
A GENETIC ALGORITHM FOR FINAL EXAM SCHEDULING

OF IŞIK UNIVERSITY

Seda YILDIRIM

B.S., Computer Engineering, Girne American University, 2009

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Industrial Engineering

IŞIK UNIVERSITY

2013

IŞIK UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

A GENETIC ALGORITHM FOR FINAL EXAM SCHEDULING OF IŞIK

UNIVERSITY

SEDA YILDIRIM

APPROVED BY:

Assist. Prof. S. Tankut ATAN Işık University

(Thesis Supervisor)

Assoc. Prof. Olcay Taner YILDIZ Işık University

Assoc. Prof. Çağlar AKSEZER Işık University

APPROVAL DATE:/..../....

A GENETIC ALGORITHM FOR FINAL EXAM

SCHEDULING OF IŞIK UNIVERSITY

Abstract

Exam timetabling is a widely encountered scheduling problem at educational

institutions. Typically, exam timetabling problems involve some hard constraints

and several soft constraints that may vary from one institution to another. One

of the soft constraints is that as few students as possible should have more than

a predefined number of exams on the same day. At Işık University, if students

have more than two exams on the same day they are allowed to ask for makeup

exams for the extra exams. While integer programming formulations with other

constraints of Işık University could be solved to optimality via commercial solvers,

incorporating the daily exam limitation rule proved to be intractable. Hence a

genetic algorithm was developed. Using data from several semesters, numerical

experiments were conducted to tune the developed genetic algorithm’s parameters

and test it. The new metaheuristic algorithm was also coded in Java programming

language and integrated into finexa, the internally developed exam timetabling

software at Işık University.

Keywords: Genetic algorithm, exam timetabling, integer linear model, memetic

algorithm

ii

IŞIK ÜNİVERSİTESİ FİNAL SINAV PROGRAMI İÇİN

GENETİK ALGORİTMA UYGULAMASI

Özet

Üniversitelerde sıkça karşılaşılan çizelgeleme problemlerden biri sınav haftası pro-

gramının ayarlanmasıdır. Sınav saatleri ayarlanırken zorunlu ve zorunlu olmayan

kısıtlar göz önünde bulundurulur. Zorunlu olmayan kısıtlardan biri, aynı günde

istenilenden daha fazla sınava girecek olan öğrenci sayısının olabildiğince az ol-

ması kısıtıdır. Işık Üniversitesinde bir günde ikiden fazla finali olan öğrenciler

mazeret sınavına girebilme hakkına sahiptir. Işık Üniversitesinde finl programı

ayarlanırken dikkat edilen diğer kurallar için tamsayılı programlama ile çözüm

üretilebilirken bahsedilen kısıt problemi bu yöntemle çözülemez hale getirdi. Bu

nedenle yaklaşık bir yöntem ile çözüm üretme zorunluluğu doğdu. Geliştirilen

genetik algoritmayı test ederken dört dönemin verisinden faydalandık. Ayrıca

yeni yöntem Java dilinde kodlanarak Işık Üniversitesinde kullanılan sınav çizelgeleme

programı finexa arayüzüne entegre edildi.

Anahtar sözcükler: Genetik algoritma, sınav çizelgelemesi, tamsayılı doğrusal

programlama, memetik algoritma

iii

Acknowledgements

I would like to thank to my supervisor, Assist. Prof. S. Tankut ATAN for his guid-

ance. I am very grateful to my family and my friends for their encouragements.

I also would like to extend my special thanks to Prof. Dr. Mustafa KARAMAN

for his precious moral support and help during my graduate studies.

iv

To my family. . .

Table of Contents

Abstract ii

Özet iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Outline of Thesis . 6

2 Integer Programming Formulations 7

2.1 Final Exam Scheduling at Işık University 7

2.1.1 Core Model . 8

2.1.1.1 Index sets . 8

2.1.1.2 Parameters . 9

2.1.1.3 Decision variables 9

2.1.1.4 Formulation . 9

2.1.2 Model With No 3 Exam Rule 10

2.1.2.1 Index sets . 10

2.1.2.2 Parameters . 11

2.1.2.3 Decision variables 11

2.1.2.4 Formulation . 11

3 Genetic Algorithm (GA) and Exam Scheduling 15

3.1 GA . 15

3.1.1 Initialization . 15

3.1.2 Evaluation . 16

3.1.3 Selection . 16

3.1.4 Recombination . 17

3.1.5 Mutation . 17

3.1.6 Replacement . 17

3.2 GA for Exam Scheduling . 19

3.2.1 Construction Heuristic . 19

3.2.2 Improvement Algorithm 19

3.2.3 Solution Representation 21

3.2.4 Crossover and Mutation Operators 22

4 Experiments 24

4.1 Problem Instances . 24

4.2 Preliminary Experiments . 25

4.3 Memetic Algorithm . 29

Conclusion 31

References 31

Curriculum Vitae 35

Appendices 36

List of Tables

2.1 Problem sizes of core model . 12

2.2 Problem sizes of no 3 exam model 12

4.1 Dataset information . 25

4.2 Parameter settings . 25

4.3 Crossover rate trials and results 28

4.4 Mutation rate trials and results 28

4.5 Improvements with GA . 29

4.6 Improvements with memetic algorithm 30

viii

List of Figures

2.1 GAMS output without pre-solution 13

2.2 GAMS output with pre-solution 14

3.1 GA algorithm . 18

3.2 GA pseudocode . 21

3.3 Data representation for each chromosome 21

3.4 Representation of crossover parents 22

3.5 Representation of new offsprings 22

4.1 Histograms of initial population fitness values 26

4.2 Experiments to determine initial population size and iteration limit 27

4.3 Comparison of results with/without day preferences for exams . . 29

ix

List of Abbreviations

GA Genetic Algorithm

IP Integer Programming

SAO Student Affair Office

VBA Visual Basic for Applications

x

Chapter 1

Introduction

1.1 Motivation

Exam timetabling is a semesterly activity at universities and other educational

institutions. At the end of each semester a final exam for each course of that

semester has to be taken by the students during a duration of typically one to

two weeks. In Turkey, final exam grades may constitute a significant percentage

of students’ letter grades. In scheduling final exams, some hard constraints need

to be observed. Obviously, each exam needs to be scheduled only once. One is

also trying not to schedule exams with common students at the same time. Such

assignments result in makeup exams which would mean more work for everybody

involved. Thus, it is important to completely avoid such conflicts, if possible.

Beyond these common constraints, different institutions may have different limi-

tations often of soft nature, i.e. they should be satisfied as much as possible but

some violations can be tolerated.

At Işık University, exam timetabling falls under the responsibility of Student

Affairs Office (SAO). Until recently, SAO scheduled exams manually which had

many drawbacks. For even modestly sized combinatorial problems, it is impossi-

ble for human beings to find good solutions let alone optimal ones. Even finding

a feasible solution is very time consuming. Also it is very difficult to go back and

find an updated solution should new requests and limitations arise during the

1

process. SAO spent a couple of weeks for coming up with a basic solution not

considering any soft constraints. Given all this, an automated Excel-based system

with Visual Basic for Applications (VBA) macros was developed by the industrial

engineering department. This system, finexa, considered above-mentioned hard

constraints, and some soft constraints. The resulting integer linear model in-

stances could be solved to optimality using a commercial solver, GAMS/CPLEX.

Finexa has been successfully used for several semesters since its development.

Işık University regulations allow students to take at most two exams on the same

day. Students can ask for makeup exams should their exam schedule require them

to take three or more exams on the same day. Incorporating this rule into the

mathematical model makes it intractable with commercial solvers and thus it was

not considered initially. After a solution that satisfies other constraints was ob-

tained, through facilities provided in finexa, SAO checked for students with three

exams on the same day and tried to improve on the schedule as much as possible

through trial and error. To overcome this, it was decided to design and imple-

ment a heuristic method which will help finexa to directly yield a solution that

also takes students with three exams on the same day into consideration. Given

its success in implementations for similar problems by other researchers, a ge-

netic algorithm approach was chosen. The newly developed algorithm was coded

in Java programming language and also integrated into finexa after numerical

experiments and tests.

1.2 Related Work

There is a wide variety of heuristic approaches for solving the examination timetable

problem which have been researched. Burke et al. [1] prepared a survey for heuris-

tic approaches for the period until 2009. Our literature search covers related

articles published after 2009.

Özcan et al. [2] performed a comparison between the new candidate solution and

the previous solution by applying different heuristic selection methods combined

2

with the Late Acceptance Strategy. The approach considers that the exams that

each student takes must be assigned to different timeslots, the total number of

students taking an exam at a timeslot is not allowed to exceed a predetermined

capacity, and if a student is scheduled to take two exams in the same day, the

exams must not be assigned to successive timeslots.

