
TWMS J. App. and Eng. Math. V.14, N.2, 2024, pp. 846-861

SOLVABILITY OF A RESONANT FRACTIONAL-ORDER

p-LAPLACIAN BOUNDARY VALUE PROBLEM WITH

TWO-DIMENSIONAL KERNEL

M. AZOUZI1, E. ZERAOULIA2∗, L. GUEDDA1, §

Abstract. The goal of this study is to establish the existence of solutions for a fractional-
order p-Laplacian boundary value problem with a two-dimensional kernel at resonance
case. The non-linearity of this problem forced us to transform it into a semilinear system
to use the so called Mawhin’s coincidence degree theory. In addition, an example is
included to demonstrate the main result.
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1. Introduction

Most natural phenomena have recently been described by some type of boundary value
problems (BVPs for short) for differential equations. Examples include the study of phys-
ical phenomena, chemistry, engineering, and control of dynamical systems, etc. See ([2],
([10], [15], [19], ([21]). In ([4], [6], [9]), [12]), [16]), [17]), [18]), the authors have inves-
tigated resonant problems with linear differential operators and one-dimensional kernels.
As we can see the situation becomes more problematic when dealing with non-linear two-
dimensional operators like the case of p-Laplace boundary value problems. See ([3], [7], [8],
[13]) for more details. Motivated by the works mentioned above, only a few authors have
looked into this case to get some existence results based on the assumption that certain
algebraic expression is not equal to zero see ([8]). For example, where they assume that

C =

∣∣∣∣ Q1e
−t Q2e

−t

Q1te
−t Q2te

−t

∣∣∣∣ 6= 0.
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In this work, we shall study the existence of solutions for a kind of problems which is
driven by the works stated above, in particular ([8]). When suitable growth conditions
are imposed on the nonlinear term, many new difficulties arise, such as the construction
of the projector Q, whose formula is quite different from the classical one.
The main work in this paper is concerned with the investigation of the existence of solutions
for the following fractional-order p-Laplacian BVP at resonance with integral boundary
conditions

(φp(D
β
0+
u(t)))′ + g(t)f(t, u(t), Dβ

0+u(t)) = 0, t ∈ [0, T ], 0 ≤ β < 1,

φp(D
β
0+u(0)) =

∫ T
0 g(t)φp(D

β
0+u(t))dt,

φp(D
β
0+u(T )) =

∫ T
0 g(t)φp(D

β
0+u(t))dt,

(1.1)

where Dβ
0+ is the Riemann-Liouville fractional derivative of order β, g ∈ L1[0, T ] with

g(t) > 0 and f : [0, T ] × R2 → R is a g-Caratheodory function, that is, (i) for each
(x, y) ∈ R2, the mapping t → f(t, x, y) is Lebesgue measurable, (ii) for a.e. t ∈ [0, T ],
the mapping (x, y) → f(t, x, y) is continuous on R2 and (iii) for each r > 0, there exists

ωr(t) : [0, T ] → [0,+∞) satisfying
∫ T

0 g(t) |ωr(t)| < +∞ such that, for a.e. t ∈ [0, T ) and
every (x, y) ∈ [−r, r]× [−r, r], we have

|f(t, x, y)| ≤ ωr(t).

Recall also that φp : R → R is an odd continuous, increasing operator and φ−1
p =

φq

(
1
p + 1

q = 1
)

. In ([5]), the authors investigated the following multi-point boundary

value problem for a nonlinear fractional differential equation with a p-Laplacian operator{ (
φp
(
Dα

0+x(t)
))′

= f
(
t, x(t), Dα−1

0+
x(t)

)
, t ∈ [0, 1],

x(0) = Dα
0+x(1) = 0, Dα−1

0+
x(1) =

∑α−m
i=1 βiD

α−1
0+

x (ηi) ,

where φp(s) = |s|p−2s is the p-Laplacian (p > 1), Dα
0+ is the standard Riemann–Liouville

derivative (1 < α < 2), f : [0, 1] × R × R → R is a given continuous function, 0 < η1 <
η2 < . . . < ηm−2 < 1, and βi ∈ R+, for i = 1, 2, 3, . . . ,m− 2.

The problem (1.1) is said to be at resonance if
∫ T

0 g(t)dt = 1.

Moreover, because (φp(D
β
0+
u(t)))′ is a nonlinear operator, the coincidence degree theory

for linear differential operators with resonant boundary value conditions fails to apply
to it directly. However, rewriting (1.1) as a semilinear system allows us to apply the
continuation theorem to the problem (2.1) and obtain the existence of some solutions.
Our paper consists of four sections. In the first section, we present the general framework
of our study. In the second, we recall most of the preliminary notions. In Section 3,
we present three lemmas to prove the result existence by applying the so call Mawhin
coincidence degree theory and an example is given to support our results in the fourth
section .

2. Preliminaries about the coincidence degree theory

We begin this section by recalling some definitions concerned with the fractional calcu-
lus, and abstract results from the coincidence degree theory. For more details we refer to
([10]), [12]. Let X and Y be two Banach spaces.
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Definition 2.1. ([11]) The Riemann-Liouville fractional integral of order β > 0 of a
function f : (0,+∞)→ R is given by

Iβ
0+
f(t) =

1

Γ(β)

t∫
0

(t− s)β−1f(s)ds,

where Γ (β) represents the gamma function, provided that the right side is pointwisely
defined on (0,+∞).

