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EXISTENCE AND UNIQUENESS RESULTS FOR FUZZY BOUNDARY

VALUE PROBLEMS OF NONLINEAR DIFFERENTIAL EQUATIONS

INVOLVING ATANGANA-BALEANU FRACTIONAL DERIVATIVES

F. ZAMTAIN1, M. ELOMARI1∗, S. MELLIANI1, A. EL MFADEL1, §

Abstract. This manuscript is devoted to the investigation of the existence and uniqueness
results for fuzzy fractional boundary value problems of some nonlinear differential equations in-

volving fuzzy Atangana-Baleanu fractional derivatives of order α ∈ (1, 2). By applying Banach

fixed point theorem, some new results and properties of Atangana-Baleanu fractional derivatives
and generalized Hukuhara difference, we establish our main existence theorems. As application,

a nontrivial example is given to illustrate our theoretical results.
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1. Introduction

Physical models of real-world phenomena frequently contain some uncertainty, which can be
attributed to a variety of factors. Fuzzy sets also appear to be an excellent tool for modelling the
uncertainty highlighted by impreciseness and ambiguity. Indeed, the fuzzy set theory has become
widely known due to its presence in various areas of life related to mathematics, as it can be
said that all sciences are related to mathematics, and therefore the fuzzy theory is related to all
sciences. Moreover, it has a number of qualities that make it ideal for formalizing the ambiguous
information that underpins life’s occurrences. In [2], Klaus-Peter Adlassnig worked on medical
Diagnosis probelm by using this theory . There are many works which are an extension of sev-
eral previously studied concepts in the ordinary theory, like Bede et al. [12], who established the
concept of strongly generalized differentiability . The generalized Hukuhara differentiability was
presented by Stefanini in [12] for solving fuzzy fractional diffential equations. The fuzzy differential
equations were first proposed by Kandel and Byatt [21] in 1987. D. Sindu and K. Ganesan in [15]
showed the existence of a solution to the fuzzy equation in the field of physics regarding the second-
order linear fuzzy differential equation for modeling electric circuit problems. Many researchers
have obtained some interesting results on the existence and uniqueness of solutions of boundary
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value problems for fractional differential equations involving different fractional derivatives such as
Riemann-Liouville [23], Hilfer [20], Erdelyi-Kober [24] and Hadamard [4]. There are many works
that proved the use of fractional calculus in many sciences as Kashkynbayev and A. Rihan [22]
showed the global stability of the steady-states of a fractional-order epidemic model by using Ca-
puto’s fractional derivative. Inés Tejado et all [26] in economics, and finance with Enrico Scalas et
al. [25]. Agarwal et al. in [3] were the first who introduced the fuzzy Riemann-Liouville fractional
differential equations . In [6], the authors introduced the fuzzy Caputo fractional differential equa-
tion under the Generalized Hukuhara differentiability. In [7], Allahviranlo et al. proposed the fuzzy
fractional differential equation with an interval Atangana-Baleanu derivative. In [18] El Mfadel et
al. established some new existence and uniqueness results for fuzzy linear and semilinear fractional
evolution equations involving Caputo fractional derivative. The existence theorems are proved by
using fuzzy fractional calculus, Picard’s iteration method, and Banach contraction principle. The
reader can also consul articles [17, 18] and the references therein for more details.
Developing an appropriate fractional differential equation in the context of mathematical modeling
is not an easy process. It necessitates a thorough understanding of the underlying physical phe-
nomena. However, actual physical phenomena are always tinged with uncertainty. When working
with ”living” things such as soil, water, and microbial populations, this is clear. When a real
physical phenomena is modelled by a classical fractional differential equation as follows: Dαx(t) = k(t, x(t)), t ∈ [0, T ],

x(0) = x0.
(1)

We can’t always be certain that the model is accurate. The initial value in (1), for example, may
not be known precisely. It can be anything between ”less than x0,” ”around x0,” and ”greater than
x0.” Classical mathematics, on the other hand, is incapable of dealing with this circumstance. As a
result, other theories are required to address this problem. There are several theories for describing
this circumstance, the most popular of which is the fuzzy set theory. See[18, 19].

Motivated by the above works, the purpose of this paper is to to establish some new definitions
and prove some properties of fuzzy Atangana-Baleanu fractional derivative for a higher order
α ∈ (n, n+1) where n is an arbitrary integer number. In addition, by utilizing some new proprieties
of fuzzy Atangna-Baleanu fractional derivatives and the Green function, we establish the existence
and uniqueness of solutions for the following boundary value problem:

ABCDαy(t) = g(t, y(t)), t ∈ [a, b],

y(a) = A, y(b) = B A,B ∈ E1.
(2)

Where ABCDα is the fuzzy Atangna-Baleanu fractional derivative of y at order α ∈ (1, 2) and
g : [a, b] ⊂ R+ × E1 −→ E1 is fuzzy continuous function.
Our paper is organized as follows. In Section 2, we give some basic definitions and properties of
fuzzy Atangna-Baleanu fractional fractional integral and fuzzy Atangna-Baleanu fractional deriv-
ative of order α ∈ (0, 1) . In Section 3, we define some new basic concept of Atangana Baleanu
fractional derivative in the sense of Caputo ( ABC for short form) and in the sense of Riemann-
Liouville (ABR for short form) for order α ∈ (n, n+ 1) where n is an arbitrary integer number. In
Section 4, we prove the existence and uniqueness of solutions for fractional boundary value problem
(2) by using Banach fixed point theorem . As application, an illustrative example is presented in
Section 5 followed by conclusion in Section 6.

