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A NOVEL SIMPLE 5D HYPERCHAOTIC SYSTEM DERIVED FROM
THE 3D SPROTT C SYSTEM

SAAD FAWZI AL-AZZAWI'*, AHMED T. SHEET!, §

ABSTRACT. A novel simple 5D hyperchaotic system with two non-hyperbolic equilibria
points is presented. The proposed system is designed by coupling between a 3D Sprott
C system and a 2D linear system via a coupling strategy. Compared to the traditional
systems, a new system is considered simply because it consists of five first-order ordinary
differential equations with nine terms: seven linear terms and two quadratic nonlineari-
ties. Due to the nature of equilibria points, this system belongs to the group of self-excited
attractors. The attractors have been described as hyperchaotic. Finally, the projective
synchronization problem of the new system has been realized through both Lyapunov
stability theory and numerical simulation. The numerical simulation confirmed the va-
lidity of our analytical results. This work throws light on the great significance of the
new system via designing controllers with the minimum terms possible are helpful in
some practical applications.

Keywords: Sprott C system, equilibrium points, Lyapunov stability theory, Self-excited
attractors, Multistability.

AMS Subject Classification: 34Cxx, 34C28

1. INTRODUCTION

In (1994), Sprott introduce a 3D system with a hidden attractor which is termed as
Sprott A system [1], but the phenomenon of hidden attractor was not known until 2010
when Kuznetsov et al., introduced the first definition of hidden attractors. Thereafter,
Leonov et al. worked on developing Cua’s circuit[2],[3],[4]. The hidden attractors are di-
vided according to the equilibrium points; (i) without equilibrium points [5],[6],[7], [8],[9],
(ii) stable equilibrium points [10],[11], (iii) curve of equilibrium [12], [13], [14], [15], [16]
and circles of equilibrium points[17]. An equilibrium point plays an important part in clas-
sifying the dynamical systems into two parts: hidden attractors and self-excited attractors
[14].
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Historically, American meteorologist Lorenz finds the first chaotic attractor in the world
[18]. Then 3D Rossler, 4D-Rossler, Chen and Liu, 4D Sprott S systems in 1976, 1979,
1999, 2004 and 2021, respectively are reported[19]. In 2018, Wang et al. presented a novel
system by introducing a flux-controlled memristor-based new 5D hyperchaotic system, this
system consists of seventeen terms, eight of them are non-linear [20], with two Lyapunov
exponents (LEs) as (+,+, —, —, —) i.e., vanished of zero Lyapunov exponents which are
necessary for calculating these exponents [21].

Recently, Nguyen et al. created a new 5D hyperchaotic system with eleven terms,
two nonlinearity, and has two positive Lyapunov exponents(+veLEs), thus it fulfills the
feature (n—3)[22]. But, in practical applications such as encryption [23], [24] and fractional
ordinary differential equations [25], it is preferable to deal with systems that have (n—2)+
ve LEs [26]. Table (1) summarized many previous works for a 5D hyperchaotic system.
Compared to these available systems in Table (1), it is clear that the new system has the
fewest numbers of terms ( nine terms only) and we believed it is one of the simple systems
according to the third criterion of the scientist Sprott [27],[28],[29],[30].

In 1990, chaos control and chaos synchronization for the aforementioned simple systems
have been intensively studied due to their usefulness in great potential in many aspects.
Especially, chaos synchronization has received a lot of attention, and numerous phenom-
ena synchronization discover such as complete synchronization (CS)[30], [31], anti- syn-
chronization (AS)[32], [33], hybrid synchronization(HS)[34],[35], and projective synchro-
nization (PS)[36]. Among these phenomena, projective synchronization has considerable
generalization for complete synchronization, and anti- synchronization, whereas hybrid
synchronization is considered a special form of hybrid projective synchronization(HPS).
This paper deals with PS and a suitable control is designed to achieve synchronization
between identical proposed systems.

TABLE 1. Results for distinct 5-D hyperchaotic systems.