Definition 2.2. ([11]) The Riemann-Liouville fractional derivative of order β > 0 of a
function f : (0,+∞)→ R is given by

Dβ
0+
f (t) =

1

Γ (n− β)

dn

dtn

t∫
0

f (s)

(t− s)β−n+1
ds,

where n = [β] + 1, provided that the right-hand side is defined pointwise on (0,+∞). Here
[β] denotes the integer part of the real number β.

Lemma 2.1. ([11]) Let β > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional
differential equation

Dβ
0+
u(t) = 0

has u(t) = c1t
β−1 + c2t

β−2 + · · ·+ cnt
β−n, ci ∈ R, i = 1, 2, . . . , n as unique solutions, where

n is the smallest integer greater than or equal to β.

Lemma 2.2. ([11]) Given u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order β
> 0. Then

Iβ
0+
Dβ

0+
u(t) = u(t) + c1t

β−1 + c2t
β−2 + · · ·+ cnt

β−n,

for some ci ∈ R, i = 1, 2, . . . , n, where n is the smallest integer greater than or equal to β.

Definition 2.3. ([14]) Let L : domL ⊂ X → Y be a linear operator. Then one says that
L is a Fredholm operator provided that
(i) kerL is finite dimensional space,
(ii) ImL is closed and has finite codimension.
The index of L is defined by: ind L = dim kerL− codim ImL.

It follows from definition (2.3) that if L is a Fredholm operator of index zero, then
there exist two linear continuous projections P : X → X and Q : Y → Y such that
ImP = kerL, kerQ = ImL, X = kerL ⊕ kerP, Y = ImL ⊕ ImQ. Furthermore, the
restriction of L on domL∩kerP, LP : domL∩kerP → ImL, is invertible. We will denote
its inverse by KP . The generalized inverse of L is denoted by KP,Q := KP (I −Q).
On the other hand, for every isomorphism J : ImQ → kerL, the mapping JQ + KP,Q :
Y → domL is an isomorphism. Now let Ω be an open bounded subset of X such that
domL ∩ Ω 6= ∅.

Definition 2.4. ([14]) Let L be a Fredholm operator of index zero. The operator N : X →
Y is said to be L-compact in Ω if
(i) the map QN : Ω̄→ Z is continuous and QN(Ω̄) is bounded in Y and
(ii) KP,QN : Ω̄→ X is a compact operator.

Lemma 2.3. ([13]) We will use the following properties of φp. For u, v ≥ 0, we have
(i) φp(u+ v) ≤ φp(u) + φp(v), if 1 < p < 2,
(ii) φp(u+ v) ≤ 2p−2 (φp(u) + φp(v)), if p ≥ 2.
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Theorem 2.1. ([14]) Let X,Y be two real Banach spaces, L : domL ⊂ X → Y be a
Fredholm operator of index zero and N : X → Y be an L-compact mapping on Ω. Assume
that the following conditions are satisfied:
(1) Lu 6= ρNu for all (u, ρ) ∈ [domL \ kerL ∩ ∂Ω]× (0; 1),
(2) QNu 6= 0 for all u ∈ kerL ∩ ∂Ω,
(3) deg(QN|kerL,Ω ∩ kerL, 0) 6= 0.

Then the equation Lu = Nu has at least one solution in domL ∩ Ω̄.

Now, we consider the following system :
Dβ

0+
u1(t) = φq (u2(t)) ,

u′2(t) = −g(t)f (t, u1(t), φqu2(t)) ,

u2(0) = u2(T ) =
∫ T

0 g(t)u2(t)dt.

(2.1)

Where 0 ≤ β < 1 and we introduce the spaces

X1 = C1−β[0, T ] = {u ∈ C[0, T ] | such that t1−βu(t) ∈ C[0, T ]
}
,

with the norm

‖u‖X1 = ‖u‖C1−β = max
t∈[0,T ]

∣∣∣t1−βu(t)
∣∣∣ ,

and
X2 = C[0, T ] = {u | u(t) is continuous on the interval [0, T ]},

equipped by the norm ‖u‖X2 = maxt∈[0,T ] |u(t)|. Taking the space

X =
{
u = (u1, u2)> | u1 ∈ C1−β[0, T ], u2 ∈ C[0, T ]

}
,

with the norm
‖u‖X = max {‖u1‖C1−β , ‖u2‖C} ,

and Y1 = C[0, T ], Y2 = L1[0, T ] where ‖y‖Y1 = maxt∈[0,T ] |y(t)|, ‖y‖Y2 =
∫ T

0 |y(t)|dt.
Define the space Y as follows:

Y =
{
y = (y1, y2)> | y1 ∈ C[0, T ], y2 ∈ L1[0, T ]

}
,

with the norm

‖y‖Y = max
{
‖y1‖C[0,T ] , ‖y2‖L1[0,T ]

}
.

