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On spherical submanifolds
with �nite type spherical Gauss map
Abstract: Chen and Lue (2007) initiated the study of spherical submanifolds with �nite type spherical Gauss
map. In this paper, we �rstly prove that a submanifold Mn of the unit sphere Sm−1 has non-mass-symmetric
1-type spherical Gauss map if and only ifMn is an open part of a small n-sphere of a totally geodesic (n + 1)-
sphere Sn+1 ⊂ Sm−1. Thenwe show that a non-totally umbilical hypersurfaceM of Sn+1 with nonzero constant
mean curvature in Sn+1 has mass-symmetric 2-type spherical Gauss map if and only if the scalar curvature
curvature ofM is constant. Finally, we classify constant mean curvature surfaces in S3 with mass-symmetric
2-type spherical Gauss map.
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1 Introduction
LetMn denote a Riemannian n-manifold with Laplacian operator ∆. A smoothmap φ : Mn Ú→ EN ofMn into
the Euclidean N-space is said to be of �nite type if it admits a �nite spectral decomposition:

φ = c +∑k
t=1 φt , (1)

where c is a constant vector in EN , each φt is a non-constant EN -valued maps satisfying ∆φt = λptφt with
λpt ∈ ℝ and λp1 < λp2 < ⋅ ⋅ ⋅ < λpk . Otherwise, φ is said to be of in�nite type. When the spectral resolution (1)
contains exactly k non-constant terms, the map φ is called of k-type (see [3; 4] for details).

Let SN−1(x0, c0) ⊂ EN denote a hypersphere of EN with curvature c0 > 0, where x0 ∈ EN is the center of
the sphere. If x0 is the origin of EN and c0 = 1, we denote the unit hypersphere SN−1(0, 1) by SN−1.

A spherical �nite type map φ : Mn Ú→ SN−1 ⊂ EN of a Riemannian manifold M into SN−1 is calledmass-
symmetric if the vector c in its spectral resolution is the center of SN−1 (which is the origin of EN). Otherwise,
φ is called non-mass-symmetric.

Let x : Mn Ú→ Em be an isometric immersion from a Riemannian n-manifold Mn into a Euclidean m-
space Em. Let G(n,m) denote the Grassmannian manifold consisting of linear n-subspaces of Em. The clas-
sical Gauss map νc : Mn Ú→ G(n,m) associated with x is the map which carries each point p ∈ M to the
linear subspace of Em obtained by parallel displacement of the tangent space TpM to the origin of Em. Since
G(n,m) can be canonically imbedded in the vector space ⋀n Em = EN with N = (mn), obtained by the exte-
rior products of n-vectors in Em, the classical Gauss map gives rise to a well-de�ned map from Mn into the
Euclidean N-space EN .

In [7], Chen and Piccinni initiated the study of Euclidean submanifolds with �nite type classical Gauss
map. Since then many geometers have studied such submanifolds, see [2; 1; 5; 8; 9].

For a spherical submanifold Mn in Sm−1, Obata [10] studied the generalized Gauss map which assigns
to each p ∈ M the totally geodesic n-sphere of Sm−1 determined by the tangent space TpMn. Since a totally
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geodesic n-sphere Sn of Sm−1 determines a unique linear (n + 1)-space containing the totally geodesic Sn in
Em, Obata’smap can be extended to amap ν̂ ofMn into the Grassmannian G(n+1,m) in a naturalway, known
as the spherical Gauss map. The composition ν̃ of ν̂ followed by the natural inclusion of G(n + 1,m) in E(

m
n+1)

is also called the spherical Gauss map.
Let x : Mn Ú→ Sm−1 be an isometric immersion of an orientable Riemannian n-manifold into the unit

sphere Sm−1. We identify each point p with x(p) and tangent vector v ∈ TpM with its image dxp(v) under the
di�erential dxp. For each point p ∈ Mn, let e1, . . . , en be an oriented orthonormal basis of TpMn. Since the
n +1 vectors x, e1, . . . , en determine a linear (n +1)-subspace inEm, the intersection of this linear subspace
with Sm−1 is a totally geodesic n-sphere determined by TpMn as in [10]. Thus the spherical Gauss map ν̃ :
Mn Ú→ E(

m
n+1) associated with x is given by (see [6] for details)