Sabar et al. [3] used a new graph coloring constructive hyper-heuristic. They

group the exams based on their enrollment by largest degree, saturation degree,

largest colored degree and largest enrollment. Then they build four lists ordered

according to exams’ difficulty index. The most difficult exam not yet scheduled

is scheduled first.

Qu et al. [4] hybridized different graph colouring heuristics that construct so-

lutions step by step. Hard constraints avoid students taking two exams at the

same time and soft constraints spread the exams taken by students evenly over

the timetable.

Abdullah et al. [5] hybridized concept of tabu list with memetic algorithm. They

utilize different neighbourhood structures and place a structure into a tabu list

when it is unable to produce better solutions after crossover and mutation. As

hard constraints, they consider that no students should be required to sit two

examinations simultaneously.

Malik et al.’s [6] work is based on standard tabu search with some modifications.

Their constraints are to ensure that no student sits more than one exam at one

time (hard constraint), and to spread the exams within the given number of

timeslots (soft constraint).

Pillay [7] studied an evolutionary algorithm hyper-heuristic. Two different struc-

tures are experimented with where in the first one low-level constructive heuristics

are applied sequentially whereas in the second one there is a hierarchical relation-

ship among the heuristics and they are applied simultaneously.

3

Mansour et al. [8] developed an evolutionary heuristic technique based on scatter-

search when generating new solutions. They compare their scatter-search tech-

nique to several other metaheuristic methods on real data from Lebanese Ameri-

can University and find that it tends to give better results.

Hadjidj and Drias [9] focus on hard constraints where every exam should be

scheduled once and no conflicting exams should be scheduled within the same

period. They hybridized Greedy Randomized Adaptive Search Procedure and

the evolutionary Scatter Search approach. New solutions are improved before

replacing others according to their quality and diversity.

Mumford [10] considers two conflicting objectives and provides a multiobjective

framework for solving heavily constrained timetabling problems. These objectives

are minimizing the length of timetable and spreading exams as much as possible

for each student. A greedy algorithm is used for allocating timeslots to exami-

nations. Grouping and reordering techniques are used for improvements. A local

search is applied to the best solutions at the end.

Gogos et al. [11] investigated a multi-staged approach driven by a Greedy Ran-

domized Adaptive Search Procedure. It involves several optimization algorithms,

heuristics and metaheuristics. A construction phase is executed first producing

a relatively high quality feasible solution and an improvement phase employs

different approaches such as simulated annealing to find better solutions.

Kahar and Kendall [12] compared their constructive heuristic with existing soft-

ware used in Malaysia Pahang University. Some of their constraints have not

been considered before such as the distance of the exam rooms must be close to

each other for some exams. These constraints provide additional challenges in

defining a suitable model and in developing a constructive heuristic.

Pillay and Banzhaf [13] apply a genetic algorithm with two phases. The first

phase focuses on handling the hard constraints and the second phase satisfies soft

4

constraints as much as possible. The evolutionary process ia guided using domain

specific knowledge in the form of heuristics.

El Den and Poli [14] study on a grammer-based genetic programming. The gram-

mar used for producing new generations is based on graph colouring with different

slot allocation heuristics.

Kalayci and Güngör [15] also used a genetic algorithm that tries to provide enough

time to each of student for studying by maximizing length between difficult exams.

Two different genetic algorithm models were developed. First genetic algorithm

eliminates infeasible solutions. Second genetic algorithm controls whether the

population satisfies the hard constraints or not.

Burke et al. [16] investigated Variable Neighbourhood Search approaches. They

hybridized this method with a Genetic Algorithm. They also choose appropriate

neighbors intelligently.

Ayob et al. [17] developed a new software to solve Universiti Kebangsaan Malaysia’s

exam timetabling problem to substitute the manual process by human schedulers.

They proposed a new extended graph colouring heuristic method which produces

an intelligent high quality exam timetable for the university. In the intelligent

high quality exam schedule, minimizing students with consecutive exams on the

same day is considered.

Demeester et al. [18] improves the previous solution which is created manually for

KAHO Sint-Lieven (Ghent, Belgium) and satisfies all hard and soft constraints.

They investigate tournament-based hyper-heuristics and they claim the hyper-

heuristic approach produces solutions successfully for complex problems.

Burke et al. [19]’s approach is based on hybridizing and deciding which combina-

tion of heuristics gives the best result. At the end of their experiments, the Kempe

chain move and timeslot swapping heuristic proved to be the best heuristic moves

to use in hybridisation. This paper presents a random iterative hyper-heuristic

approach which uses improvements by low level heuristics.

5

Sabar et al. [20] utilize a honey bee mating optimization algorithm and report

comparable results to other approaches on Carter’s problem instances. Alzaqebah

and Abdullah [21] use an artificial bee colony search algorithm on the exam

timetabling problem with some promising results on some instances used in the

literature. There are three categories of bees that is, employed, onlooker and

scout bees that communicate with each other in sharing the information about

the solutions.

1.3 Outline of Thesis

The rest of the thesis report is organized as follows. Chapter 2 gives informa-

tion about the exam scheduling processes of Işık University and provides integer

programming formulations for the problem. Chapter 3 provides some basic knowl-

edge on genetic algorithms and describes the steps of the developed algorithm.

In Chapter 4, numerical experiment results are discussed.

6

Chapter 2

Integer Programming Formulations

2.1 Final Exam Scheduling at Işık University

All final exams in Işık University are scheduled over a two-week period at the end

of the semester, sometimes Saturdays are also included. Each final exam day is

divided into three 3-hour slots from 9 am to 6 pm.

Exam scheduling constraints can be divided into hard constraints and soft con-

straints. Hard constraints cannot be violated. For example, each exam should

only be scheduled in one slot and the total enrollment of scheduled exams must

not exceed the daily capacity. Soft constraints are those which are not essential

but desirable to be satisfied as much as possible. For instance, no student must

be scheduled three consecutive exams in a day. Of course specific constraints of

exam timetables depends on a university’s conditions and capabilities.

When solving an exam timetabling problem we must ensure that hard constraints

are not violated and soft constraint costs are minimised. The quality of an exam

timetable is measured by the degree it violates the soft constraints and the number

of exam conflicts for students.

There are certain rules for scheduling Işık University’s final exams. Obviously,

there should be no conflicts in the exam schedule of any student. The third slot

of each exam day needs to have fewer students because at 6 pm there is limited

7

shuttle service which is going back to the city. All letter grades have to be in the

university’s grading system a few days after the exam period finishes. Therefore,

the exams of crowded courses are generally scheduled earlier during the exam

period so that their instructors have more time to correct the papers. As the

university has no physical and proctor capacity constraints, the classroom and

proctor assignments are not part of the scheduling process. All classroom and

proctor assignments are made after the exam schedule is obtained.

2.1.1 Core Model

Işık University already uses integer programming to deal with certain aspects of

its exam timetabling problem which we will call the core model. However, the

core model does not impose a limit on the number of exams to be taken by a

student on any given day. The core model has the following constraints.

i. Each exam has to be scheduled to one slot only.

ii. The total enrollment in the exams on any day should not exceed the daily

student capacity.

iii. Exams should be scheduled to requested slots usually specified as preferred

days. For example, it is desired to schedule exams with many students

during the first week.

The mathematical model for the exam timetabling problem uses binary variables

that control which slot an exam is scheduled.

2.1.1.1 Index sets

C = index set of courses.

D = index set of days.

S = index set of exam slots.

8

UDS(c) = index set of courses which have undesired slots.

S(day) = index set of slots in day.

2.1.1.2 Parameters

ncć = number of students taking both c and ć.

stuc = number of students in course c.

Capday = daily student capacity in day.

2.1.1.3 Decision variables

xcs = 1 if the exam of course c is in slot s; 0 otherwise.

ycćs = 1 if the exams of courses c and ć are both in slot s.

ec = 1 if the course c scheduled undesired s ; 0 otherwise.