Obviously, (Y, ||.||Y ) is a Banach space and ||.||C1−β is a norme in C1−β because ||u||C1−β =
||u||∞ .
Now, let’s prove that (X, ||.||X) is also a Banach space. Suppose (un) is Cauchy sequence

in C1−β, that’s for ever ε > 0, there exists n0 ∈ N such that, for all m > n > n0, we have

||um − un||C1−β < ε,

which implies that

sup
t∈[0,T ]

t1−β |um(t)− un(t)|C1−β < ε,

then,

sup
t∈[0,T ]

∣∣∣t1−βum(t)− t1−βun(t)
∣∣∣
C1−β

< ε,

finally, we obtain

||(um)1−β − (un)1−β||∞ < ε,
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which shows that (un)1−β is a Cauchy sequence in C[0, T ] (real Banach space), then
(un)1−β, is convergent to a function u ∈ C[0, T ]. Therefore, for all ε > 0, there exists
n0 ∈ N such that, if n > n0, we have

sup
t∈[0,T ]

∣∣∣t1−βun(t)− u(t)
∣∣∣ < ε,

hence

sup
t∈[0,T ]

t1−β
∣∣∣∣un(t)− u(t)

t1−β

∣∣∣∣ < ε,

which means that (un) converges to the function v ∈ C1−β, defined by v(t) = u(t)
t1−β

, 0 <
t ≤ T, which shows that X1 is Banach space.
On the other hande X2 = C[0, T ] with the norm ‖u‖X2 = maxt∈[0,T ] |u(t)| is Banach space,
then X = X1 ×X2, with the norm ‖u‖X = max {‖u1‖C1−β , ‖u2‖C} , is Banach space.

It is clear that, (u1(·), u2(·))> is a solution of the problem (2.1), if and only if u1(·) is a
solution of the problem (1.1). Define the operator L : domL ⊂ X → Y by

Lu(t) :=

(
(Lu)1(t)
(Lu)2(t)

)
=

(
Dβ

0+
u1(t)

u′2(t)

)
, ∀t ∈ [0, T ], (2.2)

where

domL =

{
u ∈ X, (Dβ

0+
u1, u

′
2) ∈ Y, u2(0) = u2(T ) =

∫ T

0
g(t)u2(t)dt

}
,

(Lu)1(.) is the first component and (Lu)2(.) is the second. Let the operator N : X → Y
be defined by

Nu(t) :=

(
(Nu)1(t)
(Nu)2(t)

)
=

(
φq (u2(t))

−g(t)f (t, u1(t), φqu2(t))

)
, ∀t ∈ [0, T ]. (2.3)

It is easy to see that problem (2.1) can be converted to the operator equation

Lu = Nu, u ∈ domL.

Throughout this paper we will use the following notations: D1, D2 : Y2 → Y2 are two
linear operators defined by the following relations

D1y2 :=

∫ T

0
y2(s)ds and D2y2 :=

∫ T

0
g(t)

∫ t

0
y2(s)dsdt.

Where Y2 = L1[0, T ], and for all β ∈ [0, 1) denote by For all β ∈ [0, 1) denote by

∆ = δ11δ22 − δ12δ21,

where

δ11 = T, δ22 =
1

β

∫ T

0
tβg(t)dt, δ12 =

T β

β
and δ21 =

∫ T

0
tg(t)dt,

and the operators R1, R2 : Y2 → Y2 as R1y2 := 1
∆ (δ22D1y2 − δ12D2y2) ,

R2y2 := 1
∆ (δ11D2y2 − δ21D1y2) .

(2.4)

Proposition 2.1. (Proposition, p-219, [1]) If the continuous function f ≥ 0 in [a, b] then:

∫ b

a
f(x)dx = 0 =⇒ ∀x ∈ [a, b]; f(x) = 0.
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Proof. Indeed, if f(x0) > 0, x0 ∈ [a, b], then by continuity, there exist an interval [α, β] ⊂
[a, b], where f > f(x0)

2 , which imply∫ b

a
fdx ≥

∫ β

α
fdx ≥ f(x0)(β − α)

2
,

a contradiction. �

Remark 2.1. In view of the precedent proposition ∆ = δ11δ22 − δ12δ21 6= 0.
Indeed, for each 0 ≤ β < 1, the function F defined by F (t) = Ttβ − T βt is positive
continuous, so F (t)g(t) ≥ 0 (because g(t) > 0), and as g

(
T
2

)
F
(
T
2

)
6= 0, then the function

Fg is not identically zero in [0, T ] which prove that

∆ =
1

β

∫ T

0
F (t)g(t)dt 6= 0.

3. Existence result

3.1. Some auxiliary lemmas. In this part, we needed three lemmas to prove the exis-
tence of solutions of our problem by applying Mawhin’s coincidence degree theory.

Lemma 3.1. We have the following results:

KerL =
{
c1(tβ−1, 0)> + c2(0, 1)>, ∀t ∈ [0, T ], c1, c2 ∈ R

}
, (3.1)

ImL =
{
y = (y1, y2)> ∈ Y : D1y2 = D2y2 = 0

}
. (3.2)

Proof. On one hand, for each u = (u1, u2)> ∈ kerL, we have Lu (t) = 0 for all t ∈ [0; 1],
so {

Dβ
0+
u1(t) = 0

u′2(t) = 0
⇒
{
u1(t) = c1t

β−1

u2(t) = c2

then

KerL =
{
c1(tβ−1, 0)> + c2(0, 1)>, ∀t ∈ [0, T ], c1, c2 ∈ R

}
.