ν̃ = x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ en : Mn Ú→ G(n + 1,m) ⊂ S(
m
n+1)−1 ⊂ E(

m
n+1). (2)

In [6], Chen and Lue studied spherical submanifolds with �nite type spherical Gauss map. As they explained
the geometric behavior of classical and spherical Gauss map are di�erent. For example, the classical Gauss
map of every compact Euclidean submanifold is mass-symmetric; but the spherical Gauss map of a spherical
compact submanifold is not mass-symmetric in general. Moreover, by [7] the classical Gauss map of the sur-
face S1(a) × S1(b) ⊂ S3(1) ⊂ E4, a2 + b2 = 1, is of 1-type; however we show in this paper that the spherical
Gauss map of the surface S1(a) × S1(b) ⊂ S3(1)with a ̸= b and a2 + b2 = 1 is mass-symmetric and of 2-type.

In [6], Chen and Lue classi�ed spherical submanifolds with 1-type spherical Gauss map. They also clas-
si�ed minimal surfaces in S4 with mass-symmetric 2-type spherical Gauss map, and minimal surfaces in S5

with non-mass-symmetric 2-type spherical Gauss map. They stated that every isoparametric hypersurface of
Sn+1 has 1-type spherical Gauss map. However, the results given for non-mass-symmetric 1-type spherical
Gauss map (Theorem 4.3 in [6]) is not true. In this paper, we prove that an n-dimensional submanifold M of
Sm−1 has non-mass-symmetric 1-type spherical Gaussmap if and only ifM is an open part of a small n-sphere
of a totally geodesic (n+1)-sphere Sn+1 ⊂ Sm−1. We also prove that a non-totally umbilical hypersurfaceM of
Sn+1 with nonzero constant mean curvature in Sn+1 has mass-symmetric 2-type spherical Gauss map if and
only if the scalar curvature ofM is constant. Moreover we show that the spherical Gauss map of a non-totally
umbilical surfaceM of S3 with nonzero constant mean curvature is mass-symmetric and of 2-type if and only
if M is an open part of the surface S1(a) × S1(b) ⊂ S3(1) with a ̸= b and a2 + b2 = 1.

2 Preliminaries
Let M be an n-dimensional isometrically immersed submanifold in a Riemannian m-manifold M̃. Let ∇̃ be
the Levi–Civita connection of M̃ and ∇ the induced connection onM. We choose a local �eld of orthonormal
frame e1, . . . , en , en+1, . . . , em such that, restricted toM, the vectors e1, . . . , en are tangent toM and hence
en+1, . . . , em are normal to M. We use the following convention on the range of indices:

1 ≤ A, B, C, . . . ≤ m, 1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ r, s, t, . . . ≤ m.

With respect to the chosen frame �eld of M, let {ω1, . . . , ωm} be the �eld of dual frame and let {ωAB} with
ωAB + ωBA = 0 be the connection forms. Then we have the formulas of Gauss and Weingarten, respectively,
as

∇̃ek ei =
n
∑
j=1
ωij(ek)ej +

m
∑
r=n+1

hriker and ∇̃ek er = −Ar(ek) +
m
∑

s=n+1
ωrs(ek)es ,

where the hrij’s are the coe�cients of the second fundamental form h,Ar is theWeingartenmap indirection er,
andωrs are the normal connection forms. Also, the normal connection is de�ned by Dei er = ∑m

s=n+1 ωrs(ei)es.
Themean curvature vector H and the squared length ‖h‖2 of the second fundamental form h are de�ned,

respectively, by

H =
1
n

m
∑
r=n+1

trArer and ‖h‖2 =
m
∑
r=n+1

tr(Ar)2.
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The Codazzi equation of M is given by

hrij,k = h
r
jk,i , hrjk,i = ei(h

r
jk) −

n
∑
ℓ=1

(hrjℓωkℓ(ei) + h
r
kℓωjℓ(ei)) +

m
∑

s=n+1
hsjkωsr(ei). (3)

Also, from the Ricci equation of M we have

RD(ej , ek; er , es) = ⟨[Aer , Aes ](ej), ek⟩ =
n
∑
i=1

(hrkih
s
ij − h

r
jih

s
ik), (4)

where RD is the normal curvature tensor.
If the ambient space M̃ is the Euclidean m-space Em, then the scalar curvature S of M is given by

