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Abstract. In the present work, a vibration problem of a rectangular plate is considered to 
identify the upper bounds of the unknown material moduli of the plate which is assumed mi-
croisotropic. The frequencies are obtained by extending the Ritz Method to microisotropic 
case. Three dimensional (3-D) vibration analysis shows that some additional frequencies oc-
cur among the classical frequencies as characterizing the microisotropic effects. It is also ob-
served that these additional frequencies disappear and only the classical frequencies remain 
by the increasing values of microisotropic constants beyond some certain limits. The inverse 
problem is established for the identification of the upper bounds of the microisotropic con-
stants as an optimization problem where an error function is minimized.  
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1 INTRODUCTION 

It is well known that the material response to external effects closely depends on to the in-
ner structure of the material, so the linear theory of elasticity is unable to explain the behavior 
of the material having complex inner structures. Among some others, Eringen’s micromorphic 
[1,2] theory is the one which is widely used to explain the behavior of such materials. 

In the passage from macroscopic to microscopic approach, a very serious difficulty occurs 
in engineering problems as the lack of the knowledge in the statistical thermodynamics and 
mechanics. This seriously limits the development of the microscaled models because of the 
unknown material properties. With other words, micromorphic models have great advantages 
in modeling physical realities with the minimum ambiguity and arbitrariness, but unfortu-
nately they are computationally and mathematically inefficient in practice. To solve this very 
important problem of the theory, several further simplifications are considered like micropolar 
solids [3] which reduces the number of the unknown material coefficients from eighteen to six 
in linear case which makes the theory more applicable to several problems. But this approach 
is not very convenient to describe some microstructures like the medium having microcracks 
and microvoids which is the case in micro damaged materials. Microstretch theory assumes 
that each material point can make also micro elongation in addition to micro rotation. There 
are nine material moduli in this case and this approach may be more reliable than micropolar 
theory to model micro damaged materials [4]. Kiris and Inan used more simplified version of 
this theory to describe micro-damaged bodies called micro-elongation theory [5]. This theory 
has only five material constants. But its application to real engineering materials is limited.  

Another approach is microisotropy introduced by Koh [6]. It may be considered as the one 
between two limits of the microstructural theories, namely micromorphic theory on one end 
and micro elongation theory on the other end. In this approach, a kind of an "isotropy" is con-
sidered as the coincidence of the principal directions of the stress and proper strain quantities. 
This assumption reduces the number of unknown material properties from eighteen to twelve. 
A subsequent formulation of the problem with respect to the principal directions of the micro-
strain is proposed by Koh [7] which requires the analysis of nine equations in nine unknowns 
instead of the original twelve equations containing eighteen unknown material moduli of mi-
cromorphic theory.  

The present study aims to determine the upper bounds of the material properties of linear 
homogeneous microisotropic materials (defined by Koh [6] or "micro-co-axial" case preferred 
by the authors) by considering an inverse problem where an error function is minimized by 
the use of similar procedure given in [8-11].  

The wave propagation problem in micropolar and microstretch media are discussed in [10-
15] and it is shown that two and three new waves appear, respectively, which do not exist in 
the classical theory. Thus, it is obvious to expect that some additional waves will also appear 
in the present problem. Then, following Zhou et al. [16], the frequency analysis for microisot-
ropic case is carried on. For this purpose, small-strain, 3-D microisotropic theory and Ritz 
method are extended to the present problem. The detailed procedure is given in authors' ear-
lier works [10-11]. Here, the key point is that the values of classical frequencies begin to de-
viate while the additional frequencies arising from microisotropic character of the medium 
move out among the classical frequencies after some threshold values of these constants. This 
phenomenon tells us that the microstructure become more dominant and starts to affect the 
macro properties. Thus, we construct an optimization problem where an error function related 
to the difference between calculated and referenced frequencies is minimized and as a result 
of this optimization problem, the threshold values are obtained as the upper bounds of the mi-
croisotropic properties. 
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2 FUNDAMENTAL EQUATIONS OF MICROISOTROPIC MEDIUM 

In general, co-axiality is defined as the coincidence of the principle directions of stress and 
strain tensors locally. The extension of this concept to microstructure is given by Koh [6] and 
defined as microisotropy. Thus, it is expected that the principle directions of some particular 
strain measures would coincide with suitable stress measures in micro structures. [We prefer 
to call this case as micro-co-axiality, but we will keep the definition given by Koh [6] through 
the article.]  