If y = (y1, y2)> ∈ ImL, then there exists u = (u1, u2)> ∈ domL such that y = Lu, i.e.,

y1(t) = Dβ
0+
u1(t), y2(t) = u′2(t), which yields

u2(t) = c2 +

∫ t

0
y2(s)ds, c2 ∈ R,

with consideration of the boundary conditions u2(0) = u2(T ) =
∫ T

0 g(t)u2(t)dt, we con-
clude that

c2 = c2 +

∫ T

0
y2(s)ds = c2 +

∫ T

0
g(t)

∫ t

0
y2(s)ds,

i.e. ∫ T

0
y2(s)ds =

∫ T

0
g(t)

∫ t

0
y2(s)ds = 0.

Then,
D1y2 = D2y2 = 0, (3.3)

thus

ImL ⊂
{
y = (y1, y2)> ∈ Y : D1y2 = D2y2 = 0

}
. (3.4)
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Now, suppose that y = (y1, y2)> ∈ Y, and satisfies 3.3. Let{
u1(t) = Iβ

0+
y1(t),

u2(t) = I1
0+y2(t).

Since
∫ T

0 g(t)dt = 1, we get

u2(0) = u2(T ) =

∫ T

0
g(t)u2(t)dt,

then u = (u1, u2)> ∈ domL and Lu = y i.e. y ∈ ImL. Hence,{
y = (y1, y2)> ∈ Y : D1y2 = D2y2 = 0

}
⊂ ImL, (3.5)

From 3.4 and 3.5, we conclude that

ImL =
{
y = (y1, y2)> ∈ Y : D1y2 = D2y2 = 0

}
.

The proof is completed. �

Lemma 3.2. Under the assumption
∫ T

0 g(t)dt = 1, the following conditions hold:
(i) L : domL ⊂ Ω → X is a Fredholm operator of index zero. Furthermore, the linear
continuous projectors P : X → X and Q : Y → Y satisfy

Pu(t) :=

(
(Pu)1(t)
(Pu)2(t)

)
=

(
T 1−βu1 (T ) tβ−1∫ T

0 g(s)u2(s)ds

)
, ∀t ∈ [0, T ],

where the first and the second component of P are independent of each other, and

Qy(t) :=

(
(Qy)1(t)
(Qy)2(t)

)
=

(
0

R1y2 +R2y2t
β−1

)
, ∀t ∈ [0, T ],

where R1, R2 are defined in 2.4.

(ii) The inverse KP : ImL→ domL∩ kerP of LP can be written as

KP y :=

(
(KP y)1

(KP y)2

)
=

(
Iβ0+y1

I1
0+y2

)
,

and satisfy

‖KP y‖X ≤ L ‖y‖Y ,

where L = max{ T
Γ(β+1) , 1}.

Proof. (i) For all u ∈ X, and t ∈ [0, T ], we have

P 2u(t) = P (Pu)(t) = P

(
(Pu)1(t)
(Pu)2(t)

)
= P

(
T 1−βu1 (T ) tβ−1∫ T

0 g(s)u2(s)ds

)
=

(
T 1−β(Pu)1 (T ) tβ−1∫ T

0 g(s)(Pu)2(s)ds

)
=

(
T 1−β(T 1−βu1 (T )T β−1)tβ−1

(Pu)2(t)
∫ T

0 g(s)ds

)
= Pu(t);



M. AZOUZI, E. ZERAOULIA, L. GUEDDA: SOLVABILITY OF A RESONANT FRACTIONAL ... 853

because
∫ T

0 g(t)dt = 1.
For all y ∈ Y , and t ∈ [0, T ], we get

R1 (R1y2) =
1

∆
[δ22D1 (R1y2)− δ12D2 (R1y2)]

=
1

∆
[δ22δ11 − δ12δ21]R1y2

= R1y2,

and similarly we can derive that

R1

(
R2y2t

β−1
)

= 0,

R2 (R1y2) = 0,

and

R2

(
R2y2t

β−1
)

= R2y2.

So, for y = (y1, y2)> ∈ Y , it follows from the four relations above that

Q2y2 = Q(Qy2) = R1[R1y2 +R2y2t
β−1] +R2[R1y2 +R2y2t

β−1]tβ−1

= R1 (R1y2) +R1

(
R2y2t

β−1
)

+R2 (R1y2) +R2

(
R2y2t

β−1
)

= R1y2 +R2y2t
β−1 = Qy2.

Thus, we get

Q2y(t) = Q(Qy)(t) = Q

(
(Qy)1

(Qy)2

)
=

(
0

Q(Qy2)

)
= Qy, ∀t ∈ [0, T ].