No. Nature of equilibria Attractors behavior Total of terms No. +wveL Es References
1 Line of equilibrium Hidden 11 n—3 2021 [22]
2 One stable saddle point Hidden 13 n—3 2018 [11]
3 Curve of equilibrium points Hidden 17 n—3 2019 [13]
4  Unstable saddle-node point Self-excited 12 n—2 2009 [28]
5 Unstable/Line of equilibrium Self-excited 17 n—3 2018 [20]
6  Unstable equilibria point Self-excited 12 n—2 2013 [8]
7 No equilibria point Hidden 15 n—2 2015 [6]
8 No equilibria point Hidden 10 n—3 2016 [29]
9 Stable equilibria point Hidden 12 n—2 2019 [3]
10 No equilibria point Hidden 13 n—3 2019 [5]
11 Unstable equilibria point Self-excited 9 n—2 This work

The main contribution for this paper is summarized as follows:

e A new 5D hyperchaotic system with three positive Lyapunov exponents is constructed
from the well-known 3D Sprott C system.

e The proposed system is considered simple due to consists of (9) terms: two non-linear
and one parameter.
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e dynamical analysis for the 5D-hyperchaotic system is investigated including Jaco-
bian matrix, equilibria points, and its categorized, Lyapunov exponent and Kaplan-Yorke
dimension as shown in Table (1).

e projective synchronization of the new system was realized theoretical and numerical.

The structure of this paper is organized into six sections as follows. In Section 2, a
new 4-D hyperchaotic system is introduced from the Sprott C system, whereas Section 3
deals with analyzing the dynamical properties of this system. Multistability and projective
synchronization are given in Sections 4 and 5, respectively. Finally, the conclusion of this
paper gives in Section 6.

2. DESCRIPTION OF THE NEW SYSTEM

The researcher Sprott (1994) display nineteen systems which consider the simplest sys-
tems, one of them is a 3D Sprott C system which defined by a system of first order ordinary
differential equations(ODE’s) [1]:

T =yz
y=z—-y (1)
3=1-— 22

Obviously, this system consists of five terms with one positive Lyapunov exponent LE; =
0.163 ( largest exponent) such as (LE; = 0.163, LEy; = 0, LE3 = —1.163).

Relying on coupling strategy [37], a 2D system with four terms system is added to the
system(1), which construct a novel simple 5D Sprott C hyperchaotic system as:

i =vyz
y=z—-y

5=1-2" (2)
w=-3s—x

$=w—ds

\

where d is a positive parameter (d # 0) and it is called a coupling parameter. Clearly,
the novel system consists of nine terms only i.e, a simple system. Thus, it meets one of
Sprott conditions [27]. The proposed system has two non-hyperbolic equilibria points,
therefore classified as self-excited attractors as shown in Fig. 1 and parameter d plays an
important role in classifying the novel system into a dissipative or conservative system.

3. SYSTEM ANALYSIS

Some of the basic properties of the new system (2) have been analyzed numerically
and theoretically, i.e., equilibria points, dissipative, Lyapunov exponents, Kaplan-Yorke
dimension, and sensitivity to the initial condition.

3.1. Equilibria Points. To get the equilibria points [38] for system (2), let &, ¢, 2, w, $ = 0
i.e.,
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FIGURE 1. The phase portrait for the new system with d = 0.998 and IC
(0.2,0.2,0.1,0.2,0.2).

yz =0
r—y=20
1—22=0 (3)
—3s—z=0
w—ds=0

Solving the above system, two equilibria points are obtain as F; (1, 1, 0, d/3,-1/3), E»
(-1,-1, 0, —d/3, 1/3). The Jacobian matrix of a new system at E; and the characteristic
equation is given in Eq.(4) and Eq.(5), respectively.

0 =z y 0 0 0 0 10 0
1 —-100 0 e | L -1 00 0
J=1-2¢ 0 00 o|="]-2 0 00 0 (4)
-1 0 0 0 -3 -1 0 0 0 -3
0 0 01 d 0 0 0 1 d
Nl -—DXN+G-N+G-2)N°+(6-2d)1+_6 =0 (5)
A B C D \]5/

There are two methods to determine the stability, theoretical (Routh-Hurwitz criteria),
and numerical mathematical program based on MATLAB software. According to Routh-
Hurwitz criteria and Eq.(5), Hurwitz matrix is defined:

1-d 1 0 0 0
5—2d 5—d 1—-d 1 0
Hs=| 6 6-2d 5-2d 5—d 1—d (6)
0 0 6 6—2d 5—2d
0 0 0 0 6

