q])|

(∑
|V (HC5C7[p, q])| − 1

)3
− 3

(∑
|V (HC5C7[p, q])| − 1

)2
M1(HC5C7[p, q])

+ 3
(∑

|V (HC5C7[p, q])| − 1
)
F (HC5C7[p, q])− Y (HC5C7[p, q])

= 4[12pq + 5p]
(

8pq + 5p− 1
)3
− 3
(

8pq + 5p− 1
)2

[72pq + 20p]

+ 3
(

8pq + 5p− 1
)

[216pq + 40p]− 80p− 648pq.

�

Table 6. Some topological indices values of G = HC5C7[p, q] nanotubes.

p q M1(G) M2(G) F (G) Y (G) Y (G)

1 1 92 124 256 728 23.44× 102

1 2 164 232 472 1376 80.64× 102

1 3 236 340 688 2024 172.40× 102

2 1 184 248 512 1456 113.44× 102

2 2 328 464 944 2752 359.52× 102

2 3 472 680 1376 4048 743.84× 102

3 1 276 372 768 2184 27.00× 103

3 2 492 696 1416 4128 836.64× 102

3 3 708 1020 2064 6072 171.432× 103
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In (Table 6.) some index and coindex values of HC5C7[p, q] nanotubes. formulas re-
ported in (Theorem 4.1), (Theorem 4.3) and (Corollary 4.2) for the HC5C7[p, q] nanotube.
In table it show that values of first and second Zagreb indices, F − index, Y − index and
Y − coindex are in increasing order as the values of p, q increase.

5. Conclusions

The present study has computed the Y-index and coindex of line graphs of the V C5C7[p, q],
HC5C7[p, q] nanotubes and their molecular complement graphs. The study also has de-
fined Y-polynomial of graph G and applied it on the line graphs of the V C5C7[p, q] and
HC5C7[p, q] nanotubes. Our obtained explicit formulae can correlate the chemical struc-
ture of molecular graph of nanotubes to information about their physical structure.
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