We have also

‖(Pu)1‖C1−β = max
t∈[0,T ]

∣∣∣t1−βT 1−βu1 (T ) tβ−1
∣∣∣ =

∣∣∣T 1−βu1 (T )
∣∣∣

≤ max
t∈[0,T ]

∣∣∣t1−βu1 (t)
∣∣∣ = ‖u1‖C1−β ,

‖(Pu)2‖∞ = max
t∈[0,T ]

∣∣∣∣∫ T

0
g(s)u2(s)ds

∣∣∣∣
≤
∫ T

0
g(s) |u2(s)| ds = ‖u2‖∞ ,

then

‖Pu‖X = max{‖(Pu)1‖C1−β , ‖(Pu)2‖∞}
≤ max{‖u1‖C1−β , ‖u2‖∞} = ‖u‖X .

and we have also

‖(Qy)1‖∞ = max
t∈[0,T ]

|(Qy)1(t)| = 0 ≤ ‖y1‖∞ ,

‖(Qy)2‖L1[0,T ] =

∫ T

0
|(Qy)2(s)| ds ≤ C ‖y2‖L1[0,T ] ,

where C = |δ11δ22|+2|δ12δ11|+|δ12δ21|
|∆| , then

‖Qy‖Y = max{‖(Qy)1‖∞ , ‖(Qy)2‖L1[0,T ]} ≤ max{‖y1‖∞ , C ‖y2‖L1[0,T ]} ≤ C ‖y‖Y .
(3.6)
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Now we prove that Y = ImL ⊕ ImQ, each y = (y1, y2)> ∈ Y , can be write as y =

((I−Q)y+Qy) = (y1, (I −Q)y2 +Qy2))> where y−Qy ∈ ImL = KerQ and Qy ∈ ImQ,

thus we have Y = ImL+ ImQ. Let y ∈ ImL
⋂

ImQ so y(t) = (y1, y2)> = (0, a+ btβ−1)>

where a, b ∈ R, and since y ∈ ImL, then D1y2 =
∫ T

0 (a + bsβ−1)ds = 0 and D2y2 =∫ T
0 g(t)

∫ T
0 (a + bsβ−1)dsdt = 0, we derive a = b = 0, thus ImL

⋂
ImQ = {0}, which

implies that Y = ImL⊕ ImQ, and as

dim KerL = dim ImQ = codim ImL = 2.

So L is a Fredholm operator of index zero.
Furthemore, for all u in X, we can write u = (u−Pu)+Pu and since ImP = KerL, P 2u =
Pu then, X = KerP + KerL. By simple calculation, we can get that KerP ∩KerL = {0}
which prove that

X = KerL⊕KerP.

(ii) From the definition of KP , for y ∈ ImL, we have

LKP y =

(
Dβ

0+I
β
0+
y1

d
dtI

1
0+y2

)
= y.

For u ∈ domL ∩KerP , and by using Lemma 2.2 we get

KPLu =

(
u1 + c1t

β−1

u2 + c2

)
,

where c1, c2 are real constants. Since u ∈ domL ∩ KerP , it is easily to show that c1 =
c2 = 0. So KP is the inverse of LP . We have also

‖KP y‖X = {‖(KP y)1‖C1−β , ‖(KP y)2‖∞}

= max{
∥∥∥Iβ0+y1

∥∥∥
C1−β

,
∥∥I1

0+y2

∥∥
∞}

≤ max{ T

Γ (β + 1)
‖y1‖Y1 , ‖y2‖Y2}

≤ L ‖y‖Y ,

where L = max{ T
Γ(β+1) , 1}, which completes the proof. �

Lemma 3.3. Let Ω ⊂ X be open and bounded subset with domL ∩ Ω̄ 6= ∅. If f is
g-Caratheodory, then N is L-compact on Ω̄.

Proof. Let Ω = B (0, r), then for u ∈ Ω̄, ‖u‖ ≤ r. Since f is a g-Caratheodory function

then, there exists ωr : [0, T ]→ [0,+∞) satisfying
∫ T

0 g(t) |ωr(t)| < +∞,
for a.e t ∈ [0, T ], ∣∣∣f (t, u(t), Dβ

0+u(t)
)∣∣∣ ≤ ωr(t),

then

‖QNu‖Y ≤ C ‖Nu‖Y ≤ C1,

where C1 = C(rq−1 + ‖ωr‖L1[0,T ]). We will use the following two steps to prove that

KP (I −Q)N(Ω̄) is compact.
Step 1: Let u ∈ Ω̄, then

‖KP (I −Q)Nu‖X ≤ L ‖(I −Q)Nu‖Y ≤ L (‖Nu‖Y + ‖QNu‖Y ) ≤ C2,
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where C2 = L(C1 + rq−1 + ‖ωr‖L1[0,T ]) .