2. Preliminaries

In this section, we give some definitions and proprieties of fuzzy theory and of the Atangana-
Baleanu of order α ∈ (0, 1).

Definition 2.1. [14] A fuzzy number is a function u : R→ [0, 1] satisfying the following properties:

(1) u is normal, i. e. ∃t0 ∈ R with u (t0) = 1,
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(2) u is a convex fuzzy set i. e. u((1− λ)x+ λy) ≥ min{u(x), u(y)}, ∀x, y ∈ R, λ ∈ [0, 1],
(3) u is upper semi-continuous on R,
(4) cl{t ∈ R : u(t) > 0} is compact, where cl denotes the closure of a subset.

We denote by E1 the space of all fuzzy numbers.

Let r ∈ [0, 1] and u ∈ E1, we define the r − cut of u by

[u]r = {x ∈ R : u(x) ≥ r}.

Definition 2.2. [14] The metric structure is given by the Hausdorff distance

D : E1 × E1 −→ R+ ∪ {0}

by

D(u, v) = sup
0≤r≤1

max {|ur − vr| , |ūr − v̄r|} .

The space
(
E1, D

)
is a complete metric space and the following properties of the metric D hold.

D(u+ w, v + w) = D(u, v), ∀u, v, w ∈ E1,
D(ku, kv) = |k|D(u, v), ∀k ∈ R, u, v ∈ E1,
D(u+ v, w + z) ≤ D(u,w) +D(v, z) ∀u, v, w, z ∈ E1.

Definition 2.3. [12] The generalized Hukuhara difference of two fuzzy numbers u, v ∈ E1 is defined
as follows

u	gH v = w ⇐⇒

{
(i) u = v + w,

or(ii) v = u+ (−1)w.

Definition 2.4. [12] The generalized Hukuhara derivative of a fuzzy-valued function
f : (a, b) −→ E1 at t0 is defined as follows:

f ′gH (t0) = lim
h→0

f (t0 + h)	gH f (t0)

h
,

if f ′gH (t0) ∈ E1, we say that f is generalized Hukuhara differentiable ( g H-differentiable ) at t0.

Also we say that f is (i)-gH-differentiable at t0 if[
f ′i.gH (t0)

]r
=
[
f ′ (t0, r) , f̄

′ (t0, r)
]
, 0 ≤ r ≤ 1,

and that f is (ii)- gH-differentiable at t0 if[
f ′i.gH (t0)

]r
=
[
f̄ (t0; r) , f ′ (t0; r)

]
, 0 ≤ r ≤ 1.

Definition 2.5. [7] The ABC fractional derivative in the sense of Caputo is defined in two cases
as follow, [

ABC
0 Di,α

t y(t)

]r
=

[
ABC
0 Di,α

t y(t; r),ABC0 Di,α
t y(t; r)

]
, Case (1),[

ABC
0 Dii,α

t y(t)

]r
=

[
ABC
0 Dii,α

t y(t; r),ABC0 Dii,α
t y(t; r)

]
, Case (2),
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where

ABC
0 Di,α

t y(t) =
B(α)

1− α

∫ t

0

i− gHy′(τ)Eα

(
− α

1− α
(t− τ)α

)
dτ,

=
B(α)

1− α

∫ t

0

i− gHy′(τ)Eα

(
− α

1− α
(t− τ)α

)∣∣∣∣
Eα≥0

dτ

+
B(α)

1− α

∫ t

0

ii− gHy′(τ)Eα

(
− α

1− α
(t− τ)α

)∣∣∣∣
Eα<0

dτ,

ABC
0 Dii,α

t y(t) =
B(α)

1− α

∫ t

0

if − gHy′(τ)Eα

(
− α

1− α
(t− τ)α

)
dτ,

=
B(α)

1− α

∫ t

0

ii− gHy′(τ)Eα

(
− α

1− α
(t− τ)α

)∣∣∣∣
Eα≥0

dτ

+
B(α)

1− α

∫ t

0

i− gHy′(τ)Eα

(
− α

1− α
(t− τ)α

)∣∣∣∣
Eα<0

dτ.

Lemma 2.1. [7] For 0 < α < 1, we have(
AB
a IαABCa Dαf

)
(x) =

(
f(x)	gH f(a)

)
Eα≥0

⊕
(
f(x)	gH f(a)

)
Eα<0

,

and (
AB
b IαABCb Dαf

)
(x) =

(
f(x)	gH f(b)

)
Eα≥0

⊕
(
f(x)	gH f(b)

)
Eα<0

.

Proposition 2.1. Let f : [a, b]→ E and α ∈ (0, 1), then

• If f is i-differentiable at t0 then ABCDαf is [(i)− gH]-differentiable at t0.
• If f is ii-differentiable at t0 then ABCDαf is [(ii)− gH]-differentiable at t0.

Proof. • Suppose that f is i-differentiable at s then we have

[f ′gH(s)]r = [f ′(s), f ′(s)].

Moreover, we use the proprieties of r-cut, we find

Eα

(
− α

1− α
(t− s)α

)[
f ′gH(s)

]r
=

(
Eα

(
− α

1− α
(t− s)α

)
|Eα≥0

+ Eα

(
− α

1− α
(t− s)α

)
|Eα≤0

)[
f ′gH(s)

]r
=

[
f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≥0, f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≥0

]
+

[
f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≤0, f

′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≤0

]
=

[
f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≥0 + f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≤0,

f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≥0 + f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≤0

]
.