S = n2|H|2 − ‖h‖2, (5)

where |H|2 is the squared length of the mean curvature vector H of M in Em. In particular, if M is immersed
in the unit sphere Sm−1 ⊂ Em, then (5) gives

S = n(n − 1) + n2|Ĥ|2 − ‖ĥ‖2, (6)

where Ĥ and ĥ are the mean curvature vector and the second fundamental form of M in Sm−1, respectively.
For M in Sm−1 ⊂ Em we also have

H = Ĥ − x, h(X, Y) = ĥ(X, Y) − ⟨X, Y⟩x. (7)

A hypersurface M in Sn+1 is said to be isoparametric if it has constant principal curvatures.

3 Finite type spherical Gauss map
In [6], the Laplacian of the spherical Gauss map ν̃ is given by

∆ν̃ = ‖ĥ‖2 ν̃ + nĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ en − n
n
∑
k=1

x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ Dek Ĥ⏟⏟⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ en

+ ∑
j,k;s<r

Rrsjkx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
j−th

∧ ⋅ ⋅ ⋅ ∧ en , (8)

where Rrsjk = RD(ej , ek; er , es). The following two theorems were stated for the submanifolds in Sm−1 with
1-type spherical Gauss map.

Theorem 3.1 ([6]). A submanifold of Sm−1 has mass-symmetric 1-type spherical Gauss map if and only if it is a
minimal submanifold of Sm−1 with constant scalar curvature and �at normal connection.

Theorem 3.2 ([6]). An n-dimensional submanifold of Sm−1 has non-mass-symmetric 1-type spherical Gauss
map if and only if it has constant scalar curvature and it is immersed in a totally geodesic (n + 1)-sphere
Sn+1 ⊂ Sm−1 as a hypersurface with nonzero constant mean curvature.

By Theorem 3.2, every non-minimal isoparametric hypersurface in Sn+1 must have non-mass-symmetric
1-type Gauss map. However, we prove that every non-minimal and non-totally umbilical isoparametric hy-
persurface in Sn+1 has mass-symmetric 2-type spherical Gauss map (see Corollary 3.7). In the proof of The-
orem 3.2, Equation (4.2) in [6, p. 414] is incorrect because of two missing terms in that equation. We prove
the next theorem for submanifolds in Sm−1 with non-mass-symmetric 1-type spherical Gauss map. Also, the
statement of Corollary 4.1 in [6] must be as follows:

Corollary 3.3. Every isoparametric minimal hypersurface of Sn+1 has mass-symmetric 1-type spherical Gauss
map.
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For later use we prove the following lemma.

Lemma 3.4. For a hypersurface M of Sn+1 ⊂ En+2 we have

∆(en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en) = nα̂ν̃ + nen+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en , (9)

where α̂ is the mean curvature of M in Sn+1.

Proof. Let e1, . . . , en+1, en+2 be a local orthonormal frame �eld on M in En+2 such that e1, e2, . . . , en are
tangent to M and en+1, en+2 = x are normal to M, where x is the position vector of M. Since en+2 = x is
parallel in the normal bundle of M in En+2 and the codimension of M in En+2 is two, en+1 is parallel too. Let
us put ν̄ = en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en. Now we will compute ∆ν̄. By di�erentiating ν̄ we get

ei ν̄ = −en+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ei−1 ∧ x ∧ ei+1 ∧ ⋅ ⋅ ⋅ ∧ en . (10)

Since ∇ei ei = ∑n
j=1 ωij(ei)ej and Den+1 = 0, we have

(∇ei ei)ν̄ = −
n
∑
j=1
ωij(ei)en+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ej−1 ∧ x ∧ ej+1 ∧ ⋅ ⋅ ⋅ ∧ en . (11)

Di�erentiating ei(ν̄) in (10) we obtain that

eiei ν̄ = − ν̄ − hn+1ii ν̃ −
n
∑
j,ℓ=1

ωjℓ(ei)en+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ eℓ⏟⏟⏟⏟⏟⏟⏟
j−th

∧ ⋅ ⋅ ⋅ ∧ x⏟⏟⏟⏟⏟⏟⏟
i−th

∧ ⋅ ⋅ ⋅ ∧ en

= − ν̄ − hn+1ii ν̃ +
n
∑
j=1
ωji(ei)en+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ x⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en . (12)