Step 2: Let u ∈ Ω̄ and t1, t2 ∈ [0, T ] with t1 < t2 then∣∣∣t1−β2 (KP (I −Q)Nu)1(t2)− t1−β1 (KP (I −Q)Nu)1(t1)
∣∣∣

=

∣∣∣∣∣ t1−β2

Γ(β)

∫ t2

0
(t2 − s)β−1 ((I −Q)Nu)1(s)ds

− t1−β1

Γ(β)

∫ t1

0
(t1 − s)β−1 ((I −Q)Nu)1(s)ds

∣∣∣∣∣
≤

∣∣∣∣∣ t1−β2

Γ(β)

∫ t2

t1

(t2 − s)β−1 ((I −Q)Nu)1(s)ds

∣∣∣∣∣
+

∣∣∣∣∣ t1−β2 − t1−β1

Γ(β)

∫ t1

0
(t2 − s)β−1 ((I −Q)Nu)1(s)ds|

+

∣∣∣∣∣ t1−β1

Γ(β)

∫ t1

0

(
(t2 − s)β−1 − (t1 − s)β−1

)
((I −Q)Nu)1(s)ds

∣∣∣∣∣
≤

(C + 1)(rq−1 + ‖ωr‖L1[0,T ])

Γ(β + 1)
|t2 − t1| ‖ωr‖L1[0,T ] → 0

as t1 → t2 uniformly. Similarly we can derive that

|(KP (I −Q)Nu)2(t2)− (KP (I −Q)Nu)2(t1)|

=

∣∣∣∣∫ t2

0
((I −Q)Nu)2(s)ds−

∫ t1

0
((I −Q)Nu)2(s)ds

∣∣∣∣
=

∣∣∣∣∫ t1

0
((I −Q)Nu)2(s)ds+

∫ t2

t1

((I −Q)Nu)2(s)ds

−
∫ t1

0
((I −Q)Nu)2(s)ds

∣∣∣∣
=

∣∣∣∣∫ t2

t1

((I −Q)Nu)2(s)ds

∣∣∣∣ ≤ (t2 − t1) |((I −Q)Nu)2|

≤ (t2 − t1)(C + 1)(rq−1 + ‖ωr‖L1[0,T ]) → 0

as t1 → t2 uniformly. Thus, KP (I−Q)Nu(Ω̄) is compact, therefore, the nonlinear operator
N is L -compact on Ω̄. �

3.2. Existence theorem for the fractional-order p-Laplacian boundary value
problem.

Theorem 3.1. Assume the following condition holds.
(H1) There exist functions a1(t) > 0, a2(t) > 0, a3(t) > 0, in L1[0, T ] such that

g(t) |f(t, u, v)| ≤ a1(t) + a2(t)|t1−βu|p−1 + a3(t)|v|p−1,

for all (u, v) ∈ R2 and t ∈ [0, T ], where g(t) ∈ L1[0, T ], g(t) > 0.
(H2) There exists a constant A > 0 such that if |u| > A or |v| > A, then either

uD1(N(u, v)>)2 + vD2(N(u, v)>)2 > 0, (3.7)
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or

uD1(N(u, v)>)2 + vD2(N(u, v)>)2 < 0. (3.8)

Then problem 2.1 has at least one solution, provided that

T p−1

Γ(β + 1)p−1
‖a2‖L1[0;T ] + ‖a3‖L1[0;T ] < 1, if 1 < p < 2, (3.9)

2p−2T p−1

Γ(β + 1)p−1
‖a2‖L1[0;T ] + ‖a3‖L1[0;T ] < 1, if p ≥ 2. (3.10)

Proof. Step 1. Consider the set

Ω1 = {u ∈ domL\KerL | Lu = ρNu, ρ ∈ (0, 1)}.

For u ∈ Ω1, and ρ 6= 0, we get Nu ∈ ImL = KerQ, hence∫ T

0
g(t)f (t, u1(t), φq(u2(t))) dt =

∫ T

0
g(t)

∫ t

0
g(s)f (s, u1(s), φq(u2(s))) dsdt = 0.

From the integral mean value theorem there exist t0 ∈ (0, T ), such that

f (t0, u1(t0), φq(u2(t0))) = 0,

according to condition (H2), we get |u2 (t0)| ≤ Ap−1. Since

u2(t) = u2(t0) +

∫ t1

t0

u′2 (s) ds.

We have

‖u2‖C ≤ A
p−1 +

∥∥u′2∥∥L1[0,T ]
, (3.11)

by Lemma 2.2 we can write, t1−βu1(t) = t1−βIβ
0+
Dβ

0+
u1(t) + c1, then∣∣∣t1−βu1(t)

∣∣∣ ≤ T

Γ(β + 1)

∥∥∥Dβ
0+
u1

∥∥∥
C

+ |c1| , ∀t ∈ [0, T ],

which gives

‖u1‖X1
≤ T

Γ(β + 1)

∥∥∥Dβ
0+
u1

∥∥∥
C

+ |c1| . (3.12)

Now, Lu = ρNu is equivalent to{
Dβ

0+
u1(t) = ρφq (u2(t)) ,

u′2(t) = −ρg(t)f (t, u1(t), φq (u2(t))) .
(3.13)

Using (3.13), we get
∥∥∥Dβ

0+
u1

∥∥∥
C
≤ ‖u2‖

1
p−1

C . Substitute this inequality in (3.12) we conclude

that

‖u1‖X1
≤ T

Γ(β + 1)
‖u2‖

1
p−1

C + |c1| . (3.14)
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By the second equation of (3.13), and (H1), we get∥∥u′2∥∥L1[0,T ]
= ‖g(t)f (t, u1(t), φq (u2(t)))‖L1[0,T ]