Then we apply the integral, and since B(α)
1−α is a positive number, then we obtain
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B(α)

1− α

∫ t

0

Eα

(
− α

1− α
(t− s)α

)[
f ′gH(s)

]r
ds =

[
B(α)

1− α

∫ t

0

f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≥0

+
B(α)

1− α

∫ t

0

f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≤0ds,

B(α)

1− α

∫ t

0

f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≥0

+
B(α)

1− α

∫ t

0

f ′(s)Eα

(
− α

1− α
(t− s)α

)
|Eα≤0ds

]
.

thus we find

[
B(α)

1− α

∫ t

0

f ′gH(s)Eα(− α

1− α
(t− s)α)ds

]r
=

[
B(α)

1− α

∫ t

0

f ′(s)Eα

(
−α

1− α
(t− s)α

)
ds,

B(α)

1− α

∫ t

0

f ′(s)Eα

(
−α

1− α
(t− s)α

)
ds

]
.

That means ABCDαf is i-differentiable.
• Suppose that f is ii-differentiable, then [f ′gH(s)]r = [f ′(s), f ′(s)] and by same steps of the

first case we get ABCDαf is ii-differentiable.
�

Definition 2.6. [10] The second generalized Hukuhara derivative of a fuzzy-valued function
f : (a, b) −→ E1 at t0 is defined as

f ′′gH (t0) = lim
h→0

f ′ (t0 + h)	gH f ′ (t0)

h
,

if f ′′gH (t0) ∈ E1, we say that f ′gH is generalized Hukuhara differentiable at t0. Also we say that

f ′gH(t) is (i)-gH-differentiable at t0 if[
f ′′i.gH (t0)

]r
=

{[
f ′′ (t0; r) , f̄ ′′ (t0; r)

]
, if f be ( i )− gH − differentiable on (a, b),[

f̄ ′′ (t0; r) , f ′′ (t0; r)
]
, if f be ( ii )− gH − differentiable on (a, b),

for all r ∈ [0, 1], and that f ′gh(t) is (ii)- gH-differentiable at t0 if[
f ′′ii.gH (t0)

]r
=

{[
f̄ ′′ (t0; r) , f ′′ (t0; r)

]
, if f be ( i )− gH − differentiable on (a, b),[

f ′′ (t0; r) , f̄ ′′ (t0; r)
]
, if f be ( ii )− gH − differentiable on (a, b),

for all r ∈ [0, 1].

3. Higher-order fuzzy fractional Atangana-Baleanu derivatives

In this part, we define the fuzzy fractional derivative Atangana-Baleanu of the higher order
α ∈ (n, n+ 1], and we introduce the proprieties of this derivative for the order α ∈ (1, 2].

Definition 3.1. Let n < α ≤ n + 1 and f be a fuzzy function such that f (n) ∈ H1(a, b). Set
β = α − n. Then β ∈ (0, 1] and we define the fractional derivative of Atangana-Baleanu in the
sense of Caputo by

(
ABC
a Dαf

)
(t) =

(
ABC
a Dβf (n)

)
(t)

=
B(α− n)

1 + n− α

∫ b

a

f (n+1)(s)Eβ

(
−(α− n)

(t− s)α−n

1 + n− α

)
ds.

And in the sense of Riemann-Liouville by



584 TWMS J. APP. AND ENG. MATH. V.14, N.2, 2024

(
ABR
a Dαf

)
(t) =

(
ABR
a Dβf (n)

)
(t)

=
B(α− n)

1 + n− α
d

dt

∫ t

a

f (n)(s)Eβ

(
−(α− n)

(t− s)α−n

1 + n− α

)
ds.

Definition 3.2. Let n < α ≤ n+ 1 and f be a fuzzy function such that [f(t)]r = [f(t, r), f(t, r)].
Set β = α− n. Then β ∈ (0, 1] and we define

(
AB
a Iαf

)
(t) =

(
aI
nAB
a Iβf

)
(t)

=

∫ t

a

∫ t

a

....

∫ t

a

1 + n− α
B(α− 1)

f(τ)ds

+
α− 1

B(α− n)Γ(α− n)

∫ t

a

∫ t

a

....

∫ t

a

∫ τ

a

(τ − s)α−n−1f(s)dsds.

Remark 3.1. In this work, we will be concerned with the situation where α ∈ (1, 2] i.e. we have
for the previous definitions

(
ABC
a Dαf

)
(t) =

B(α− 1)

2− α

∫ t

a

f ′′(s)Eα−1

(
−α− 1

2− α
(t− s)α−1

)
ds.

(
AB
a Iαf

)
(t) =

∫ t

a

2− α
B(α− 1)

f(τ)ds+
α− 1

B(α− 1)Γ(α− 1)

∫ t

a

(∫ τ

a

(τ − s)α−2f(s)ds

)
dt.

Definition 3.3. Let f : (a, b) → E1. We say that f is (m, l)-differentiable at t0 ∈ (a, b) if f is
(m)-differentiable on a neighborhood of t0 as a fuzzy function, and f (n) is (l)-differentiable at t0.
The n-th derivatives of f at t are denoted by f (n)(t) = Dn

m,lf(t), m, l ∈ {i, ii}.

Lemma 3.1. Let f : [a, b]→ E1 and α ∈ (1, 2], then

• If f is (i, i)-differentiable at t0 or f is (ii, ii)-differentiable at t0 then ABCDαf
is i-differentiable at t0.

• If f is (i, ii)-differentiable at t0 or f is (ii, i)-differentiable at t0 then ABCDαf
is ii-differentiable at t0.