To find the convenient sets of stress-strain measures, we may observe the pairing in energy 
equation which may be written as 

 , , ,-km m k km mk kmn mn k k kt v t q h        . (1) 

Here, the main stress measures are the asymmetric stress tensor kmt , the relative stress ten-

sor km , and the stress moment tensor, kmnt .   is mass density, kv  is velocity vector, km  is 

gyration tensor, kq  is heat flux vector and h  is heat source per unit mass. We may observe 

from the above energy expression that the proper strain measures are the macro strain kme , 

related to ,k mv ; the micro-displacement gradient km , related to km  and the micro-deformation 

gradient ,mn k related to ,mn k . Then the postulate of principle directions' coincidence may be 

summarized as follows as given by Koh [6-7]: 
The principle directions of symmetric part of the stress tensor ( )kmt  coincide with the prin-

ciple directions of the macro strain kme . One of the results of this condition is the coincidence 

of the principle directions of symmetric part of the relative stress tensor ( )km  with the micro-

strain ( )km , and vice versa. 

The principle directions of symmetric stress moment tensor ( )k mnt  coincide with the sym-

metric microdeformation gradient tensor ( )mn k . 

The principle values of each stress measures above and corresponding strain measures are 
independent of the other strain and stress measures. 

By these special conditions of microisotropy, the constitutive equations were obtained by 
Koh as follows [6-7], 
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Here, 1 2 5 3 4 7 9, , , , , , , ,          and 10  are the material coefficients and i and i  are 

defined as given in [1,2] and   and   are Lamé constants. klt  and kl  are macro and micro 

stress tensors, klmt  denotes stress-moment tensor, kl lmn knmm e t  is moment tensor, ( , )kl k lu   is 

strain tensor, ( )kl  is micro strain tensor, ku  is displacement vector and  1
2 , ,lk l k k lw u u   

and  kl  are macro and micro rotations tensors, respectively. 

Now, defining following abbreviations, 
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field equations for a microisotropic medium may be written as, 
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where 1
2 ,k klm m lr e u  and 1

2k klm lme   are macro and micro rotation vectors and kf , ( )klf  

and kl  are body force, symmetric body moment and body couple, respectively and j  is micro 

inertia per unit mass. 
Now, by the use of general energy density expression given in (1), the internal energy den-

sity for such a medium may be written as the sum of five different energies 

 1 2 3 4 5W W W W W W            (5) 

where, 
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Here, 1W  shows the macro straining part, 2W  corresponds micro and macro rotational parts. 

3W , 4W  and 5W  show micro straining part, micro stain gradient part and micro rotation gradi-

ent part of the internal energy density, respectively.  
The kinetic energy density for this problem is given as 
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2 2 2k k kl kl k kK u u j j             . (7) 

3 3D VIBRATION ANALYSIS OF A MICROISOTROPIC PLATE 

In this part of the work, we investigate the vibration problem of a rectangular plate which 
is modeled by microisotropic theory. The total potential energy, U , and total kinetic energy, 
K  of the plate may be written as, 
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and 
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Here, a , b , and h  show the plate dimensions and  

 

2 2 2 2 2 2
1 11 22 33 2 11 22 33 3 12 13 23

2 2 2 2 2 2
4 1 1 2 2 3 3 5 11 22 33 6 (11) (22) (33)

2 2 2 2 2 2
7 (12) (13) (23) 10 1,1 2,2 3,3 13 1,1 2,2 3,3

2
8 (11),1

, ( ), ( ),

( ) ( ) ( ) , , ,

, , ,

e e e e e e e e e

r r r        

        