=

∫ T

0
g(s) |f (s, u1(s), φq (u2(s)))| ds

≤
∫ T

0

[
a1(s) + a2(s)|t1−βu|p−1 + a3(s)|v|p−1

]
ds

≤ ‖a1‖L1[0,T ] + ‖a2‖L1[0,T ]

∣∣∣t1−βu1

∣∣∣p−1
+ ‖a3‖L1[0,T ] ‖φq(u2)‖p−1

C

= ‖a1‖L1[0,T ] + ‖a2‖L1[0,T ]‖u1‖p−1
X1

+ ‖a3‖L1[0,T ] ‖u2‖C ,

where the functions a1(t) > 0, a2(t) > 0, a3(t) > 0, in L1[0, T ].
If 1 < p < 2, then from the above inequalities and Lemma 2.3 we obtain∥∥u′2∥∥L1[0,T ]

≤ ‖a1‖L1[0,T ] + ‖a2‖L1[0,T ]

(
T p−1

Γ(β + 1)p−1
‖u2‖L1[0,T ] + |c1|p−1

)
+ ‖a3‖L1[0,T ] ‖u2‖C

≤ ‖a1‖L1[0,T ] + ‖a2‖L1[0,T ] |c1|p−1 +Ap−1

(
T p−1

Γ(β + 1)p−1
‖a2‖L1[0,T ]

+ ‖a3‖L1[0,T ]

)
+

(
T p−1

Γ(β + 1)p−1
‖a2‖L1[0,T ] + ‖a3‖L1[0,T ]

)∥∥u′2∥∥L1[0,T ]
.

Similarly, if p ≥ 2, then∥∥u′2∥∥L1[0,T ]
≤ ‖a1‖L1[0,T ] +

2p−2T p−1

Γ(β + 1)p−1
‖a2‖L1[0,T ] + |c1|p−1

+Ap−1

(
2p−2T p−1

Γ(β + 1)p−1
‖a2‖L1[0,T ] + ‖a3‖L1[0,T ]

)
+

(
2p−2T p−1

Γ(β + 1)p−1
‖a2‖L1[0,T ] + ‖a3‖L1[0,T ]

)∥∥u′2∥∥L1[0,T ]
.

Where A is positive constant, using (3.9) or (3.10), we have∥∥u′2∥∥L1[0;T ]
≤ K0.

by (3.11), we get

‖u2‖C ≤ A
p−1 +K0 = K1.

and by (3.14)

‖u1‖X1
≤ T

Γ(β + 1)
‖u2‖

1
p−1

C + |c1| ≤ |c1|+
T

Γ(β + 1)
K

1
p−1

1 = K2.

As a consequence, we obtain

‖u‖X = max
{
‖u1‖X1

, ‖u2‖X2

}
= max {K1,K2} = k

then the set Ω1 is bounded.
Step 2. Let

Ω2 = {u ∈ KerL | QNu = 0}.
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For u ∈ Ω2, with u = (u1, u2)> = (c1t
β−1, c2)>,∀(c1, c2) ∈ R2. We have D1 (Nu)2 =

D2 (Nu)2 = 0, from (H2) there exist t1 ∈ [0, T ], such that
∣∣c1t

β−1
∣∣ ≤ A and |c2| ≤ A, then

we get

‖u‖X = max
t∈[0,T ]

{
‖u1‖X1

, ‖u2‖X2

}
≤ max

t∈[0,T ]

{
At1−β, A

}
= B.

Thus the set Ω2 is bounded.
Step 3.
Define the isomorphism J : kerL→ ImQ by

J

(
c1t

β−1

c2

)
=

(
0

1
∆

[
δ22c1 − δ12c2 + (δ11c2 − δ21c1) tβ−1

] ) , ∀t ∈ [0, T ]

for (c1, c2) ∈ R2. Let

Ω3 = {u ∈ kerL, ρJu+ (1− ρ)QNu = 0, for some ρ ∈ [0, 1]}.
By definition, u ∈ Ω3 means that u = (u1, u2)> = (c1t

β−1, c2)> and ρJu+(1−ρ)QNu = 0
with a, b ∈ R. If ρ = 0, then QNu = 0. By Step 2 we get ‖u‖X ≤ B. For ρ = 1, we obtain

Ju(t) = J(c1t
β−1, c2)> = (0, 0)>, then{

δ22c1 − δ12c2 = 0
δ11c2 − δ21c1 = 0.

Since ∆ 6= 0, then c1 = c2 = 0.
If 0 < ρ < 1, from −ρJu = (1− ρ)QNu, we obtain

−ρ
∆

[
δ22c1 − δ12c2 + (δ11c2 − δ21c1)tβ−1

]
=

1− ρ
∆

[
δ22D1(N(c1t

β−1, c2)>)2 − δ12D2(N(c1t
β−1, c2)>)2 + (δ11D2(N(c1t

β−1, c2)>)2

−δ21D1(N(c1t
β−1, c2)>)2)tβ−1

]
,

which implies that

−ρδ22c1 + ρδ12c2 = (1− ρ)
[
δ22D1(N(c1t

β−1, c2)>)2 − δ12D2(N(c1t
β−1, c2)>)2

]
−ρδ11c2 + ρδ21c1 = (1− ρ)

[
δ11D2(N(c1t

β−1, c2)>)2 − δ21D1(N(c1t
β−1, c2)>)2

]
.