Eq.(5) has eigenvalues with negative real part if the determinants of all Hurwitz matrices
are positive i.e.,

A1:’1—d’>0,
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1-d 1
A2:|5—2d 5—d‘>0’
1-d 1 0

As=1|5-2d 5-d 1-d|>0,
6 6 —-2d 5—2d

1—-d 1 0 0
5-2d 5—-d 1-d 1
Ba=1" 6 g_2d 5-2d 5-d| VP =0684>0

0 0 6 6 —2d

In other word, the Routh-Hurwitz criteria for characteristic equation(5) of degree five are
summarized as

e A>0,B>0,C>0,D >0, F>0

e ABC > C? + A’D

e (AD — E)(ABC — C? — A’D) > E(AB - C)? + AE?

The condition A > 0, leads to d < 1. But, the second condition ABC > C? + A?D is
not satisfy.

= (1-d)(5—-d)(5—2d) > (5—2d)? + (1 — d)*(6 — 2d)

= (25 —40d + 17d? — 2d® > 31 — 34d + 14d? — 2d3

= d*-2d—-2>0

either d > 1++/3 ¢ (0,1) or d > 1 —+/3 ¢ (0,1). Thus, the system (2) is unstable.

3.2. Dissipative and Conservative. System (2) can be classified as dissipative or con-
servative based on divergence as

- (2 (30 (6) (5) () o

e if d =1, then the new system is conservative,

eif d<1,orde(0,1), then the new system is dissipative.

Whether the system (2) is conservative or dissipative, for any value of d within inter-
val (0, 1), then it is unstable always, therefore its classified as a system with self-excited
attractors. Table 2 show the characteristic polynomials and corresponding eigenvalues un-
der vary parameter d. In this work, all results established under the control parameter
d e (0,1).

TABLE 2. Vary parameter d with corresponding characteristic polynomial
and eigenvalues for system.

d Equilibria FEigenvalues State

0.2 (£1, +1,0, £0.0666, 70.3333) (—1,0.1 & 1.72024, +1.4142i) unstable
0.4 (£1,+1,0,40.1333,F0.3333) (—1,0.2 & 1.72054, +:1.4142i) unstable
0.9 (&1,+1,0,+0.3,570.3333) (—1,0.45 + 1.6726i, +:1.4142i) unstable
1 (£1,+1,0,+0.3333,50.3333) (—1,0.5 + 1.6583i, +1.4142i) unstable

It clear that from the Table 2, the fourth and fifth eigenvalues with zero real parts, thus
the new system known as a system with non hyperbolic equilibria (not under the class of
Silnikov sense chaos).
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3.3. Lyapunov Exponents and Kaplan-Yorke dimension. Lyapunov exponents (LFE;)
are one of the tools which categorized the behaviors of the dynamical system whether the
chaotic or hyperchaotic. Moreover, the maximum Lyapunov exponents (MLE) lead to
the additional complex behavior of the system. According to Wolf’s algorithm and ode45
[39], and based on mathematical program (MATLAB R2020a), the proposed system has
three positive Lyapunov exponents under the coupling parameters d = 0.998 and IC
(0.2,0.2,0.1,0.2,0.2) at time ¢ = 300 as depicted in Eq.(8) and Fig. 2.

LE; = 0.4976
LE; = 0.4942
LE3; = 0.1737 (8)
LE; = —0.0002
LEs = —1.1673

It’s clear that Z?:l LE; = —0.002 is equal to the divergence at d = 0.998. Compare with
the original system, the maximum Lyapunov exponents for the new system is LE; (new
system )= 0.4976 which is the largest form of the original system LE; (original system
)= 0.163, this indicates that the proposed system is more efficient than the original system
according to Ref. [5]. In addition, it satisfied the feature (n—2) positive LE's. The second
important aspect of this study is Lyapunov dimension (Kaplan-Yorke dimension) which
can becalculated as in Eq. (9). If varying the parameter d within the interval (0,1) and
IC z(0) = (0.2,0.2,0.1,0.2,0.2), the a new system has different behaviors: chaotic, chaotic
with 2-tour and hyperchaotic as given in Table 3.