Considering nα̂ = ∑n
i=1 h

n+1
ii we have

∆ν̄ =
n
∑
i=1

(∇ei ei − eiei)ν̄ = nα̂ν̃ + nν̄ −
n
∑
i,j=1

(ωij(ei) + ωji(ei))en+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ x⏟⏟⏟⏟⏟⏟⏟
j−th

∧ ⋅ ⋅ ⋅ ∧ en (13)

which gives (9) as ωij + ωji = 0. 2

Theorem 3.5. An n-dimensional submanifoldM of Sm−1 has non-mass-symmetric 1-type spherical Gauss map
if and only if M is an open part of a small n-sphere of a totally geodesic (n + 1)-sphere Sn+1 ⊂ Sm−1.

Proof. Let x : M → Sm−1 be an isometric immersion of a Riemannian n-manifoldM into Sm−1. If the spherical
Gauss map ν̃ of x is non-mass-symmetric 1-type, then we have ∆ν̃ = λp(ν̃ − c) for some vector c and some real
number λp. Thus we have

(∆ν̃)i = λp(ν̃)i , (14)

where ( ⋅ )i = ei( ⋅ ). By di�erentiating ν̃ in (2) we �nd

ei ν̃ = ∑
r,k
hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en . (15)

On the other hand, by a direct long computation, we obtain from (8) that

ei(∆ν̃) = (‖ĥ‖2)i ν̃ + ‖ĥ‖2
m−1
∑
r=n+1

n
∑
k=1

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en + 2nDei Ĥ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ en

+ n
n
∑
k=1

m−1
∑
r=n+1

hrikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ en

− n
n
∑
k=1

δikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ x ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en
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− n
n
∑
j,k,l=1
j ̸=k ωjl(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ el⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ Dek Ĥ⏟⏟⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ en

− n
n
∑
j,k=1
j ̸=k

m−1
∑
r=n+1

hrijx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
j−th

∧ ⋅ ⋅ ⋅ ∧ Dek Ĥ⏟⏟⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ en

+ n
n
∑
k=1

⟨ADek Ĥ(ei), ek⟩x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ en

− n
n
∑
k=1

x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ DeiDek Ĥ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n
∑
j,k=1
j ̸=k {ei(R

r
sjk)x + Rrsjkei} ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n
∑
j,k,l
j,k,l ̸= R

r
sjk{

n
∑
h=1

ωlh(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ eh⏟⏟⏟⏟⏟⏟⏟
l−th

∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
j−th

∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑
t=n+1

htilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟
l−th

∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
j−th

∧ ⋅ ⋅ ⋅ ∧ en}

−
m−1
∑

r,s=n+1

n
∑
j,k,l=1
j ̸=k Rrsjkh

s
ilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ el⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s,t=n+1

n
∑
j,k=1
j ̸=k R

r
sjkωst(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en . (16)

Case (a): Ĥ = 0. In this case, equation (16) reduces to

ei(∆ν̃) = (‖ĥ‖2)i ν̃ + ‖ĥ‖2
m−1
∑
r=n+1

n
∑
k=1

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n
∑
j,k=1
j ̸=k {ei(R

r
sjk)x + Rrsjkei} ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n
∑
j,k,l
j,k,l ̸= R

r
sjk{

n
∑
h=1

ωlh(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ eh⏟⏟⏟⏟⏟⏟⏟
l−th

∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
j−th

∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑
t=n+1

htilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟
l−th

∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
j−th

∧ ⋅ ⋅ ⋅ ∧ en}

−
m−1
∑

r,s=n+1

n
∑
j,k,l=1
j ̸=k Rrsjkh

s
ilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ el⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s,t=n+1

n
∑
j,k=1
j ̸=k R

r
sjkωst(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en . (17)