Since the determinant ∆ 6= 0, then by simple calculations, we obtain

ρc1 = −(1− ρ)D1(N(c1t
β−1, c2)>)2,

and
ρc2 = −(1− ρ)D2(N(c1t

β−1, c2)>)2.

Then {
ρc2

1t
β−1 = −(1− ρ)c1t

β−1D1(N(c1t
β−1, c2)>)2

ρc2
2 = −(1− ρ)c2D2(N(c1t

β−1, c2)>)2.

By hypothesis (H2) and from (3.6), we get

ρ
(
c2

1t
β−1 + c2

2

)
= −(1− ρ)

[
c1t

β−1D1(N(c1t
β−1, c2)>)2 + c2D2(N(c1t

β−1, c2)>)2

]
< 0

and this is a contradiction. So, the set Ω3 is bounded.
Finally, if we assume that (3.7) holds, then by the same method, we can prove the bound-
edness of the set {u ∈ kerL : −ρJu+(1−ρ)QNu = 0 , for some ρ ∈ [0.1]}. Next, we prove
that all conditions of Theorem (2.1) are satisfied: Let Ω to be an open bounded subset of
X such that ∪i−3

i=1Ω̄i ⊂ Ω. From Lemma 3.2, we known that L is a Fredholm operator of
index zero. By Lemma 3.3, N is L-compact on Ω̄. Since Ωi, (i = 1, 2, 3) are bounded sets
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and Ωi ⊂ Ω, we have
(1) Lu 6= ρNu for all (u, ρ) ∈ [(dom L\Ker(L)) ∩ ∂Ω]× (0, 1),
(2) QNu 6= 0 for all u ∈ kerL ∩ ∂Ω.
Finaly we prove that condition (3) of Theorem 2.1 is satisfied. Let

H(u, ρ) = ±ρJu+ (1− ρ)QNu.

As Ω̄3 ⊂ Ω, for all u ∈ Ker(L) ∩ ∂Ω and ρ ∈ [0, 1], we obtain that H(u, ρ) 6= 0. So, by the
homotopy property of the degree, we conclude that

deg
(
QN|ker L, ker L ∩ Ω, 0

)
= deg(H(., 0), ker L ∩ Ω, 0)

= deg(H(., 1), ker L ∩ Ω, 0)

= deg(±J, ker L ∩ Ω, 0) 6= 0,

which implies that Lu = Nu has at least a solution in dom L ∩ Ω̄. �

4. A numerical example

Consider the following fractional differential equation

(φ3(D
1
2
0+
u(t)))′ + cos t( sin t

36π sin2 u− 5 cos 3t
36π φ3(D

1
2
0+
u(t))− π+2

72π ) = 0, t ∈ [0, π2 ], (4.1)

With {
φ3(D

1
2
0+u(0)) =

∫ π
2

0 cos tφ3(D
1
2
0+u(t))dt,

φ3(D
1
2
0+u(π2 )) =

∫ π
2

0 cos tφ3(D
1
2
0+u(t))dt,

(4.2)

where β = 1
2 , p = 3, q = 3

2 , T = π
2 , g(t) = cos t,

∫ π
2

0 cos tdt = 1.

Here f(t, u, v) = sin t
36π sin2 u− 5 cos 3t

36π v2 − π+2
72π , then

cos t|f(t, u, v)| ≤ π + 2

72π
+

1

36π
|t

1
2u|2 +

5

36π
|v|2.

So we may take

a1(t) =
π + 2

72π
, a2(t) =

1

36π
, a3(t) =

5

36π
,

we have ‖a1‖L1[0,π
2

] = π+2
144 ; ‖a2‖L1[0,π

2
] = 1

72 ; ‖a3‖L1[0,π
2

] = 5
72 , and ∆ = δ11δ22 − δ21δ12 =

0.81 6= 0 and we have also

2p−2T p

Γ(β + 1)p−1
‖a2‖L1[0,π

2
] + T‖a3‖L1[0,π

2
] = 0.13 < 1.

Let A = π
2 , if |v| > A, then we get

uD1(N(u, v)>)2 + vD2(N(u, v)>)2

= u

(
sin2 u

36π
− sin2 u

72
+
π + 2

72π

)
+ v

(
5

216π
v + (

π2

8
− 1)(

π + 2

72π
− sin2 u

36π
)

)
>

1

72
v

(
5

3π
v + (

π2

8
− 1)

)
> 0.

Hence, all conditions of Theorem 3.1 hold, which implies that the problem 4.1 - 4.2 has
at least one solution in X.
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5. Conclusions

In this study, we have proved the conditions of existence of solutions of a fractional-order
p-Laplacian boundary value problem at resonance case where the differential operator is
nonlinear and has a kernel dimension equal to two, The proof of our result is based on the
so called Mawhin’s coincidence degree theory which can only used after transforming the
nonlinear problem into a semilinear system.

References
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