2.1.1.4 Formulation

min z =
∑
c

∑
ć>c

∑
s

ncćycćs + 0.5
∑
c

ec (2.1)

subject to

∑
s

xcs = 1 ∀c ∈ C (2.2)

xcs + xćs − ycćs ≤ 1 ∀c ∈ C,∀ć > c ∈ C,∀s ∈ S (2.3)∑
c

∑
s∈S(day)

stucxcs ≤ Capday ∀day ∈ D (2.4)

∑
s∈UDS(c))

xcs − ec = 0 ∀c ∈ C (2.5)

xcs ∈ {0, 1} ∀c ∈ C,∀s ∈ S (2.6)

ycćs ∈ {0, 1} ∀c ∈ C,∀ć > c ∈ C,∀s ∈ S (2.7)

9

ec ∈ {0, 1} ∀c ∈ C (2.8)

The aim of the objective function is minimizing of total number of student con-

flicts in the exam schedule. Equation (2.2) ensures that each course’s exam is

assigned to only one slot. Eq. (2.3) triggers relevant y variables to become 1

if two courses conflict. The number of exam proctors and the university’s daily

transportation capacity are limited. For that reason, Equation (2.4) limits the

total number of students having exams on a given day. New limits can be speci-

fied if the problem becomes infeasible due to these limits. Equation (2.5) is a soft

constraint that prevents the exams from being scheduled to undesired slots the

penalty cost is added to objective function.The objective function coefficients for

the second term was set to 0.5 after some trial-and-error.

2.1.2 Model With No 3 Exam Rule

To model the soft constraints that no student should take three or more exams

in a day, we need some additions to the model. The complete formulation is

given below. This is the problem for which we are going to provide a heuristic

algorithm as it could not be solved with commercial solvers.

2.1.2.1 Index sets

C = index set of courses.

ST = index set of students.

D = index set of days.

S = index set of exam slots.

UDS(c) = index set of undesired slots for course c.

C(stu) = index set of courses taken by student stu.

S(day) = index set of slots in day.

10

2.1.2.2 Parameters

ncć = number of students taking both c and ć.

stuc = number of students in course c.

Capday = daily student capacity in day.

cstu,c = 1 if the student stu is taking course c; 0 otherwise.

2.1.2.3 Decision variables

xcs = 1 if the exam of course c is in slot s; 0 otherwise.

ycćs = 1 if the exams of courses c and ć are both in slot s.

qstu,s = 1 if the student stu has an exam in slot s; 0 otherwise.

wstu,day = 1 if the student stu has more than 2 exams on day day; 0 otherwise.

ec = 1 if the course c scheduled during an undesired slot s ; 0 otherwise.

2.1.2.4 Formulation

min z =
∑
c

∑
ć>c

∑
s

ncćycćs + 0.5
∑
stu

∑
day

wstu,day + 0.5
∑
c

ec (2.9)

subject to

∑
s

xcs = 1 ∀c ∈ C (2.10)

xcs + xćs − ycćs ≤ 1 ∀c ∈ C,∀ć > c ∈ C,∀s ∈ S (2.11)∑
c

∑
s∈S(day)

stucxcs ≤ Capday ∀day ∈ D (2.12)

∑
s∈UDS(c))

xcs − ec = 0 ∀c ∈ C (2.13)

∑
s∈S(day))

qstu,s − wstu,day ≤ 2 ∀day ∈ D, ∀stu ∈ ST (2.14)

11

cstu,cxcs ≤ qstu,s ∀c ∈ C(stu),∀s ∈ S, ∀stu ∈ ST (2.15)

xcs ∈ {0, 1} ∀c ∈ C,∀s ∈ S (2.16)

ycćs ∈ {0, 1} ∀c ∈ C,∀ć > c ∈ C,∀s ∈ S (2.17)

qstu,s ∈ {0, 1} ∀stu ∈ ST , ∀s ∈ S (2.18)

wstu,day ∈ {0, 1} ∀stu ∈ ST , ∀day ∈ D (2.19)

ec ∈ {0, 1} ∀c ∈ C (2.20)

In the no 3 exam model’s objective function, penalty costs for more than two

exams in a day are added to the core model’s objective function. Equation (2.14)

is a soft constraint. It is used to limit each student to at most 2 exams in a day.

Equation (2.15) sets q variables to 1 for slots where a student has an exam. q

and w are binary variables.

In order to compare the magnitude of the problems, size information of four

semester are shown in Table 2.1 and Table 2.2. As shown in the tables the no 3

exam model problem size is quite bigger than the core model.

Table 2.1: Problem sizes of core model
Semester Number of Constraints Number of Variables
Spring 2011 462,538 467,456
Fall 2011 494,686 499,772
Spring 2012 612,014 617,986
Fall 2012 568,045 573,495

Table 2.2: Problem sizes of no 3 exam model
Semester Number of Constraints Number of Variables
Spring 2011 10,354,662 542,256
Fall 2011 11,855,694 582,852
Spring 2012 13,250,601 705,150
Fall 2012 13,424,690 661,255

12

Figure 2.1: GAMS output without pre-solution

The no 3 exam problem instances were also attempted to be solved via GAMS

23.2 using CPLEX as a solver. However, due to memory problems they could

not be solved as it can be seen in Figure 2.1. In another experiment, the solution

of the core model was given as an initial solution to the no 3 exam model. This

approach also did not provide any solution (see Figure 2.2).

13

Figure 2.2: GAMS output with pre-solution

14

Chapter 3

Genetic Algorithm (GA) and Exam Scheduling

3.1 GA

Genetic algorithm (GA) is a heuristic which mimics the national evolution pro-

cess. What’s a heuristic? A heuristic is any technique for finding an approximate

solution to a problem when classic methods can not succeed in finding an exact

solution.

Genetic algorithms generate solutions to optimization problems using techniques

inspired by natural evolution, such as inheritance, selection, crossover and muta-

tion. Genetic algorithms use the principles of selection and evolution to produce

several solutions to a given problem. GA consists of several components. In GA

two basic terms which are used frequently are genes and chromosomes. A chro-

mosome refers to each of the individual solutions. A gene is the smallest part of

an individual, in other words genes are properties of the solution. Basic steps of

a GA are summarized below.

3.1.1 Initialization

The initialization step is used to generate an initial population. This population

should be as diverse as possible.

15

3.1.2 Evaluation

The evaluation function is used to determine the quality of candidate solutions.

In GA, the quality of a candidate solution is called fitness. The fitness value is

needed for selection and replacement.

3.1.3 Selection

The selection function chooses solutions for recombination. The selection is made

by considering solutions’ fitness values. There are several commonly used selec-

tion methods.

• Roulette-Wheel-Selection: Solutions are selected proportionally to their

fitness values. A solution with a higher fitness value has more probability

to be selected than a low fitness solution. For example, for a maximization

problem consider five solutions with the following fitness values.

f(s1) = 15, f(s2) = 20, f(s3) = 25, f(s4) = 30, f(s5) = 35. The selection

probability for each solution can be found using the formula

p(si) = f(si)∑n
k=1 f(sk)

. The computed probabilities are as follows.

p(s1) = 15
15+20+25+30+35

= 3
25
, p(s2) = 4

25
, p(s3) = 5

25
, p(s4) = 6

25
, p(s5) = 7

25
.

• Linear-Rank-Selection: This selection method uses the rank of a solution

instead of using its fitness value directly. According to their ranks, the

selection probabilities are determined. The formula is si = r(si)∑n
k=1 r(sk)

.

According to this formula the following selection probabilities are obtain

s1 = 1
15
, s2 = 2

15
, s3 = 3

15
, s4 = 4

15
, s5 = 5

15
.

• Tournament Selection: In tournament selection a subset of population is

chosen randomly, then the best solution of this subset is selected for

recombination. For example, if the individual values which are selected

16

randomly from population are s3 and s4, then s4 is chosen for

recombination because its fitness value is better.

3.1.4 Recombination

In the recombination step two solutions are combined into a new solution. The

process combines genes (properties) of selected solutions to construct a new so-

lution.

3.1.5 Mutation

Mutation changes one or more genes (properties) in a chromosome (solution) from

its initial state. In mutation, the solution may change entirely from the previous

solution. Hence GA can find a better solution by using mutation.

3.1.6 Replacement

Replacement is the process that combines original population with newly created

solutions. There are several replacement schemes, where the most popular are

steady state and generational replacement.

• Steady State Replacement: Some of the old solutions become part of the

new population. One or more solutions are replaced with better solutions

for next generation.

• Generational replacement: In general replacement the new generation

replaces the old generation. But in this replacement scheme good

solutions can be lost. Elitism is useful for this kind of loss by guaranteing

that the best solutions never get eliminated. In elitism, promising

solutions are always kept in the population [22].

17

Figure 3.1: GA algorithm

General steps of GA are visually displayed with the flowchart in Fig. 3.1.

18

3.2 GA for Exam Scheduling

As we mentioned before the commercial solver couldn’t find any solution to the

problem with no 3 exam rule so we decided to solve it by using GA. GA approach

was chosen based on several good results reported in the literature on similar

problems. In our solution, in addition to hard and other soft constraints, we

specifically focused on decreasing the number of students who have more than

two exams in a single day. The applied GA is described below.