Proof. Let us prove only the first case and since the second case is the same as the first, let us
suppose that f is (i, i)-differentiable so by using the definition 2.6, we have

[
f ′′(s)

]r
=

[
f ′′(s), f

′′
(s)

]
,

or

ABCDαf(t) =
B(α− 1)

2− α

∫ t

a

f ′′(s)Eα−1

(
−α− 1

2− α
(t− s)α−1

)
ds,
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Eα−1

(
− α− 1

2− α
(t− s)α−1

)[
f ′′(s)

]r
=

(
Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≥0

+ Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≤0

)[
f ′′(s), f

′′
(s)

]
=

[
f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≥0

,

f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α

)∣∣∣∣
Eα−1≥0

]
+

[
f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α

)∣∣∣∣
Eα−1≤0

,

f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≤0

]
=

[
f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≥0

+ f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≤0

,

f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≥0

+ f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≤0

]
.

Then we apply the fuzzy integral and its proprieties with r-cut, we also multiply by the positive

number B(α−1)
2−α , we get

B(α− 1)

2− α

∫ t

0

Eα−1

(
− α− 1

2− α
(t− s)α−1

)[
f ′′gH(s)

]r
ds

=

[
B(α− 1)

2− α

∫ t

0

f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≥0

ds

+
B(α− 1)

2− α

∫ t

0

f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−−1

)∣∣∣∣
Eα−1≤0

ds,

B(α− 1)

2− α

∫ t

0

f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≥0

ds

+
B(α− 1)

2− α
f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)∣∣∣∣
Eα−1≤0

ds

]
.

Thus we obtain
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[
ABCDαf(t)

]r
=

[
B(α− 1)

2− α

∫ t

0

f ′′gH(s)Eα−1(−α− 1

2− α
(t− s)α−1)ds

]r
=

[
B(α− 1)

2− α

∫ t

0

f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)
ds,

B(α− 1)

2− α

∫ t

0

f ′′(s)Eα−1

(
− α− 1

2− α
(t− s)α−1

)
ds

]
=

[
ABCDαf(t),ABCDαf(t)

]
.

Consequently ABCDαf is i-differentiable. The same for other case. �

Proposition 3.1. [1] For u(t) defined on [a, b] and α ∈ (n, n+ 1], for some n ∈ N∗, we have:

•
(
ABR
a DαAB

a Iαu
)

(t) = u(t).

•
(
AB
a IαABRa Dαu

)
(t) = u(t)−

∑n−1
k=0

u(k)(a)
k! (t− a)k.

•
(
AB
a IαABCa Dαu

)
(t) = u(t)−

∑n
k=0

u(k)(a)
k! (t− a)k.

We denote by ACF [a, b] the space of all absolutely continuous fuzzy functions.

Theorem 3.1. Let α ∈ (1, 2] and f, f ′ ∈ ACF [a, b].

(1) If f is (i, i)-differentiable, then(
ABIαABCDαf

)
(x) =

(
f(x)	f(a)	f ′(a)(x−a)

)∣∣∣∣
Eα−1≥0

	(−1)

(
f(x)	f(a)	f ′(a)(x−a)

)∣∣∣∣
Eα−1<0

.

(2) If f is (i, ii)-differentiable, then(
ABIαABCDαf

)
(x) =

(
− f(a) + (−f ′(a)) (x− a)	 (−f(x))

)∣∣∣∣
Eα−1≥0

	 (−1)

(
− f(a) + (−f ′(a)) (x− a)	 (−f(x))

)∣∣∣∣
Eα−1<0

.

(3) If f is (ii, i)-differentiable, then(
ABIαABCDαf

)
(x) =

(
− f(a)	 f ′(a)(x− a)	 (−f(x))

)∣∣∣∣
Eα−1≥0

	 (−1)

(
− f(a)	 f ′(a)(x− a)	 (−f(x))

)∣∣∣∣
Eα−1<0

.

(4) If f is (ii, ii)-differentiable, then(
ABIαABCDαf

)
(x) =

(
f(x)	 f(a) + (−f ′(a)) (x− a)

)∣∣∣∣
Eα−1≥0

	 (−1)

(
f(x)	 f(a) + (−f ′(a)) (x− a)

)∣∣∣∣
Eα−1<0

.

Proof. Let be f a fuzzy function, we have [f(t)]r =
[
f(t, r), f(t, r)

]
for r ∈ [0, 1]. Then, we have

for the real valued functions f and f ,(
IαABCDαf

)
(x) =

(
f(x)− f(a)− f ′(a)(x− a)

)∣∣∣∣
Eα−1≥0

+

(
f(x)− f(a)− f ′(a)(x− a)

)∣∣∣∣
Eα−1<0

,

and(
IαABCDαf

)
(x) =

(
f(x)− f(a)− f ′(a)(x− a)

)∣∣∣∣
Eα−1≥0

+

(
f(x)− f(a)− f ′(a)(x− a)

)∣∣∣∣
Eα−1<0

.
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Suppose that f is (i, i)-differentiable then by definition 3.2 and lemma 3.1 we have[
ABIαABCDαf(x)

]r
=

[
I1ABIβABCDβf ′(x)

]r
=

[
I1ABIβ

(
ABCDβf ′(x)

)
Eα−1≥0

+ I1ABIβ
(
ABCDβf

′
(x)

)
Eα−1<0

,

I1ABIβ
(
ABCDβf

′
(x)

)
Eα−1≥0

+ I1ABIβ
(
ABCDβf ′(x)

)
Eα−1<0

]
=

[
I1

(
f ′(x)

)
Eα−1≥0

+ I1

(
f
′
(x)

)
Eα−1<0

,

I1

(
f
′
(x)

)
Eα−1≥0

+ I1

(
f ′(x)

)
Eα−1<0

]
=

[(
f(x)− f(a)− f ′(a)(x− a)

)∣∣∣∣
Eα−1≥0

+

(
f(x)− f(a)− f ′(a)(x− a)

)∣∣∣∣
Eα−1<0

,(
f(x)− f(a)− f ′(a)(x− a)

)∣∣∣∣
Eα−1≥0

+

(
f(x)− f(a)− f ′(a)(x− a)

)∣∣∣∣
Eα−1<0

]
=

[(
f(x)	 f(a)	 f ′(a)(x− a)

)∣∣∣∣
Eα−1≥0

⊕
(
f(x)	 f(a)	 f ′(a)(x− a)

)∣∣∣∣
Eα−1<0

]
.