Comparing (14), (15) and (17) we get ‖ĥ‖2i = Rrsjk = 0. Thus M has constant scalar curvature and �at normal
connection. Theorem 3.1 implies that ν̃ is mass-symmetric 1-type. This is a contradiction.
Case (b): Ĥ ̸= 0. Since the term Dei Ĥ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ en appears only in ei(∆ν̃) of (16), but not in ei(ν̃), we know
from (14), (15) and (16) that DĤ = 0. Thus, M has parallel nonzero mean curvature vector in Sm−1. So, it has
nonzero constant mean curvature. Therefore, equation (16) reduces to

ei(∆ν̃) = (‖ĥ‖2)i ν̃ + ‖ĥ‖2
m−1
∑
r=n+1

n
∑
k=1

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ en
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+ n
n
∑
k=1

m−1
∑
r=n+1

hrikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en

− n
n
∑
k=1

δikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ x ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n
∑
j,k=1
j ̸=k {ei(R

r
sjk)x + Rrsjkei} ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s=n+1
s<r

n
∑
j,k,l
j,k,l ̸= R

r
sjk{

n
∑
h=1

ωlh(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ eh⏟⏟⏟⏟⏟⏟⏟
l−th

∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
j−th

∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑
t=n+1

htilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟
l−th

∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟
k−th

∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟
j−th

∧ ⋅ ⋅ ⋅ ∧ en}

−
m−1
∑

r,s=n+1

n
∑
j,k,l=1
j ̸=k Rrsjkh

s
ilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ el⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

+
m−1
∑

r,s,t=n+1

n
∑
j,k=1
j ̸=k R

r
sjkωst(ei)x ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ et⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en . (18)

From (14), (15) and (18) we know that ‖ĥ‖ and scalar curvature are constant. Also, we have

‖ĥ‖2
m−1
∑
r=n+1

n
∑
k=1

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en − n
n
∑
k=1

δikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ x ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en

−
m−1
∑

r,s=n+1

n
∑
j,k,l=1
j ̸=k Rrsjkh

s
ilx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ el⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

= λ
m−1
∑
r=n+1

n
∑
k=1

hrikx ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en (19)

and

n
n
∑
k=1

m−1
∑
r=n+1

hrikĤ ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en +
m−1
∑

r,s=n+1
s<r

n
∑
j,k=1
j ̸=k R

r
sjkei ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ es⏟⏟⏟⏟⏟⏟⏟

k−th
∧ ⋅ ⋅ ⋅ ∧ er⏟⏟⏟⏟⏟⏟⏟

j−th
∧ ⋅ ⋅ ⋅ ∧ en

= 0. (20)

Put Ĥ = α̂en+1. It follows from (20) that Rrsjk = 0 for r, s ≥ n + 2 and j, k = 1, . . . , n. Also, we �nd Rn+1sjk = 0
from DH = 0. Thus, the normal connection of Mn in Sm−1 is �at. Therefore, (20) yields

nα̂
n
∑
k=1

m−1
∑
r=n+1

hriken+1 ∧ e1 ∧ ⋅ ⋅ ⋅ ∧ ek−1 ∧ er ∧ ek+1 ∧ ⋅ ⋅ ⋅ ∧ en = 0. (21)

We see from (21) that the �rst normal space Im h is spanned by en+1. Therefore, by the reduction theorem
of Erbarcher, we conclude that Mn is contained in a totally geodesic sphere Sn+1 ⊂ Sm−1. Also, considering
hrjk = 0 for r = n + 2, . . . ,m − 1 and j, k = 1, . . . , n, and RD = 0, we have from (19) that

nα̂δik + (‖ĥ‖2 − λ)hn+1ik = 0 (22)

for i, k = 1, . . . , n. If λ = ‖ĥ‖2, then (22) gives α̂ = 0 which is a contradiction. So λ ̸= ‖ĥ‖2 and by taking
the sum of (22) for i = k and i from 1 up to n we get nα̂(n + ‖ĥ‖2 − λ) = 0 which gives λ = n + ‖ĥ‖2, and
thus hn+1ii = α̂ ̸= 0 for i = 1, . . . , n from (22). Therefore, M is a non-totally geodesic and totally umbilical
hypersurface of Sn+1, and consequently M is an open part of a small n-sphere of Sn+1 which comes from the
equation of Gauss.
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Conversely, let M be an open part of a small n-sphere of a totally geodesic (n + 1)-sphere Sn+1 ⊂ Sm−1.
Without loss of generality, we assume thatM is immersed in Sn+1 ⊂ En+2, that is,M is an open part of a small
sphere Sn(x0, c0) of Sn+1 ⊂ En+2 with the center x0 ∈ En+2 and curvature c0. Since M is a hypersurface of
Sn+1, the normal bundle of M in En+2 is �at.