3.2.1 Construction Heuristic

In order to generate a feasible initial population, we use the optimal (best) solu-

tion of the core model solved via GAMS/CPLEX. The solution coming from the

core model ensures that each course is scheduled only once. Hence, GA algorithm

does not need to pay attention to this constraint. In order to construct new in-

dividuals, random timeslot swaps to this solution are applied without violating

any constraints and feasibility. During initial population construction feasibility

checks are made so that no student has two exams scheduled at the same time,

the daily student capacity does not exceed 1,500, the fixed courses are in their

assigned slots, and courses are placed in a desired slot. All these constraints must

be considered. Timeslot swaps involve taking complete sets of exams in two ran-

domly chosen timeslots and assigning them to the other timeslot thus changing

their timing. Swaps are only made if they are not in violation of the above men-

tioned constraints. If all constraints are satisfied for a timeslot’s courses apart

from fix courses then remainining courses can be swapped.

3.2.2 Improvement Algorithm

In order to execute GA, the fitness value of each individual in the initial popu-

lation is calculated and sorted in increasing order. Fitness values are the total

number of students with three exams in a day in each solution. The solution which

19

has the smallest fitness value gives the best result among the population. After

sorting initial population’s fitness values, we select some individuals randomly by

linear rank selection method. We determined the ratio as 20% for selection and re-

maining 80% of the next generation comes after applying crossover and mutation

operators. Crossover parents are also selected with linear rank selection method

again. After crossover, a mutation is applied with 0.20 probability. Initially se-

lected 20% of the old generation and newly generated individuals then constitute

the new generation’s population. New population is sorted in increasing order

according to fitness values and the new solution is obtained while maintaining

the size of the population. The process is repeated and stops when the termina-

tion criterion is met (in this work the termination criterion is iteration size). We

consider following constraints’ feasibility when generating initial population, and

when applying crossover and mutation.

i. The daily student enrollment cannot exceed 1,500.

ii. The fixed courses cannot be moved from their assigned slots.

iii. Courses should be placed in a desired slot. Preferences are usually expressed

as desired days.

iv. No student can take two exams in same slot at the same time.

20

1 Take the optimal CPLEX solution of the core model
2 for 1 to population size
3 Generate other feasible solutions from optimal solution via timeslot swaps
4 end
5 while iteration <= iteration limit
6 Calculate fitness values and sort in increasing order
7 Set aside xx% of the population by using linear ranking

and place them in selection matrix
8 for 1 to size of crossover population
9 Choose parents for crossover

Generate new offsprings
10 Apply mutation to new offsprings using mutation rate
11 Store offsprings in crossover matrix
12 end
13 Combine two matrices to build the new generation
14 end while

Figure 3.2: GA pseudocode

3.2.3 Solution Representation

Each population member (which represents a feasible solution) is represented as

a number of genes that contain information about the timeslot and exams. In

Figure 3.3, the numbers are indexes of courses. For example, courses 111, 97, 39,

3 and 2 are scheduled in timeslot S2.

Figure 3.3: Data representation for each chromosome

21

3.2.4 Crossover and Mutation Operators

In this work, we applied a slot exchange crossover. This crossover operator allows

a number of exams (from one timeslot) to be added to another timeslot and vice

versa based on a crossover rate (0.8). The crossover parents are selected with

linear rank selection method and the exchange slots are decided randomly. We

ensure that the feasibility is not violated when we add each course of a timeslot

to another timeslot. All hard constraints are checked as in the initial population

construction at the beginning. For instance, a course cannot be moved because

it is already scheduled in its fixed slot or the move calls for an undesired desired

slot for that course. Courses which cannot be moved to their new timeslots are

left in their original position. In order to show clearly, how we apply crossover

operation, we provide an example where the selected parents and their timeslots

to be exchanged are shown in Figure 3.4 and generated new offsprings are shown

in Figure 3.5.

Figure 3.4: Representation of crossover parents

Figure 3.5: Representation of new offsprings

22

As shown in the Figure 3.4 and 3.5, timeslots S3 and Sn are chosen as parents

(a) and (b), all exams from timeslot Sn in parent (b) are added to timeslot S3

in parent (a) to produce child (a). The same process is applied to obtain child

(b). The addition process can cause duplication of exams in the same slot. So we

check the list of existing exams of the destination slot before inserting the exam.

If the exam already exists in the slot, we do not create a copy of it.

The mutation operator selects chromosomes from among the individuals that have

gone through crossover with a probability specified by the mutation rate. In mu-

tation, a course (gene) is randomly changed in selected solutions (chromosomes)

to a random timeslot.

23

Chapter 4

Experiments

The optimization model was solved with GAMS 23.2 using CPLEX. GA code

was written with JAVA language and the experimental runs were performed on

an Intel Pentium 4, 3.20 GHz computer.

4.1 Problem Instances

In our experiments, we used Işık University data from four semesters since Spring

2011. In order to understand how soft constraints effect our solution we also ran

our approach on four datasets by relaxing soft constraints. Applying all of the

soft constraints increases the number of students with consecutive three exams in

a day. But our GA approach still gives better results than SAO’s manual process.

The parameters used in the algorithm are chosen after preliminary experiments

as shown in Table 4.2 (and are comparable with the papers in Abdullah et al.

[5]). The population size is chosen so that the time to execute the algorithm does

stay within an hour for our instances.

24

Table 4.1: Dataset information
Semester # of slots # of courses # of students Density

of conflict
matrix

Spring 2011 33 176 1,870 0.08
Fall 2011 30 182 2,077 0.15
Spring 2012 30 193 1,981 0.29
Fall 2012 30 195 2,194 0.14

Table 4.2: Parameter settings
Parameter Value

Population size 100
Crossover rate 0.80
Mutation rate 0.20

Selection mechanism Linear Rank Selection

4.2 Preliminary Experiments

The optimal solution of the core model which is currently used by SAO forms the

basis of the initial population. The GA constructs 99 new members by timeslot

swaps. The fitness values of initial population and their sequences are presented

in Figure 4.1.

25

Figure 4.1: Histograms of initial population fitness values

As we look at the experiment results on four datasets, 100 initial solutions and

1,000 iterations generally give better results compared to other trials. The number

of students that is scheduled three consecutive exams in a day depends on each

semester’s specified demands by instructors. The number of students, number

of classes but more importantly the desired days and fixed slots requested by

lecturers effect and change the solution quality of the problem. The runs show

that having more individuals improves the results to some extent. We also see

that improvements continue to occur up to 1,000 iterations though they are not

very significant after a certain point. Figure 4.2 shows the final results when the

GA approach has 100 individuals as initial population with 1,000 iterations.

26

F
ig

u
re

4.
2:

E
x
p

er
im

en
ts

to
d
et

er
m

in
e

in
it

ia
l

p
op

u
la

ti
on

si
ze

an
d

it
er

at
io

n
li
m

it

27

Preliminary experiments were conducted to determine crossover and mutation

rates to be used in final implementation. Abdullah et al. [5] used 0.8 as the

crossover rate and 0.04 as the mutation rate. We used those rates for determin-

ing initial population size and iteration number. But in order to see how the rates

change the final solution, we ran GA with different crossover and mutation rate

values separately. The trials and their results are shown in Table 4.3.

Table 4.3: Crossover rate trials and results
Crossover rates

Semester 0.7 0.8 0.9
Spring 2011 44 48 40
Fall 2011 43 44 30
Spring 2012 5 6 6
Fall 2012 58 51 56

Table 4.4: Mutation rate trials and results
Mutation rates

Data sets 0.04 0.10 0.20
Spring 2011 48 42 39
Fall 2011 44 39 40
Spring 2012 6 8 6
Fall 2012 51 48 49

In Table 4.3 three different crossover rates were tried. The results do not provide

a clearcut crossover rate to be set as a bigger rate seems to help in some situations

but not in some others. So we chose to use the same rate as in Abdullah et al.

[5]. For mutation rate, increasing the rate from its initially chosen value of 0.04

and we see that 0.20 improves the results in three out of four cases.

Table 4.5 shows initial fitness values (number of students scheduled 3 exams in a

day) and final fitness values with the improvements after applying GA.

Enforcing all constraints increases number of students who have three consecutive

exams in a day. These constraints restrict the neighborhood space during initial

28

Table 4.5: Improvements with GA
Semester Initial result Best result Improvement percentage
Spring 2011 79 39 %49
Fall 2011 116 40 %66
Spring 2012 79 6 %92
Fall 2012 111 49 %55

population construction, crossover and mutation processes, and limit construction

of more diverse offsprings. That causes less improvement in the new generation

and worse results.