0.4976 + 0.4942 + 0.1737 — 0.0002
|LEs|

=4.9983,J = 1,2,3,4

(9)

4
1
Dip=J+—— S LE =4+
’ !LEJH\; l

TABLE 3. LEg of new system with varying the d and z(0) = (0.2,0.2,0.1,0.2,0.2)7.

d LE, LE, LEs LE; LEs . LE; VV Signof LE, Behavior
0.001 0.1836-0.0003-0.0010-0.0098-1.1714 -0.9989 -0.999 (+,0,---)  Chaotic
0.002 0.1921 0.0005 -0.0049-0.0017-1.1840 -0.998 -0.998 (+,0,---)  Chaotic
0.003 0.1591 0.0006 0.0001 -0.0111-1.1457 -0.997 -0.997 (+,0,0,--) Chaotic 2-tour
0.0037 0.1880 0.0001 -0.0002-0.0029-1.1813 -0.9963 -0.9963 (+,0,---) chaotic 2-tour
0.009 0.2046 0.0031 0.0000 -0.0052-1.1935 -0.991 -0.991 (+,+,0,--) Hyperchaotic
0.011 0.1944 0.0024 0.0004 -0.0127-1.1736 -0.9891 -0.989 (+,+,0,--) Hyperchaotic
0.029 0.1955 0.0134 0.0050 0.0001 -1.1849 -0.9709 -0.971 (+,+,+,0,-) Hyperchaotic
0.112 0.1752 0.0551 0.0490 -0.0002-1.1672 -0.8881 -0.888 (+,+,+,0,-) Hyperchaotic

3.4. Sensitive to initial condition. One of the conditions that characterizes a dynam-
ical system is that it is sensitive to initial conditions. For the new system and under the
coupling parameter d = 0.001 with three different initial conditions (0.1,0.1,0.1,0.1,0.1),
(0.4,0.4,0.4,0.4,0.4) and (0.1,0.1,0.5,0.1,0.1), a three different dynamical behavior: chaotic
2-tour, chaotic and hyperchaotic are obtained, respectively. Dynamical behavior and Lya-
punov exponents are showed in Table 4.
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FIGURE 2. The LE; for new system where ¢ = 300 and x¢ = (0.2,0.2,0.1,0.2,0.2).

TABLE 4. Lyapunov exponents of system (2) the d = 0.001 with varying
initial conditions.

Initial conditions LE; Sign of LE;  Behavior
(0.1,0.1,0.1,0.1,0.1) (0.1576, 0.0000, 0.0001, -0.0069, -1.1498) (+,0,-,--) Chaotic 2-tour
(0.4,0.4,0.4,0.4,0.4) (0.1597, 0.0001, -0.0021, -0.0041, -1.1526) (+,0,-,-,-) Chaotic
(0.1,0.1,0.5,0.1,0.1) (0.1808, 0.0037, -0.0001, -0.0160, -1.1675) (+,+,0,--) Hyperchaotic

4. MULTISTABILITY

Multistability or coexisting attractors means that a system has two or more solutions
together under the like group of parameters with different initial conditions [12]. Notice
that the coexisting attractors for proposed system under parameters d = 0.998 with IC
(1,0.1,0.9,0.6,0.2) (red), and (—0.1,—0.1,0.9,—0.6, —0.2) (blue) as shown in Fig. 3(a)
whereas Fig. 3(b) depict the coexisting attractors with ICs (0.1,0.1,0.9,0.6,0.2) red,
(—=0.1,0.1,0.9,0.6, —0.2) blue. If parameters d = 0.1, ICs (0.3,0.1,—0.8,0.1,0.1) red and
(0.5,0.5,0.5,0.5,0.5)blue, the coexisting attractors as shown in Fig. 4(a) whilst Fig. 4(b)
describe the attractors at IC (0.1,0.3,—0.6,0.4,0.5) red and (0.1, —0.3,0.6,0.4,0.5) blue.



502 TWMS J. APP. AND ENG. MATH. V.14, N.2, 2024

(@ ‘ ‘ ‘ ‘ (b)

FicURE 3. Coexisting attractors of new system with parameter d = 0.998
(a): at (0.1,0.1,0.9,0.6,0.2) red and (-0.1,-0.1,0.9,-0.6,-0.2) blue, (b): at
(0.1,0.1,0.9,0.6,0.2) red and (-0.1,0.1,0.9,0.6,-0.2) blue.