           

              

           

  2 2 2 2 2 2 2 2
(11),2 (11),3 (22),1 (22),2 (22),3 (33),1 (33),2 (33),3

2 2 2 2 2 2 2 2 2
9 (12),1 (13),1 (23),1 (12),2 (13),2 (23),2 (12),3 (13),3 (23),3

2 2 2 2 2 2
11 1,2 1,3 2,1 2,3 3,1 3,2 12

,

,

,

       

        

     

       

         

        1,2 2,1 1,3 3,1 2,3 3,2.       
 (10) 

Now, assuming harmonic-time dependence, we may write 

 
 
 

( )

( )

( , , , ), ( , , , ), ( , , , )

( , , ), ( , , ), ( , , ) ; , 1, 2,3

k kl k

i t
k kl k

u x y z t x y z t x y z t

U x y z x y z x y z e k l

 

   
 (11) 

Here,   denotes the natural frequency. Introducing non-dimensional parameters,  
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the minimum energy functional of the microisotropic plate may be written as 

 Π V T  . (13) 

Here,  
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Following [10, 16], we use triplicate series of Chebyshev polynomials multiplied by ad-
missible functions which satisfy the boundary conditions of the plate for each amplitude func-
tions of the Eq. (11), i.e., 
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i j k

m
m ijk i j k

i j k

U F A P P P m

F B P P P m n

F C P P P m



       

        

       














 

 

  







 (18) 

Here, one dimensional thi  Chebyshev polynomial and the boundary functions are taken as 
given in Refs. [10,16]. 

Now, minimizing the energy functional Eq. (13) with respect to the unknown coefficients 
of Chebyshev polynomials gives the following eigenvalue problem 

  2Ω K M Z 0 . (19)  

Here, a    and the column vector Z  is written with its sub-column vectors as 
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 1 2 3 11 22 33 (12) (13) (23) 1 2 3{ , , , , , , , , , , , }TZ A A A B B B B B B C C C , (20)  

and, each sub-column vector, for example 1A  is in the following form 

 1 1 1 1 1 1 1
111 11 1 1 1 11{ , , , , , , , , , , }N k kN I IJKA A A A A AA      . (21)  

The rigidity and the mass matrices are defined in terms of sub-matrices as the followings, 

1 1 1 2 1 3 1 2 1 3

1 2 2 2 2 3 2 1 2 3

1 3 2 3 3 3 3 1 3 2

11 11 11 22 11 33

11 12 22 22 22 33

11 33 22 33 33 33

(12)

u u u u u u u u

u u u u u u u u

u u u u u u u u

 

 

 

     

     

     




K K K 0 0 0 0 0 0 0 K K
K K K 0 0 0 0 0 0 K 0 K
K K K 0 0 0 0 0 0 K K 0

0 0 0 K K K 0 0 0 0 0 0
0 0 0 K K K 0 0 0 0 0 0
0 0 0 K K K 0 0 0 0 0 0

K 0 0 0 0 0 0 K
(12)

(13) (13)

( 23) ( 23)

2 1 3 1 1 1 1 2 1 3

1 2 3 2 1 2 2 2 2 3

1 3 2 3 1 3 2 3 3 3

u u

u u

u u



 

 

       

       

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0
0 0 0 0 0 0 0 K 0 0 0 0
0 0 0 0 0 0 0 0 K 0 0 0
0 K K 0 0 0 0 0 0 K K K

K 0 K 0 0 0 0 0 0 K K K
K K 0 0 0 0 0 0 0 K K K

(22)  

and 

1 1

2 2

3 3

11 11

22 22

33 33

(12) (12)

(13) (13)

(23) ( 23)

1 1

2

u u

u u

u u

 

 

 

 

 

 

 

 