Thus we have

IαABCDαf(x) =

(
f(x)	 f(a)	 f ′(a)(x− a)

)∣∣∣∣
Eα−1≥0

⊕
(
f(x)	 f(a)	 f ′(a)(x− a)

)∣∣∣∣
Eα−1<0

.

The same for other cases. �

4. Existence and uniqueness results

In this section, we are concerned with studying the existence and uniqueness of the solutions for
the fuzzy fractional boundary value problem (7) under the AB derivative in the sense of Caputo.

For this purpose, we denote by C[a,b] = C([a, b],E1) the space of continuous fuzzy functions
equipped with the metric d(x, y) = sup

t∈[a,b]

D(x(t), y(t)).

Remark 4.1. The metric space
(
C[a,b], d

)
is complet .

Remark 4.2. By Theorem 3.1 and Lemma 3.1 we deduce that the cases (i,i) and (ii,ii) are similarly
shaped. The cases (i,ii) and (ii,i) are also similar. Then we reduce the study of problem (2) in two
principal cases:
If f is (i,i)-differentiable or (ii, ii)-differentiable, then case 1 applies.
If f is (i, ii)-differentiable or (ii, i)-differentiable, then case 2 applies.
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Theorem 4.1. The fractional boundary value problem (2) with continuous function g(t, y(t)) has
a solution in the following form(

y(t)	gH ϕ(t)

)
Eα−1≥0

⊕
(
y(t)	gH ϕ(t)

)
Eα−1<0

=

∫ b

a

G(t, s)g(s, y(s))ds, (3)

where

ϕ(t) =
b− t
b− a

A+
t− a
b− a

B,

G(t, s) =


(α−2)(t−a)

(b−a)M(α−1) + (α−1)(t−s)α−1

M(α−1)Γ(α) + 2−α
M(α−1) −

(α−1)(t−a)(b−s)α−1

(b−a)M(α−1)Γ(α) , a ≤ s < t ≤ b,

(α−2)(t−a)
(b−a)M(α−1) −

(α−1)(t−a)(b−s)α−1

(b−a)M(α−1)Γ(α) , a ≤ t < s ≤ b.
(4)

Proof. By applying the fractional integral on the both sides of equation (2), we get

ABIαABCDαy(t) = ABIαg(t, y(t))

We are going to interested by case 1 where

[y(a)]r = [y(a), y(a)] = [A,A],

and

[y(b)]r = [y(b), y(b)] = [B,B].

Then we deduce the result for case 2 .
If y is (i,i)-differentiable or (ii,ii)-differentiable (case1), we have by using Theorem 3.1 and Lemma
3.1(

y(t)− y(a)− y′(a)(t− a)

)∣∣∣∣
Eα−1≥0

+

(
y(t)− y(a)− y′(a)(t− a)

)∣∣∣∣
Eα−1<0

= ABIαg(t, y(t)),

(
y(t)− y(a)− y′(a)(t− a)

)∣∣∣∣
Eα−1≥0

+

(
y(t)− y(a)− y′(a)(t− a)

)∣∣∣∣
Eα−1<0

= ABIαg(t, y(t)),

Then we have (
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
y(a)|Eα−1≥0 + y(a)|Eα−1<0

)
+

(
y′(a)Eα−1≥0(t− a) + y′(a)Eα−1<0(t− a)

)
+ ABIαg(t, y(t)),(

y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
y(a)|Eα−1≥0 + y(a)|Eα−1<0

)
+

(
y′(a)Eα−1≥0(t− a) + y′(a)Eα−1<0(t− a)

)
+ ABIαg(t, y(t)),

So for case 1, we have(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
A|Eα−1≥0 +A|Eα−1<0

)
+

(
y′(a)(t− a)|Eα−1≥0 + y′(a)(t− a)|Eα−1<0

)
+

∫ t

a

2− α
B(α− 1)

g(s, y(s))ds

+
α− 1

B(α− 1)Γ(α− 1)

∫ t

a

(∫ τ

a

(τ − s)α−2g(s, y(s))ds

)
dt,
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(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
A|Eα−1≥0 +A|Eα−1<0

)
+

(
y′(a)(t− a)|Eα−1≥0 + y′(a)(t− a)|Eα−1<0

)
+

∫ t

a

2− α
B(α− 1)

g(s, y(s))ds

+
α− 1

B(α− 1)Γ(α− 1)

∫ t

a

(∫ τ

a

(τ − s)α−2g(s, y(s))ds

)
dt.