Figure 4.3: Comparison of results with/without day preferences for exams

4.3 Memetic Algorithm

We also investigated how mutation operator can be rendered more intelligent

rather than choosing exams randomly and how it would affect the results. In the

memetic approach, the exam selection and moving process is done more sensibly.

Here, we find more problematic exams taken by students with 3 exams in a day,

and then move those in the hope that they will improve the results more. In

selecting the exam to be moved, we utilized linear rank selection method again

29

to give a chance to each of the exams when they are selected rather than always

choosing the most problematic exam. Whenever an exam has to be taken as part

of a group of three exams in the same day, an exam’s score is increased. The

selection probability of each exam is based on their rank for calculated points.

These points are related to how many students have 3 exams in a day for the

current solution. The chosen exam is moved to a randomly determined day with

linear rank selection. Destination days’ probabilities are based on the total num-

ber of students with 3 exams on those days. Days with less students have bigger

probability of being chosen. After a day has been chosen, the exam is moved to

a random slot. We applied this intelligent mutation process by mixing it with

random mutation. Intelligent mutation is applied only during few iterations at

the beginning and during remaining iterations random mutation is applied. Re-

sults indicate that the memetic algorithm does not provide better solutions. The

experiments of memetic approach on four semester is given in Table 4.6.

Table 4.6: Improvements with memetic algorithm
Semester Initial result Best result Improvement percentage
Spring 2011 79 45 %43
Fall 2011 116 44 %62
Spring 2012 79 5 %93
Fall 2012 111 50 %54

30

Conclusion

The overall goal of this thesis is producing a quality solution for Işık University

exam timetabling problem when “no student must have three consecutive exams

in a day”. Current Excel-based software implemented for SAO does not provide

such a solution automatically, and requires manual trial and error. As an exact

solution proved to be out of reach for this problem using GAMS/CPLEX, a ge-

netic algorithm was implemented in Java language and integrated to the existing

system. Our approach outperforms the manual approach that is used by SAO,

and also saves time. One key features of our approach are that the initial popu-

lation is based on the exact solution of a linear integer model that satisfies other

constraints of the university. also there are some differences in applying the GA

algorithm.

31

References

[1] R. Qu, E. K. Burke, B. Mccollum, L. T. G. Merlot, and S. Y. Lee. A survey

of search methodologies and automated system development for examination

timetabling. Journal of Scheduling, pages 55–89, 2009.

[2] E. Özcan, Y. Bykov, M. Birben, and E. K. Burke. Examination timetabling

using late acceptance hyper-heuristics. In Proceedings of the Eleventh confer-

ence on Congress on Evolutionary Computation, CEC’09, pages 997–1004,

Piscataway, NJ, USA, 2009. IEEE Press.

[3] N. R. Sabar, M. Ayob, R. Qu, and G. Kendall. A graph coloring constructive

hyper-heuristic for examination timetabling problems. Applied Intelligence,

37(1):1–11, 2012.

[4] E. K. Burke R. Qu and B. McCollum. Adaptive automated construction of

hybrid heuristics for exam timetabling and graph colouring problems. Euro-

pean Journal of Operational Research, 198(2):392–404, 2009.

[5] S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan. A tabu-based

memetic approach for examination timetabling problems. In Proceedings

of the 5th international conference on Rough set and knowledge technology,

RSKT’10, pages 574–581. Springer-Verlag, 2010.

[6] A. Malik, M. Ayob, and A. Hamdan. Iterated two-stage multi-neighbourhood

tabu search approach for examination timetabling problem. In DMO, pages

141–148. IEEE, 2009.

[7] N. Pillay. An empirical study into the structure of heuristic combinations in

an evolutionary algorithm hyper-heuristic for the examination timetabling

32

problem. In SAICSIT ’10 Proceedings of the 2010 Annual Research Confer-

ence of the South African Institute of Computer Scientists and Information

Technologists, pages 251–257. ACM New York, 2010.

[8] N. Mansour, V. Isahakian, and I. Ghalayini. Scatter search technique for

exam timetabling. Applied Intelligence, 34:299–310, 2011.

[9] D. Hadjidj, H. Drias, and M. Bouguerra. A hybrid grasp and scatter search

for the exam timetabling problem, 2010.

[10] C. L. Mumford. A multiobjective framework for heavily constrained exami-

nation timetabling problems. Annals OR, 180(1):3–31, 2010.

[11] C. Gogos, P. Alefragis, and E. Housos. An improved multi-staged algorithmic

process for the solution of the examination timetabling problem. Annals of

Operations Research, 194(1):203–221, 2012.

[12] M.N.M. Kahar and G. Kendall. The examination timetabling problem at

universiti malaysia pahang: Comparison of a constructive heuristic with an

existing software solution. Elsevier, pages 557–565.

[13] N. Pillay and W. Banzhaf. An informed genetic algorithm for the examina-

tion timetabling problem. Applied Soft Computing, 10:457–467, 2010.

[14] M. B. El Den and R. Poli. Grammar-based genetic programming for

timetabling. In 2009 IEEE Congress on Evolutionary Computation, CEC

2009, pages 2532–2539, 2009.

[15] C. B. Kalayci and A. Güngör. A genetic algorithm based examination

timetabling model focusing on student success for the case of the college

of engineering at pamukkale university, turkey. Gazi University Journal of

Science, 25(1):137–153, 2012.

[16] E. K. Burke, A. J. Eckersley, B. Mccollum, S. Petrovic, and R. Qu. Hybrid

variable neighbourhood approaches to university exam timetabling. Techni-

cal report, 2010.

33

[17] M. Ayob, A. R. Hamdan, S. Abdullah, Z. Othman, M. Zakree, A. Nazri,

K. Abd Razak, R. Tan, N. Baharom, H. Abd Ghafar, R. Md Dali, and N. R.

Sabar. Intelligent examination timetabling software. In Procedia - Social and

Behavioral Sciences, volume 18, pages 600–608, 2011.

[18] P. Demeester, B. Bilgin, P. De Causmaecker, and G. Van Den Berghe. A

hyperheuristic approach to examination timetabling problems: Benchmarks

and a new problem from practice. Journal of Scheduling, 15(1):83–103, 2012.

[19] E. K. Burke, R. Qu, and A. Soghier. Adaptive selection of heuristics for

improving exam timetables. Annals of Operations Research, pages 1–17,

2012. Article in Press.

[20] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu. A honey-bee mating opti-

mization algorithm for educational timetabling problems. European Journal

of Operational Research, 216(3):533–543, 2012.

[21] M. Alzaqebah and S. Abdullah. Artificial bee colony search algorithm for ex-

amination timetabling problems. International Journal of Physical Sciences,

6(17):4264–4272, 2011.

[22] M. Bögl G. Zäpfel, R. Braune. Metaheuristic Search Concepts. Springer,

Austria, 2010. ISBN 978-3-642-11342-0.

34

Curriculum Vitae

Seda Yıldırım was born on 17 November 1984, in Bursa. She received his B.S.

degree in Computer Engineering in 2009 from Girne American University. She

worked as a research assistant at the Department of Computer Engineering of Işık

University from 2010 to 2013. The courses which she assisted include Introduction

to Programming, Object Oriented Programming, Web Design Programming.

35

APPENDICES

36

APPENDIX A

GA Java Code

Data Input and Methods

/**

*

* @author Seda

*/

import java.io.*;

import java.sql.Connection;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.ArrayList;

import java.util.List;

import java.util.Scanner;

/*

*

* @author Seda

*/

public final class FileReader {

public Connection conn;

public Statement stmt;

private String dataSource;

public int slot;

public int iteration;

public double mutationRate;

public double crossOverRate;

public List dersler = new ArrayList <String >();

public ArrayList <Integer > studentNum = new ArrayList <Integer >();

public boolean [][] program;

public boolean [][] kisitli_dersler;

public boolean [] fixed_dersler;

public double selection;

public List ogrenci = new ArrayList <String >();

public double [] individual;

public int[] _individual;

public ArrayList <ArrayList <Double >> finexaSolution = new ArrayList <ArrayList <Double >>();

List array = new ArrayList <String >();

ArrayList <String > sorunlu;

37

private String file;

public FileReader(String dataSource) throws FileNotFoundException ,

IOException , SQLException {

this.dataSource = dataSource;

this.Data1 ();

this.readData ();

this.initialTable ();

this.Data ();

this.generateDesire ();

this.fixed ();

}

public void Data1() throws FileNotFoundException {

File dosya = new File ("../ Heuristic/SorunluDers.txt ");