Let e1, . . . , en+1, en+2 be a local orthonormal frame �eld on M in En+2 such that e1, . . . , en are tangent
to M and en+1, en+2 = x are normal to M. It is easy to show that the mean curvature α̂ of the small sphere
Sn(x0, c0) is α̂ = |x0|/√1 − |x0|2, and c0 = 1+ α̂2 from the equation of Gauss. Also, the mean curvature vector
Ĥ = α̂en+1 is parallel in En+2. Hence, from (8) we have

∆ν̃ = nα̂2 ν̃ + nα̂en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en . (23)

Now, if we put

c = 1
1 + α̂2

(ν̃ − α̂en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en), ν̃p =
α̂

1 + α̂2
(α̂ν̃ + en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en),

we then have ν̃ = c+ ν̃p. As α̂ is constant it is easily seen that ei(c) = 0, i = 1, . . . , n, i.e., c is a constant vector.
Using (9) and (23), we obtain from a direct computation that ∆ν̃p = n(α̂2+1)ν̃p. Therefore, the spherical Gauss
map ν̃ is non-mass-symmetric 1-type. 2

Theorem 3.6. Let M be a non-totally umbilical hypersurface in Sn+1 with nonzero constant mean curvature in
Sn+1. Then the spherical Gauss map ν̃ is mass-symmetric and of 2-type if and only if M has constant scalar
curvature.

Proof. Let M be a non-totally umbilical hypersurface in Sn+1 ⊂ En+2 with nonzero constant mean curvature
α̂ in Sn+1. Suppose that M has constant scalar curvature S. We show that the spherical Gauss map ν̃ is mass-
symmetric and of 2-type.

Let x be the position vector ofM inEn+2. Let e1, . . . , en+1, en+2 = x be a local orthonormal frame �eld on
M in En+2 such that e1, . . . , en are tangent toM and en+1, en+2 normal toM which are parallel in the normal
bundle of M in En+2. Since M is a hypersurface of Sn+1 ⊂ En+2, the normal bundle of M in En+2 is �at. We
choose e1, . . . , en such that Aen+1 (ei) = hn+1ii ei, i = 1, . . . , n. As hn+1ij = 0 for i ̸= j, it is easily seen that

n(‖ĥ‖2 − nα̂2) = ∑
i<j
(hn+1ii − hn+1jj )2 ≥ 0, (24)

and equality holds if and only if Mn is totally umbilical. If we put D0 = (‖ĥ‖2 − n)2 + 4n2α̂2 > 0, then

‖ĥ‖2 + n −√D0 =
(‖ĥ‖2 + n)2 − D0

‖ĥ‖2 + n +√D0
=
4n(‖ĥ‖2 − nα̂2)
‖ĥ‖2 + n +√D0

> 0 (25)

asM is non-totally umbilical. Since the mean curvature α̂ and the scalar curvature S are constants, equation
(6) implies that ‖ĥ‖2 is constant. Hence D0 is constant.

Now, as the normal bundle is �at, i.e., RD = 0 and Ĥ = α̂en+1 is parallel, equation (8) becomes

∆ν̃ = ‖ĥ‖2 ν̃ + nα̂en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en . (26)

If we put

ν̃p = −(
‖ĥ‖2 − n −√D0

2√D0
)ν̃ − nα̂

√D0
en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en ,

ν̃q = (
‖ĥ‖2 − n +√D0

2√D0
)ν̃ + nα̂

√D0
en+1 ∧ e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en ,

then we have ν̃ = ν̃p + ν̃q, and by using (9) and (26) a direct computation shows that

∆ν̃p = λq ν̃p and ∆ν̃q = λq ν̃q ,
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where λp = 1
2 (‖ĥ‖

2 + n − √D0) > 0 because of (25) and λq = 1
2 (‖ĥ‖

2 + n + √D0) > 0 which are constants.
Therefore, the spherical Gauss map ν̃ is mass-symmetric and of 2-type.