By using the boundary condition we calculate the value of y′(a), we have

y(b) = B = A+y′(a)(b−a)+
2− α

M(α− 1)

∫ b

a

g(s, y(s))ds+
α− 1

M(α− 1)Γ(α)

∫ b

a

(b−s)α−1g(s, y(s))ds,

y(b) = B = A+y′(a)(b−a)+
2− α

M(α− 1)

∫ b

a

g(s, y(s))ds+
α− 1

M(α− 1)Γ(α− 1)

∫ b

a

(b−s)α−1g(s, y(s))ds,

Then

y′(a) =
1

(b− a)

(
B −A− 2− α

M(α− 1)

∫ b

a

g(s, y(s))ds− α− 1

M(α− 1)Γ(α)

∫ b

a

(b− s)α−1g(s, y(s))ds

)
,

y′(a) =
1

(b− a)

(
B −A− 2− α

M(α− 1)

∫ b

a

g(s, y(s))ds− α− 1

M(α− 1)Γ(α)

∫ b

a

(b− s)α−1g(s, y(s))ds

)
.

Thus we obtain

y(t) = A+
t− a
b− a

B − t− a
b− a

A− t− a
b− a

2− α
M(α− 1)

∫ b

a

g(s, y(s))ds

− t− a
b− a

α− 1

M(α− 1)Γ(α)

∫ b

a

(b− s)α−1g(s, y(s))ds

+
2− α

M(α− 1)

∫ t

a

g(s, y(s))ds+
α− 1

M(α− 1)Γ(α)

∫ t

a

(t− s)α−1g(s, y(s))ds,

y(t) = A+
t− a
b− a

B − t− a
b− a

A− t− a
b− a

2− α
M(α− 1)

∫ b

a

g(s, y(s))ds

− t− a
b− a

α− 1

M(α− 1)Γ(α)

∫ b

a

(b− s)α−1g(s, y(s))ds

+
2− α

M(α− 1)

∫ t

a

g(s, y(s))ds+
α− 1

M(α− 1)Γ(α)

∫ t

a

(t− s)α−1g(s, y(s))ds.

Finally we get

y(t) =
b− t
b− a

A+
t− a
b− a

B − (t− a)(2− α)

(b− a)M(α− 1)

∫ b

a

g(s, y(s))ds+
2− α

M(α− 1)

∫ t

a

g(s, y(s))ds

− (α− 1)(t− a)

(b− a)M(α− 1)Γ(α)

∫ b

a

(b− s)α−1g(s, y(s))ds+
α− 1

M(α− 1)Γ(α)

∫ t

a

(t− s)α−1g(s, y(s))ds,

y(t) =
b− t
b− a

A+
t− a
b− a

B − (t− a)(2− α)

(b− a)M(α− 1)

∫ b

a

g(s, y(s))ds+
2− α

M(α− 1)

∫ t

a

g(s, y(s))ds

− (α− 1)(t− a)

(b− a)M(α− 1)Γ(α)

∫ b

a

(b− s)α−1g(s, y(s))ds+
α− 1

M(α− 1)Γ(α)

∫ t

a

(t− s)α−1g(s, y(s))ds.
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From the previous expression, we obtain

y(t) =
b− t
b− a

A+
t− a
b− a

B − (t− a)(2− α)

(b− a)M(α− 1)

∫ t

a

g(s, y(s))ds

− (t− a)(2− α)

(b− a)M(α− 1)

∫ b

t

g(s, y(s))ds+
2− α

M(α− 1)

∫ t

a

g(s, y(s))ds

− (α− 1)(t− a)

(b− a)M(α− 1)Γ(α)

(∫ t

a

(b− s)α−1g(s, y(s))ds+

∫ b

t

(b− s)α−1g(s, y(s))ds

)
+

α− 1

M(α− 1)Γ(α)

∫ t

a

(t− s)α−1g(s, y(s))ds,

y(t) =
b− t
b− a

A+
t− a
b− a

B − (t− a)(2− α)

(b− a)M(α− 1)

∫ t

a

g(s, y(s))ds

− (t− a)(2− α)

(b− a)M(α− 1)

∫ b

t

g(s, y(s))ds+
2− α

M(α− 1)

∫ t

a

g(s, y(s))ds

− (α− 1)(t− a)

(b− a)M(α− 1)Γ(α)

(∫ t

a

(b− s)α−1g(s, y(s))ds+

∫ b

t

(b− s)α−1g(s, y(s))ds

)
+

α− 1

M(α− 1)Γ(α)

∫ t

a

(t− s)α−1g(s, y(s))ds.

If we use the Green function, we have the solution for this case as follows

(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=
b− t
b− a

A|Eα−1≥0 +
b− t
b− a

A|Eα−1≥0 +
t− a
b− a

B|Eα−1≥0

+
t− a
b− a

B|Eα−1≥0 +

∫ b

a

G(t, s)g(s, y(s))ds,

(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=
b− t
b− a

A|Eα−1≥0 +
b− t
b− a

A|Eα−1≥0 +
t− a
b− a

B|Eα−1≥0

+
t− a
b− a

B|Eα−1≥0 +

∫ b

a

G(t, s)g(s, y(s))ds.

Using the same steps as in the first case, we obtain the solution for another case as follows:(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=
b− t
b− a

A|Eα−1≥0 +
b− t
b− a

A|Eα−1≥0 +
t− a
b− a

B|Eα−1≥0

+
t− a
b− a

B|Eα−1≥0 +

∫ b

a

G(t, s)g(s, y(s))ds,

(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=
b− t
b− a

A|Eα−1≥0 +
b− t
b− a

A|Eα−1≥0 +
t− a
b− a

B|Eα−1≥0

+
t− a
b− a

B|Eα−1≥0 +

∫ b

a

G(t, s)g(s, y(s))ds.