Scanner sc = new Scanner(dosya);

sorunlu = new ArrayList <String >();

while (sc.hasNext ()) {

String sorunluDers = sc.nextLine ();

if (sorunluDers == null) {

break;

}

sorunlu.add(sorunluDers);

}

for (int i = 0; i < sorunlu.size (); i++) {

System.out.println ((i + 1) + ". sorunlu ders " + sorunlu.get(i));

}

}

protected void readData () throws FileNotFoundException , IOException {

File dosya = new File ("../ Heuristic/dersler.txt");

File dosya1 = new File ("../ Heuristic/ogrencisayi.txt");

Scanner sc = new Scanner(dosya);

Scanner sc1 = new Scanner(dosya1);

38

while (sc.hasNext ()) {

String courseCode = sc.nextLine ();

String numberOfStu = sc1.nextLine ();

int numOfStu = Integer.parseInt(numberOfStu);

if (courseCode == null) {

break;

}

dersler.add(courseCode);

studentNum.add(numOfStu);

}

for (int i = 0; i < dersler.size (); i++) {

}

System.out.println ("The number of classes " + dersler.size ());

FileInputStream fstream = new FileInputStream ("../ Heuristic/ogrenci_numaralari.txt");

FileInputStream fstream1 = new FileInputStream ("../ Heuristic/alinan_dersler.txt");

DataInputStream in = new DataInputStream(fstream);

BufferedReader br = new BufferedReader(new InputStreamReader(in));

DataInputStream in1 = new DataInputStream(fstream1);

BufferedReader br1 = new BufferedReader(new InputStreamReader(in1));

String student;

String lecture;

int count;

//Read File Line By Line

while ((student = br.readLine ()) != null) {// stringe ogrencileri aliyor

// Print the content on the console

lecture = br1.readLine ();// stringe dersleri aliyor

count = 0;

for (int i = 0; i < sorunlu.size (); i++) {

if (lecture.equals(sorunlu.get(i))) {

count ++;

}

39

}

if (ogrenci.contains(student) || count >= 1) {

continue;

}

ogrenci.add(student);

}

//Close the input stream

in.close ();

in1.close ();

System.out.println (" ogrenci size " + ogrenci.size ());

File dosya2 = new File ("../ Heuristic/slot.txt ");

Scanner sc2 = new Scanner(dosya2);

while (sc2.hasNext ()) {

String slotS = sc2.nextLine ();

slot = Integer.parseInt(slotS);

System.out.println ("slot= " + slot);

if (slotS == null) {

break;

}

}

File dosya3 = new File ("../ Heuristic/iteration.txt ");

Scanner sc3 = new Scanner(dosya3);

while (sc3.hasNext ()) {

String iterationS = sc3.nextLine ();

iteration = Integer.parseInt(iterationS);

System.out.println (" iterasyon " + iteration);

40

if (iterationS == null) {

break;

}

}

File dosya4 = new File ("../ Heuristic/mutation.txt");

Scanner sc4 = new Scanner(dosya4);

while (sc4.hasNext ()) {

String mutationR = sc4.nextLine ();

mutationRate = Double.parseDouble(mutationR);

System.out.println (" mutation rate " + mutationRate);

if (mutationR == null) {

break;

}

}

File dosya5 = new File ("../ Heuristic/crossOver.txt ");

Scanner sc5 = new Scanner(dosya5);

int b = 0;

while (sc5.hasNext ()) {

String crossOverR = sc5.nextLine ();

crossOverRate = Double.parseDouble(crossOverR);

b = (int) (10 * crossOverRate);

System.out.println (" crossover rate " + crossOverRate);

if (crossOverR == null) {

break;

}

}

selection = (double) (10 - b) / 10;

System.out.println (" selection rate = " + selection);

}

public void Data() throws FileNotFoundException , IOException

41

{

FileInputStream fstream = new FileInputStream ("../ Heuristic/ogrenci_numaralari.txt");

FileInputStream fstream1 = new FileInputStream ("../ Heuristic/alinan_dersler.txt");

// Get the object of DataInputStream

DataInputStream in = new DataInputStream(fstream);

BufferedReader br = new BufferedReader(new InputStreamReader(in));

DataInputStream in1 = new DataInputStream(fstream1);

BufferedReader br1 = new BufferedReader(new InputStreamReader(in1));

program = new boolean[dersler.size ()][ogrenci.size ()];

int row , column , count;

for (int i = 0; i < program.length; i++) {

for (int j = 0; j < program[i]. length; j++) {

program[i][j] = false;

}

}

String student;

String lecture;

//Read File Line By Line

while ((lecture = br1.readLine ()) != null) {

count = 0;

for (int i = 0; i < sorunlu.size (); i++) {

if (lecture.equals(sorunlu.get(i))) {

count ++;

}

}

if (count >= 1) {

student = br.readLine ();

continue;

}

student = br.readLine ();

row = dersler.indexOf(lecture);

column = ogrenci.indexOf(student);

42

System.out.println(lecture + " " + row + "and" + column);

program[row][column] = true;

}

}

public void fixed() throws FileNotFoundException {

fixed_dersler = new boolean[dersler.size ()];

for (int i = 0; i < fixed_dersler.length; i++) {

fixed_dersler[i] = true;

}

File dosya6 = new File ("../ Heuristic/fix.txt");

Scanner sc6 = new Scanner(dosya6);

while (sc6.hasNext ()) {

String ders = sc6.nextLine ();

if (ders == null) {

break;

}

fixed_dersler[dersler.indexOf(ders)] = false;

System.out.println ("fix ders " + ders + " ");

}

}

public boolean fix(int ders) throws SQLException , FileNotFoundException {

return fixed_dersler[ders];

}

public void generateDesire () throws SQLException , FileNotFoundException , IOException {

int count;

kisitli_dersler = new boolean[dersler.size ()][slot];

for (int i = 0; i < kisitli_dersler.length; i++) {

for (int j = 0; j < kisitli_dersler[i]. length; j++) {

kisitli_dersler[i][j] = true;

}

43

}

File dosya2 = new File ("../ Heuristic/desired.txt");

Scanner sc1 = new Scanner(dosya2);

while (sc1.hasNext ()) {

count = 0;

String a = sc1.nextLine ();

String [] b = a.split (",");

for (int i = 0; i < b.length; i++) {

b[i].trim ();// bosluklar gitti

}

for (int i = 0; i < sorunlu.size (); i++) {

if (b[0]. equals(sorunlu.get(i))) {

count ++;

}

}

if (count >= 1) {

continue;

}

int[] s = new int[(b.length) - 1];

for (int i = 1; i < b.length; i++) {

Double x = Double.parseDouble(b[i]);

double y = (double) x;

s[i - 1] = (int) y;

}

int index = dersler.indexOf(b[0]);

for (int i = 0; i < kisitli_dersler[i]. length; i++) {

kisitli_dersler[index][i] = false;

}

for (int i = 0; i < s.length; i++) {

44

int day = (s[i] * 3) - 1;

for (int j = 0; j < 3; j++) {

kisitli_dersler[index][(day - j)] = true;

}

}

}

}

public boolean istekler(int data , int slot1) throws SQLException , FileNotFoundException {

return kisitli_dersler[data][slot1 - 1];

}

public int getLineCount () throws FileNotFoundException {

String filename = "../ GAMS/finexaSolution.txt";

File file = new File(filename);

Scanner scanner = new Scanner(file);

int count = 0;

while (scanner.hasNextLine ()) {

String line = scanner.nextLine ();

count ++;

}

return count;

}

public void initialTable () {

_individual = new int[dersler.size ()];

String filename = "../ GAMS/finexaSolution.txt";

try {

File file = new File(filename);

Scanner sc = new Scanner(file);

String yu;

System.out.println (" finexaSolution yani _individual ");

45

for (int i = 0; i < getLineCount (); i++) {

if (i == 0) {

yu = sc.nextLine ();

continue;

}

String s = sc.nextLine ();

s = s.replaceAll ("\"" , " ");

String [] w = s.split (" ,");

int orta = Integer.parseInt(w[1]. trim ());

_individual[i - 1] = orta;

System.out.print(_individual[i - 1] + " ");

}

System.out.println ();

} catch (Exception ex) {

System.out.println ("File cannot be read !!");

System.exit (0);

}

}

public int comparisonTwo(int index1 , int index2) {

int count = 0;

for (int i = 0; i < program [1]. length; i++) {

if (program[index1][i] && program[index2][i] == true) {

count ++;

}

}

return count;