M 0 0 0 0 0 0 0 0 0 0 0
0 M 0 0 0 0 0 0 0 0 0 0
0 0 M 0 0 0 0 0 0 0 0 0
0 0 0 M 0 0 0 0 0 0 0 0
0 0 0 0 M 0 0 0 0 0 0 0
0 0 0 0 0 M 0 0 0 0 0 0

M 0 0 0 0 0 0 M 0 0 0 0 0
0 0 0 0 0 0 0 M 0 0 0 0
0 0 0 0 0 0 0 0 M 0 0 0
0 0 0 0 0 0 0 0 0 M 0 0
0 0 0 0 0 0 0 0 0 0 M

2

3 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0 0 0 0 0 0 0 0 0 0 0 M

 (23)  

To provide the shortness, the expressions of the above sub-matrices are not given here. Just 
for sample, we gave only few of them,  

 

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 1 2 1 2 1 2 1 2 1 2

1,1 0,0 0,0 2 0,0 1,1 0,0 0,0 0,0 1,1
1 2 2 3 1 2

2

1,0 0,1 0,0 0,1 1,0 0,0 1
1 1 2 3

1
( 2 ) ( ) ,

( ) ,

u u u ku k u lu l mm u ku k u lu l mm u ku k u lu l mm

u u u ku k u lu l mm u ku k u lu l mm u

A A D G H A A D G H D G H

A D G H A A D G H a






 
     

 

     

K

K K
1 2 1 2

0,0 0,0 1,0
3

2

2 2
1,1 0,0 0,0 2 0,0 1,1 0,0 0,0 0,0 1,1 0,0 0,0 0,01

1 1 42
2

0,
11 22 11 33 22 33

,

( )
4

1
(( , ), ( , ), ( , )),

4

u k k u l l mm

pq pkqk plq l mm pkqk plql mm pkqk plql mm pkqk plql mm

qq qkqk

A D G H

a
B D G H D G H D G H A D G H

p q p q p q D

 




     

   

      

K

M 0 0,0 0,0
1 2 3( , , ),qlql mmG H q u u u

(24)  

Similar forms may be found in [10] which are given for microstretch case.  
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CONSTRUCTION OF THE OPTIMIZATION PROBLEM AND THE NUMERICAL 
RESULTS  

The construction of the optimization problem is based on to the comparison of calculated 
and reference frequencies' spectrum. First, we must underline the fact that there is no data for 
the experimental frequencies of the plate modeled by microisotropic or any other micromor-
phic theories. Thus, we consider the frequencies of the plate made of Gauthier's [17] material 
which are obtained by the classical theory as the experimental frequencies or the reference 
frequencies of the present problem. The frequencies' spectrum of the plate modeled by mi-
croisotropic theory contains both the classical frequencies and the additional micro frequen-
cies due to the waves appear in microisotropic theory as the case in microstretch theory [10]. 
The dependence of the micro frequencies on to the microisotropic constants is more sensitive 
than the classical frequencies. As a result, when the microisotropic constants are getting big-
ger, the values of micro frequencies rapidly increase and move out among the classical fre-
quencies' spectrum and the classical frequencies almost all remain same in value unless the 
microisotropic constants exceed some certain threshold values. After they exceed these 
threshold values, all additional frequencies move out from the spectrum and also the classical 
frequencies begin to deviate. This phenomenon tells us that the microstructure become more 
dominant and starts to affect the macro properties. Thus, an optimization problem as an in-
verse problem may be constructed where an error function related to the difference between 
calculated and the reference frequencies is minimized and then the threshold values of mi-
croisotropic constants are obtained as the upper bounds of the microisotropic elastic constants 
as in authors' previous work for microstretch constants [10]. 