In general, we can write(
y(t)	gH ϕ(t)

)
Eα−1≥0

⊕
(
y(t)	gH ϕ(t)

)
Eα−1<0

=

∫ b

a

G(t, s)g(s, y(s))ds.
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Now, let y satisfied the equation (3), we should prove that y verified also the problem (2). In
case 1, we have

(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
b−t
b−aA−

t−a
b−aB

)
Eα−1≥0

+

(
b−t
b−aA−

t−a
b−aB

)
Eα−1<0

+

∫ b

a

G(t, s)g(s, y(s))ds,

(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
b−t
b−aA−

t−a
b−aB

)
Eα−1≥0

+

(
b−t
b−aA−

t−a
b−aB

)
Eα−1<0

+

∫ b

a

G(t, s)g(s, y(s))ds.



(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
b−t
b−aA−

t−a
b−aB

)
Eα−1≥0

+

(
b−t
b−aA−

t−a
b−aB

)
Eα−1<0

+

∫ t

a

G(t, s)g(s, y(s))ds+

∫ b

t

G(t, s)g(s, y(s))ds,

(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
b−t
b−aA−

t−a
b−aB

)
Eα−1≥0

+

(
b−t
b−aA−

t−a
b−aB

)
Eα−1<0

+

∫ t

a

G(t, s)g(s, y(s))ds+

∫ b

t

G(t, s)g(s, y(s))ds.

Using the expression of G, we get
In case 1(

y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
b− t
b− a

A− t− a
b− a

B

)
Eα−1≥0

+

(
b− t
b− a

A− t− a
b− a

B

)
Eα−1<0

− (t− a)(2− α)

(b− a)M(α− 1)

∫ b

a

g(s, y(s))ds+
2− α

M(α− 1)

∫ t

a

g(s, y(s))ds

− (α− 1)(t− a)

(b− a)M(α− 1)Γ(α)

∫ b

a

(b− s)α−1g(s, y(s))ds

+
α− 1

M(α− 1)Γ(α)

∫ t

a

(t− s)α−1g(s, y(s))ds.

(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
b− t
b− a

A− t− a
b− a

B

)
Eα−1≥0

+

(
b− t
b− a

A− t− a
b− a

B

)
Eα−1<0

− (t− a)(2− α)

(b− a)M(α− 1)

∫ b

a

g(s, y(s))ds+
2− α

M(α− 1)

∫ t

a

g(s, y(s))ds

− (α− 1)(t− a)

(b− a)M(α− 1)Γ(α)

∫ b

a

(b− s)α−1g(s, y(s))ds

+
α− 1

M(α− 1)Γ(α)

∫ t

a

(t− s)α−1g(s, y(s))ds.

Then we have(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
b− t
b− a

A− t− a
b− a

B

)
Eα−1≥0

+

(
b− t
b− a

A− t− a
b− a

B

)
Eα−1<0

+ ABIαg(t, y(t))− t− a
b− a

ABIαg(b, y(b)),

(5)
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y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
=

(
b− t
b− a

A− t− a
b− a

B

)
Eα−1≥0

+

(
b− t
b− a

A− t− a
b− a

B

)
Eα−1<0

+ ABIαg(t, y(t))− t− a
b− a

ABIαg(b, y(b)).

(6)

Then applying the Atangana-Baleanu derivative on both sides of (5) and (6), we find

ABCDα

(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
= ABCDα

[(
b− t
b− a

A− t− a
b− a

B

)
+ ABIαg(t, y(t))− t− a

b− a
ABIαg(b, y(b))

]
,

ABCDα

(
y(t)|Eα−1≥0 + y(t)|Eα−1<0

)
= ABCDα

[(
b− t
b− a

A− t− a
b− a

B

)
+ ABIαg(t, y(t))− t− a

b− a
ABIαg(b, y(b))

]
.

Since we have in general, ABCDαxβ = 0 for α > β then we obtain

ABCDαy(t) = ABCDα

[
ABIαg(t, y(t))

]
,

ABCDαy(t) = ABCDα

[
ABIαg(t, y(t))

]
.

Using the proprieties of composition of integral and derivative of Atangana-Baleanu, we get

ABCDαy(t) = g(t, y(t)),

ABCDαy(t) = g(t, y(t)),

following the same steps as the first case, we get

ABCDαy(t) = g(t, y(t)),

ABCDαy(t) = g(t, y(t)),

thus we have
ABCDαy(t) = g(t, y(t)).

For boundary conditions we have for t=a, then for t=b

y(a) = A, y(a) = A,

y(b) = B, y(b) = B.

�

Particular case In this paragraph we will consider the problem (2) on the interval [0, 1] inside
of [a, b] {

ABCDαy(t) = g(t, y(t)) 1 < α ≤ 2,
y(0) = A y(1) = B A,B ∈ E1.

(7)

then the solution is

y(t)	gH
(

(1− t)A+ tB

)
=

∫ 1

0

G(t, s)g(s, y(s))ds.