Conversely, suppose that the spherical Gauss map ν̃ is mass-symmetric and of 2-type. Then ν̃ admits a
spectral decomposition of the form

ν̃ = ν̃p + ν̃q , ∆ν̃p = λq ν̃p , ∆ν̃q = λq ν̃q (27)

with λp < λq, where ν̃p and ν̃q are non-constant maps. Then, we �nd from (27) that

∆2 ν̃ = (λp + λq)∆ν̃ − λpλq ν̃. (28)

Since the normal bundle is �at and Ĥ = α̂en+1 is parallel, we have (26). By using (9) and (26), we obtain that

∆2 ν̃ = (n+ ‖ĥ‖2)∆ν̃+ (∆‖ĥ‖2 + n2α̂2 − n‖ĥ‖2)ν̃−2
n
∑
i=1
hn+1ii ei(‖ĥ‖2)x∧ e1 ∧ ⋅ ⋅ ⋅∧ ei−1 ∧ en+1 ∧ ei+1 ∧ ⋅ ⋅ ⋅∧ en . (29)

Comparing (28) and (29), the coe�cient of ∆ν̃ implies that n + ‖ĥ‖2 = λp + λq, thus ‖ĥ‖2 is constant. Therefore
the scalar curvature of M is constant by (6). 2

As isoparametric hypersurfaces in Sn+1 have constant scalar curvature, we state the following corollary.

Corollary 3.7. Every non-totally umbilical isoparametric hypersurface M in Sn+1 with nonzero mean curvature
α̂ in Sn+1 has mass-symmetric 2-type spherical Gauss map.

For example, the product submanifold Sk(a) × Sn−k(b) ⊂ Sn+1 with a2 + b2 = 1 and a ̸= b is a non-totally
umbilical isoparametric hypersurface of Sn+1 which has mass-symmetric and 2-type spherical Gauss map.

Theorem 3.8. Anon-totally umbilical surfaceM ofS3 with nonzero constantmean curvature inS3 has themass-
symmetric 2-type spherical Gauss map ν̃ if and only ifM is an open part of S1(a)×S1(b) ⊂ S3, where a ̸= b and
a2 + b2 = 1.

Proof. First we assume that M is an open part of S1(a) × S1(b) in S3(1) ⊂ E4 which is de�ned by

x(u, v) = (a cos ua
, a sin u

a
, b cos v

b
, b sin v

b )
,

where a ̸= b and a2 + b2 = 1. It is well known that M is a non-totally umbilical isoparametric surface. Also,
it is not minimal as a ̸= b. By Corollary 3.7, M has the mass-symmetric 2-type spherical Gauss map.

For later use we need the connection forms of M. We choose

e1 =
∂
∂u

, e2 =
∂
∂v

, e3 = (b cos ua
, b sin u

a
, −a cos v

b
, −a sin v

b )
, e4 = x

which form an orthonormal frame �eld on M. By a direct computation we have

ω1 = du, ω2 = dv, ω12 = ω34 = 0, ω13 = −µ0ω1, ω23 =
1
µ0
ω2, ω14 = −ω1, ω24 = −ω2, (30)

where µ0 = b/a.
Conversely, suppose thatM is a non-totally umbilical surface ofS3 with nonzero constantmean curvature

α̂, and the spherical Gauss map ν̃ is mass-symmetric and of 2-type. Then, by Theorem 3.6, M has constant
scalar curvature S, that is, from (6) the scalar curvature S of M is S = 2 + 4α̂2 − ‖ĥ‖2 which is constant. If we
choose an orthonormal tangent frame on M such that A3(ei) = h3iiei, i = 1, 2, then the constancy of S and α̂
imply that the principal curvatures h311 and h322 of A3 are constants.

Now, considering the Codazzi equation (3) we have (h3ii − h
3
jj)ωij(ej) = 0, i ̸= j that gives ωij(ej) = 0,

j = 1, 2, as M is non-totally umbilical. So, M is �at, and from the equation of Gauss we have h311h
3
22 = −1. If

we put µ0 = −h311, then h
3
22 = 1/µ0.

Since M is �at, we can choose a local coordinate (u, v) on M with ω1 = du, ω2 = dv. So, we have

ω12 = ω34 = 0, ω13 = −µ0ω1, ω23 =
1
µ0
ω2, ω14 = −ω1, ω24 = −ω2. (31)

Thus the connection formsωAB ofM coincide with the connection forms of S1(a)×S1(b), a ̸= b, given in (30).
As a result of the fundamental theorem of submanifolds, M is locally isometric to S1(a) × S1(b). 2
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