}

46

public int comparisonThree(int index1 , int index2 , int index3) {

// int[] conflict = new int [100];

int count = 0;

for (int i = 0; i < program [0]. length; i++) {

if (program[index1][i] && program[index2][i] && program[index3][i]) {

count ++;

}

}

return count;

}

public static void BubbleSort(ArrayList <Integer > fitness , ArrayList <Integer > indexes) {

int temp , temp_1;

for (int i = 0; i < fitness.size (); i++) {

for (int j = 1; j < fitness.size() - i; j++) {

if (fitness.get(j - 1) > fitness.get(j)) {

temp = (int) fitness.get(j - 1);

fitness.set(j - 1, fitness.get(j));

fitness.set(j, temp);

// System.out.println(j+" ");

temp_1 = (int) indexes.get(j - 1);

indexes.set(j - 1, indexes.get(j));

indexes.set(j, temp_1);

}

}

}

}

public boolean dayCapacity(int slot , int dersIndex , int[] _individual) {

ArrayList <Integer > depo = new ArrayList <Integer >();

int sum = 0;

47

if (slot % 3 == 0) {

for (int i = 0; i < _individual.length; i++) {

if (_individual[i] == slot || _individual[i] == (slot - 1)

|| _individual[i] == (slot - 2)) {

depo.add(i);

}

}

} else if (slot % 3 == 2) {

for (int i = 0; i < _individual.length; i++) {

if (_individual[i] == (slot - 1) || _individual[i] == slot

|| _individual[i] == (slot + 1)) {

depo.add(i);

}

}

} else {

for (int i = 0; i < _individual.length; i++) {

if (_individual[i] == slot || _individual[i] == (slot + 1)

|| _individual[i] == (slot + 2)) {

depo.add(i);

}

}

}

for (int j = 0; j < depo.size (); j++) {

sum += studentNum.get(depo.get(j));

}

if (sum + studentNum.get(dersIndex) <= 1500) {

return true;

}

return false;

}

public boolean hardConst(int[] newGene , int slot , int ders) {

48

ArrayList <Integer > depo = new ArrayList <Integer >();

int count = 0;

for (int i = 0; i < newGene.length; i++) {

if (newGene[i] == slot) {

depo.add(i);

}

}

for (int i = 0; i < depo.size (); i++) {

count += comparisonTwo(ders , depo.get(i));

}

if (count == 0) {

return true;

}

return false;

}

public int[] crossOver(int randomSlot_1 , int randomSlot_2 , int[] ch_1 , int[] ch_2)

throws SQLException , FileNotFoundException {

int count = 0;

ArrayList <Integer > RandomS1 = new ArrayList <Integer >();

ArrayList <Integer > RandomS2 = new ArrayList <Integer >();

for (int i = 0; i < ch_1.length; i++) {

if (ch_1[i] == randomSlot_1) {

RandomS1.add(i);

}

}

for (int i = 0; i < ch_2.length; i++) {

if (ch_2[i] == randomSlot_2) {

RandomS2.add(i);

}

}

for (int x = 0; x < RandomS1.size (); x++) {

count = 0;

for (int y = 0; y < RandomS2.size (); y++) {

count += comparisonTwo(RandomS1.get(x), RandomS2.get(y));

49

}

if ((count == 0) && dayCapacity(randomSlot_2 , RandomS1.get(x), ch_2)

&& istekler(RandomS1.get(x), randomSlot_2)

&& fix(RandomS1.get(x))) {

ch_2[RandomS1.get(x)] = randomSlot_2;

}

}

return ch_2;

}

public void mutation(int[] chromosome) throws SQLException , FileNotFoundException {

int mutation_count = 0;

int y = 0;

while (y != 100) {

int count = 0;

ArrayList <Integer > s = new ArrayList <Integer >();

double a = Math.random () * dersler.size ();

double b = (1 + Math.random () * slot);

y++;

int course = (int) a;

int random_slot = (int) b;

for (int i = 0; i < chromosome.length; i++) {

if (chromosome[i] == random_slot) {

s.add(i);

}

}

for (int j = 0; j < s.size (); j++) {

count += comparisonTwo(course , s.get(j));

}

if (count == 0 && dayCapacity(random_slot , course , chromosome)

&& istekler(course , random_slot)

&& fix(course)) {

chromosome[course] = random_slot;

mutation_count ++;

break;

50

}

}

}

}

51

APPENDIX B

Genetic Algorithm

import java.io.File;

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.SQLException;

import java.util.ArrayList;

import java.util.Random;

import java.util.Scanner;

/**

*

* @author Seda

*/

public class Thesis {

public static void main(String [] args)

throws ClassNotFoundException , SQLException ,FileNotFoundException , IOException {

FileReader fr = new FileReader (" finexa ");

int[] optimumSol = new int[fr._individual.length];

int minimumOpt = 1501;

int[] newGene = new int[fr._individual.length];

for (int i = 0; i < fr._individual.length; i++) {

newGene[i] = fr._individual[i];

}

int [][] genes = new int [100][newGene.length];

for (int i = 0; i < newGene.length; i++) {

genes [0][i] = newGene[i];

}

ArrayList <Integer > fitness = new ArrayList <Integer >();

ArrayList <Integer > indexes = new ArrayList <Integer >();

int sumOfConflict = 0;// fitness degerleri tutacak

int daySlot1 = 0, daySlot2 = 0, daySlot3 = 0;

52

for (int i = 1; i < genes.length; i++) {

for (int w = 0; w < 10; w++) {

double _a = (1 + new Random (). nextDouble () * fr.slot);

double _b = (1 + new Random (). nextDouble () * fr.slot);

int random_slot1 = (int) _a;

int random_slot2 = (int) _b;

for (int j = 0; j < newGene.length; j++) {

if ((newGene[j] == random_slot1) && fr.hardConst(genes[i], random_slot2 ,j)

&& (fr.dayCapacity(random_slot2 , j, genes[i]))

&& (fr.istekler(j, random_slot2)) && (fr.fix(j))) {

genes[i][j] = random_slot2;

} else if ((newGene[j] == random_slot2) && fr.hardConst(genes[i], random_slot1 ,j)

&& (fr.dayCapacity(random_slot1 , j, genes[i]))

&& (fr.istekler(j, random_slot1)) && (fr.fix(j))) {

genes[i][j] = random_slot1;

} else {

genes[i][j] = newGene[j];

}

}

}

}

File dosya1 = new File(" InitialPopulation.txt ");

PrintWriter output1 = new PrintWriter(dosya1);

for (int m = 0; m < genes.length; m++) {

for (int e = 0; e < genes[m]. length; e++) {

output1.print(genes[m][e] + " ");

}

output1.println ("");

}

output1.close ();

File dosya2 = new File(" InitialPopulation.txt ");

Scanner sc1 = new Scanner(dosya2);

for (int i = 0; i < genes.length; i++) {

for (int j = 0; j < genes[i]. length; j++) {

53

genes[i][j] = (sc1.nextInt ());

}

}

File dosya3 = new File(" Iterations.txt");

PrintWriter output3 = new PrintWriter(dosya3);

File dosya4 = new File(" Iterationsnum.txt ");

PrintWriter output4 = new PrintWriter(dosya4);

/*

* ana algoritmanin new population ile tekrar donguye girdigi yer

*/

int heur = 0;

while (heur < (fr.iteration + 1)) {

fitness = new ArrayList <Integer >();

indexes = new ArrayList <Integer >();

sumOfConflict = 0;// fitness degerleri tutacak

daySlot1 = 0;

daySlot2 = 0;

daySlot3 = 0;

int [][] slotIndex = new int[fr.slot][];

int[] slotS;

for (int i = 0; i < genes.length; i++) {

slotS = new int[fr.slot];

for (int z = 0; z < slotS.length; z++) {

for (int j = 0; j < genes[i]. length; j++) {

if (genes[i][j] == z + 1) {

slotS[z]++;

}

}

}

for (int w = 0; w < slotIndex.length; w++) {

slotIndex[w] = new int[slotS[w]];

54

int y = 0;

for (int h = 0; h < genes[i]. length; h++) {

if (genes[i][h] == w + 1) {

slotIndex[w][y] = h;

y++;

}

}

}

daySlot1 = 0;

daySlot2 = 1;

daySlot3 = 2;

while (daySlot3 <= ((fr.slot) - 1)) {

for (int x = 0; x < slotIndex[daySlot1]. length; x++) {

for (int y = 0; y < slotIndex[daySlot2]. length; y++) {

for (int z = 0; z < slotIndex[daySlot3]. length; z++) {

sumOfConflict += fr.comparisonThree(slotIndex[daySlot1][x],

slotIndex[daySlot2][y], slotIndex[daySlot3][z]);