FiGURE 4. Coexisting attractors of new system with parameter d = 0.1
, (a) at (0.3,0.1,-0.8,0.1,0.1) red and (0.5,0.5,0.5,0.5,0.5) blue, (b): at
(0.1,0.3,-0.6,0.4,0.5) red and (0.1,-0.3,0.6,0.4,0.5) blue.

5. PROJECTIVE SYNCHRONIZATION

For a novel hyperchaotic system (2), the master and slave systems can be represented
in (10)and (11) as:

T =y
Y1 =21 — N
Z1=1—2a? (10)

wl = —381 — X1

s§1 = w1 + dsy
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T = Yoz + Uy
Yo = T2 — Yo + U2
Zy =1 — 3+ us (11)

Wy = —389 — Tg + Uy

So = wq + dsa + us

Define the projective synchronization error [40] between the systems (10) and(11) as:

( 61(t) = xg(t) — 2:61 t
e2(t) = y2(t) — 2y1(t
e3(t) =z

)
)
t) (12)
)
)

where limy_,o €;(t) =0,i =1,2,...5
Adding system (10) with system (11), the error dynamics system is obtain as:
€1 = ezez + 2y1e3 + 221(y2 —y1) +w
€2 =e1 — ez +ug
€3 = —1 — 23 + 227 + ug (13)
€4 = —3e5 —e1 +uy

€5 = eq + des + us

Theorem 5.1. If the designed controller is in Eq. (14), then the error dynamics system
(13) tends to zero.

up = —e1 —221(y2 — Y1) —ea +eq
Ug = —e€1€3
uz =1—2yje3 + x5 — 227 — e3 (14)

Uy = 2e5 — €4

L us = — 2d65

Proof. Substitute control(14) in Eq. (13) as the follows:

€1 = —e1 + eses + 2y1e3 —ex +e4
€ =e€1 — ez —ejes
€3 = —2y1€e1 — €3 (15)
6'4 = —€1 — €4 — €5
6'5 — €4 — d€5

By choosing Lyapunov function as V(e;) = e! Pe;

05 0 O 0 0 el
0 4 0 0 0 €9
V(ez):[el ey e3 ey 65])( 0 0 05 0 O e3 (16)
0O 0 0 05 0 e4
0 0 O 0 0.5] |es
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— V(e,) = e1€] + 4deses + eze3 + eqey + e5€5
— V('ei) =ej(—e1 + ezez + 2y1e3 — ea + e4) + dea(er — ea — ere3)

+es(—2y1e1 — e3) + eq(—e1 — eq — e5) + es(eq — des)

— V(e;) = —Te? — 3 + €2 — €3 — de?

1000 0][e

. 0400 0] ]e
Vies)=—1le1 e ez e e5]x |0 0 1 0 0| |es| =—e Qe (17)

0001 0] ]e

000 0 04 |es

where d = 0.4, Q = diag(1,4,1,1,0.4), which leads to @ > 0. Consequently, V (e;) on
R5. The proposed controller achieves projective synchronization theoretically. Numeri-
cally, the attractors of the error dynamics system (13) tend to zero as shown in Fig. 5
with the initial conditions as (0.2,0.2,0.1,0.3,0.3) and (0.3,0.8,0.7,0.9,0.5) whereas Fig.6
depict the attractor of systems (10) and (11) with projective synchronization.

I T T T T T T T
el
e2
0.4 e3 |
e4
0 e5
o N
<
o
™ i
o
a
o
o
6 7 8

Time(sec)

FIGURE 5. The attractors of the error dynamics system (13) convergent to
zero under the new control (14).
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FIGURE 6. Projective synchronization between attractor of systems (10)
and (11).

6. CONCLUSION

Based on the famous Sprott C system and the coupling strategy, a new simple 5D
hyperchaotic system with nine terms has been introduced. A novel system has two non-
hyperbolic equilibria points and belongs to a class of self-excited attractors, in addition, it
has (n — 2) positive Lyapunov exponents, with the maximal Lyapunov exponent is largest
than the maximal Lyapunov exponent of the original system. We believe that this work
should be useful and can be set to contribute to the science on the methods of projective
synchronization which may have applications in diverse fields of engineering and secure
communication. In the forthcoming study, such a new system with two positive Lyapunov
exponents for the suitable physical will form the basis of more methodology studies of
self-excited chaos.
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