The optimization problem is constructed by superposing two objective functions; first one 
is minimizing the difference between calculated and reference classical frequencies and sec-
ond one is minimizing the number of the additional frequencies due to microisotropic charac-
ter of the medium and we may write, 

 
2

1 2
1

( )
( ( ))

ref calI
microi i

ref
subject to i i

f f
length B

fMinimize  


 
 

 


X

X
X . (25)  

Here, ref
if  denotes thi  reference frequencies obtained from classical elasticity, ( )cal

if X  

denotes thi  calculated frequencies obtained from microisotropic theory, ( )microB X  is the set of 

additional micro frequencies occurring in the spectrum (first I  number of frequencies), 1  

and 2  satisfying 1 2 1   , are the weights which identify first and second objective func-

tions are dominant [10] and the parameter vector X  contains the unknown microisotropic ma-
terial constants and is given as 

 1 2 3 1 2 3 4 5{ , , , , , , , }B B B B B  X . (26)  

The optimization problem given by Eq. (25) is solved by combining the direct search algo-
rithm (DSA) and the genetic algorithm (GA) [10]. The material of the plate is considered as a 
Gauthier material [17] composed of aluminum matrix within randomly distributed epoxy 
spheres. The geometrical and material properties of the plate and the reference frequencies 
obtained from classical theory are given in Table.1. 
 

Material  Aluminum matrix with randomly distributed epoxy spheres 
Young Modulus ( E ) 5.31GPa  Poisson ratio ( ) 0.4  
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Density(  ) 
32192 /kg m  Micro inertia ( j ) 7 21.96 10 m   

Dimensions( a b t  ) 31 1 0.1 m   Boundary Conditions FFFF (F=Free) 

Ref. Frequencies  
1.19833, 1.80347, 2.39605, 3.06437, 3.06437, 5.38536, 5.52594, 
5.52594, 5.80731, 6.75343, 7.56143, 8.26271, 8.26271, 8.53479, 
8.53479, 8.54115, 9.91288, 10.0431, 10.646, 10.9261 (Hz) 

Table 1: The properties of the plate made of Gauthier's material [17]. 

The solution of the optimization problem gives the upper bounds of unknown microisot-
ropic constants as given in Table.2. 

 

1 2 3 1

2 3 4 5

4 4 3 6

5 7 6 7
, , , ,

, , ,
0.38410 0.95510 0.3210 0.42210
0.16110 0.47810 0.93310 0.78510

GPa GPa GPa B GN
B GN B GN B GN B GN
     

   
   
   

 

Obtained Freq. (Hz) with above microisotropic parameters: 

1.19872, 1.80387, 2.39592, 3.06502, 3.06502, 5.38636, 5.52609, 5.52609, 
5.80834, 6.75367, 7.56152, 8.26272, 8.26272, 8.53594, 8.53594, 8.54129, 
9.91331, 10.043, 10.646, 10.9266 

Error 
73.57516 10  

Table 2: The final results of microisotropic elastic constants for Gauthier composite plate [17] obtained from 

Direct Search Method, 1 2 3 1 2 3 4 5{ , , , , , , , }B B B B B  X . 

4 CONCLUSIONS  

In the present paper, a procedure is given to determine the upper bounds of the unknown 
material properties of micro isotropic bodies. 

As a result, present analysis shows that: 
• Some additional frequencies appear among the classical frequencies due to the micro 

structure.  
• By the increasing values of the micro properties, the micro additional frequencies start 

to move out from the frequencies' spectrum. In the mean time the classical frequencies stay 
almost unchanged. 

• After some certain threshold values of micro elastic constants, most of the additional 
frequencies leave the spectrum and some small chances occur in the values of the classical 
frequencies.  

• If further more increase is considered beyond these threshold values of micro elastic 
constants, all additional frequencies due to micro structure move out the frequency spectrum 
and the deviation in the values of the classical frequencies become more noticeable. This is an 
expected result. Because, after exceeding the obtained values of microisotropic elastic con-
stants, the material loses its microstructural character and reflects the macro character of the 
material. 

We have to point out here that to find more specific values for the micro constants, we 
need to know some numerical data for the micro frequencies of the microisotropic material 
obtained by experimental analysis which needs more sophisticated equipments and experi-
mental techniques. Since no such experimental data is available in the literature, we used the 
frequencies obtained from classical 3-D analysis which give us only the upper bounds for mi-
cro constants. 
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