Lemma 4.1. The function G(t, s) defined by 4 satisfies the following condition∫ b

a

∣∣∣∣G(t, s)

∣∣∣∣ds ≤ 3(2− α)(b− a)

M(α− 1)
+

3(α− 1)bα

M(α− 1)Γ(α+ 1)
.
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Proof. We will use the expression of the Green function and the function Beta given by

B(p, q) =

∫ 1

0

xp−1(x− 1)q−1dx, Re(p) > 0, Re(q) > 0,

then we have∫ b

a

∣∣∣∣G(t, s)

∣∣∣∣ds =

∫ t

a

∣∣∣∣G(t, s)

∣∣∣∣ds+

∫ b

t

∣∣∣∣G(t, s)

∣∣∣∣ds,
≤
∫ t

a

(2− α)(t− a)

(b− a)M(α− 1)
ds+

∫ t

a

(α− 1)(t− s)α−1

M(α− 1)Γ(α)
ds

+

∫ t

a

2− α
M(α− 1)

ds+

∫ t

a

(α− 1)(t− a)(b− s)α−1

(b− a)M(α− 1)Γ(α)
ds

+

∫ b

t

(α− 2)(t− a)

(b− a)M(α− 1)
+

∫ b

t

(α− 1)(t− a)(b− s)α−1

(b− a)M(α− 1)Γ(α)
ds,

≤ 3(2− α)(b− a)

M(α− 1)
+ 3

(α− 1)

M(α− 1)Γ(α)

∫ b

a

(b− s)α−1ds,

≤ 3(2− α)(b− a)

M(α− 1)
+

3(α− 1)

M(α− 1)Γ(α)

∫ b

a

(b− s)α−1ds,

≤ 3(2− α)(b− a)

M(α− 1)
+

3bα(α− 1)

M(α− 1)Γ(α+ 1)
.

�

Theorem 4.2. Let g given in (2) be a fuzzy continuous function and satisfying the Lipschitz
condition with constant K > 0 as follows

D

(
g(t, y1(t)); g(t, y2(t))

)
≤ KD

(
y1(t); y2(t)

)
∀y1, y2 ∈ C[a,b],

then the problem (2) has a unique fuzzy solution provided

K

(
3(2− α)(b− a)

M(α− 1)
+

3(α− 1)bα

M(α− 1)Γ(α+ 1)

)
< 1.

Proof. Consider the following operator T : C[a,b] → C[a,b] defined by expressions:
In case 1

T (y(t)) =
b− t
b− a

A⊕ t− a
b− a

B ⊕
∫ b

a

G(t, s)g(s, y(s))ds.

In case 2

T (y(t)) =
b− t
b− a

A⊕ t− a
b− a

B 	 (−1)

∫ b

a

G(t, s)g(s, y(s))ds.

then we have In case 1

D

(
T (y1(t)), T (y2(t))

)
=D

(
b− t
b− a

A⊕ t− a
b− a

B ⊕
∫ b

a

G(t, s)g(s, y1(s))ds,

b− t
b− a

A⊕ t− a
b− a

B ⊕
∫ b

a

G(t, s)g(s, y2(s))ds

)
.

Using the proprieties of metric given in definition 2.2, we have

D

(
T (y1(t)), T (y2(t))

)
≤ D

(∫ b

a

G(t, s)g(s, y1(s))ds,

∫ b

a

G(t, s)g(s, y2(s))ds

)
,

≤
∫ b

a

∣∣∣∣G(t, s)

∣∣∣∣D(g(s, y1(s)), g(s, y2(s))

)
ds,

≤ K
∫ b

a

∣∣∣∣G(t, s)

∣∣∣∣D(y1(s), y2(s)

)
ds.
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Since f is a fuzzy function continuous and Lipschitz, then we get

d

(
T (y1), T (y2)

)
= sup
t∈[a,b]

D

(
T (y1(t)), T (y2(t))

)
≤ K

(
3(2− α)(b− a)

M(α− 1)
+

3(α− 1)bα

M(α− 1)Γ(α+ 1)

)
d

(
y1, y2

)
.

Since K

(
3(2−α)(b−a)
M(α−1) + 3(α−1)bα

M(α−1)Γ(α+1)

)
< 1, then the operator T is a contraction mapping and by

Banach fixed point theorem, then operator T has a unique fixed point which is the solution of
problem (2). By the same way, we prove this result for case 2 which complete the proof. �

5. An illustrative example

In this section, we illustrate the existence and uniqueness of solutions for the problem (2) on

the interval [0, 1] with g(t, y(t)) =
t

6
y(t) such that g is Lipschitz with constant K = 1

6 and with

the boundary conditions A=(0,0,0), B=(-1,0,1). Indeed, We have{
ABCD

4
3 y(t) = t

6y(t),

y(0) = (0, 0, 0), y(1) = (−1, 0, 1).
. (8)

Then the solution is given by

y(t)	gH
(

(1− t)A⊕ tB
)

=

∫ 1

0

G(t, s)sy(s)ds. (9)

If y is (1,1)-differentiable or y is (2,2)-differentiable then we have the solution as follows

y(t) = t(r − 1) +
1

6

∫ 1

0

G(t, s).sy(s)ds,

y(t) = t(1− r) +
1

6

∫ 1

0

G(t, s).sy(s)ds.

If y is (1,2)-differentiable or y is (2,1)-differentiable we have the solution as follows

y(t) = t(r − 1) +
1

6

∫ 1

0

G(t, s)sy(s)ds,

y(t) = t(r − 1) +
1

6

∫ 1

0

G(t, s)sy(s)ds.

Moreover we have
(2− 4

3 )

2M( 4
3 − 1)

+
( 4

3 − 1)

2M( 4
3 − 1)Γ( 7

3 )
= 0.6573 < 1,

then (8) has a unique solution defined on [0, 1].

6. Conclusion

In the current paper , we proved the existence and uniqueness of solutions of fuzzy fractional
boundary value problems for some nonlinear differential equations involving fuzzy Atangana-
Baleanu fractional derivative of order α ∈ (1, 2). As a first step, we established some new results
and properties of Atangana-Baleanu fractional derivatives in the fuzzy case by using generalized
Hukuhara difference and we build a general structure of solutions associated with our proposed
model. Once the fixed point operator equation is available, the existence result is established by
using Banach fixed point theorem. Finally, the investigation of the result has been illustrated by
providing a suitable example.
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