}

}

}

daySlot1 += 3;

daySlot2 += 3;

daySlot3 += 3;

}

fitness.add(sumOfConflict);

sumOfConflict = 0;

indexes.add(i);

}

if (heur == 0) {

output3.println ("");

output3.println ("The fitness value for " + 0 + "th iteration is "

+ fitness.get (0));

55

output3.println ("");

output4.println ("");

output4.println (+0 + " " + fitness.get (0));

output4.println ("");

System.out.println ();

System.out.println (" original " + heur + " " + fitness.get (0));

System.out.println ();

}

FileReader.BubbleSort(fitness , indexes);

if (heur > 0) {

for (int e = 0; e < genes[indexes.get (0)]. length; e++) {

output3.print(genes[indexes.get (0)][e] + " ");

}

if (fitness.get(0) < minimumOpt) {

for (int e = 0; e < genes[indexes.get (0)]. length; e++) {

optimumSol[e] = genes[indexes.get (0)][e];

}

minimumOpt = fitness.get (0);

}

output3.println ("");

output3.println ("The fitness value for " + heur + "th iteration is "

+ fitness.get (0));

output3.println ("");

output4.println ("");

output4.println (+heur + " " + fitness.get (0));

output4.println ("");

}

if (heur == fr.iteration) {

File dosyaN = new File ("../ Heuristic/finexaSolutionHeuristic.txt ");

56

PrintWriter outputN = new PrintWriter(dosyaN);

outputN.println ("0.00");

for (int e = 0; e < optimumSol.length; e++) {

outputN.println ("\"" + (e + 1) + "\"," + "\"" + optimumSol[e] + "\" ,1.00");

}

outputN.close ();

}

int[] chromosome_1 = new int[newGene.length];

int[] chromosome_2 = new int[newGene.length];

int[] temp_1 = new int[newGene.length];

double [] LinearRank = new double[genes.length];

double sayi = 0;

double uzunluk_LinearRank = LinearRank.length;

double sum = 0.0;

int count , loop;

for (int i = 0; i < LinearRank.length; i++) {

sayi += (i + 1);

}

for (int i = 0; i < LinearRank.length; i++) {

sum += (uzunluk_LinearRank - i) / sayi;

LinearRank[i] = sum;

}

int uzunluk_selection = (int) (genes.length * fr.selection);

int [][] selection = new int[uzunluk_selection][newGene.length];

loop = 0;

while (loop < selection.length) {

double select = Math.random ();

int s = 0;

while (s < LinearRank.length) {

count = 0;

if (select < LinearRank[s]) {

57

for (int w = 0; w < selection[loop]. length; w++) {

selection[loop][w] = genes[indexes.get(s)][w];

}

count ++;

}

if (count == 1) {

break;

}

s++;

}

loop ++;

}

int uzunluk_crossOver = (int) (genes.length * fr.crossOverRate);

if (uzunluk_crossOver % 2 == 1) {

uzunluk_crossOver += 1;

}

int [][] crossOver = new int[uzunluk_crossOver][newGene.length];

loop = 0;

while (loop < uzunluk_crossOver) {

double first = Math.random ();

double second = Math.random ();

int i = 0;

while (i < LinearRank.length) {

count = 0;

if (first < LinearRank[i]) {

for (int w = 0; w < chromosome_1.length; w++) {

chromosome_1[w] = genes[indexes.get(i)][w];

temp_1[w] = genes[indexes.get(i)][w];

}

count ++;

58

}

if (count == 1) {

break;

}

i++;

}

int j = 0;

while (j < LinearRank.length) {

count = 0;

if (second < LinearRank[j]) {

for (int w = 0; w < chromosome_2.length; w++) {

chromosome_2[w] = genes[indexes.get(j)][w];

}

count ++;

}

if (count == 1) {

break;

}

j++;

}

double _a = (1 + Math.random () * (fr.slot));

double _b = (1 + Math.random () * (fr.slot));

int random_slot1 = (int) _a;

int random_slot2 = (int) _b;

chromosome_1 = fr.crossOver(random_slot2 , random_slot1 ,

chromosome_2 , chromosome_1);

chromosome_2 = fr.crossOver(random_slot1 , random_slot2 ,

temp_1 , chromosome_2);

//yeni genleri crossOver arrayine ekliyoruz

59

for (int zi = 0; zi < chromosome_1.length; zi++) {

crossOver[loop][zi] = chromosome_1[zi];

crossOver[loop + 1][zi] = chromosome_2[zi];

}

loop += 2;

}

for (int i = 0; i < crossOver.length; i++) {

if (new Random (). nextDouble () <= fr.mutationRate) {

fr.mutation(crossOver[i]);

}

}

for (int i = 0; i < selection.length; i++) {

for (int j = 0; j < genes[i]. length; j++) {

genes[i][j] = selection[i][j];

}

}

for (int i = selection.length; i < genes.length; i++) {

for (int j = 0; j < genes[i]. length; j++) {

genes[i][j] = crossOver[i - selection.length][j];

}

}

System.out.println ();

System.out.println ("new population " + (heur + 1) + " " + fitness.get (0));

System.out.println ();

heur ++;

}

output3.close ();

output4.close ();

}

}

60

61

APPENDIX C

GAMS Model with No 3 Exam Rule
Sets

c courses / 1*183 /

s slots / 1*30 /

day1(s) / 1*3 /

day2(s) / 4*6 /

day3(s) / 7*9 /

day4(s) / 10*12 /

day5(s) / 13*15 /

day6(s) / 16*18 /

day7(s) / 19*21 /

day8(s) / 22*24 /

day9(s) / 25*27 /

day10(s) / 28*30 /

stud students /1*1668/;

Alias(c,c1);

Parameters

n(c,c1) number of students that taking c and c1 c1>c

/

$include finexa_paramnij.txt

/

stu(c) number of students in c

/

$include finexa_paramsi.txt

/

cou(stud ,c) which student is taking which courses

/

$include finexa_paramtook.txt

/

undsr(c,s) undesired slots for courses

/

$include undesired.txt

/

;

Variables x(c,s), y(c,c1,s),z,q(stud ,s),w1(stud),w2(stud),w3(stud),w4(stud),

62

w5(stud),w6(stud),w7(stud),w8(stud),w9(stud),w10(stud),e(c);

Binary Variables x, y,q,w1,w2,w3 ,w4,w5,w6 ,w7,w8,w9 ,w10 ,e(c);

Equations obj ,assignment(c),conflict(c,c1 ,s),Capday1 ,Capday2 ,Capday3 ,Capday4 ,Capday5 ,Capday6;

Equations Capday7 ,Capday8 ,Capday9 ,Capday10;

Equations soft1(stud),soft2(stud),soft3(stud),soft4(stud),soft5(stud),soft6(stud),soft7(stud);

Equations soft8(stud),soft9(stud),soft10(stud),undesired(c),seda(stud ,c,s);

obj .. z =e= sum((c,c1,s), n(c,c1)*y(c,c1,s))+sum((stud) ,0.5*(w1(stud)+w2(stud)+w3(stud)+

w4(stud)+w5(stud)+w6(stud)+w7(stud)+w8(stud)+w9(stud)+w10(stud)))+0.5* sum((c),e(c));

assignment(c) .. sum(s, x(c,s)) =e= 1 ;

conflict(c,c1,s)$(ord(c1) gt ord(c)) .. x(c,s) + x(c1 ,s) - y(c,c1,s) =l= 1 ;

Capday1 .. sum((c,day1), stu(c)*x(c,day1)) =l= 1500;

Capday2 .. sum((c,day2), stu(c)*x(c,day2)) =l= 1500;

Capday3 .. sum((c,day3), stu(c)*x(c,day3)) =l= 1500;

Capday4 .. sum((c,day4), stu(c)*x(c,day4)) =l= 1500;

Capday5 .. sum((c,day5), stu(c)*x(c,day5)) =l= 1500;

Capday6 .. sum((c,day6), stu(c)*x(c,day6)) =l= 1500;

Capday7 .. sum((c,day7), stu(c)*x(c,day7)) =l= 1500;

Capday8 .. sum((c,day8), stu(c)*x(c,day8)) =l= 1500;

Capday9 .. sum((c,day9), stu(c)*x(c,day9)) =l= 1500;

Capday10 .. sum((c,day10), stu(c)*x(c,day10)) =l= 1500;

soft1(stud).. sum((day1), q(stud ,day1))-w1(stud)=l=2;

soft2(stud).. sum((day2), q(stud ,day2))-w2(stud)=l=2;

soft3(stud).. sum((day3), q(stud ,day3))-w3(stud)=l=2;

soft4(stud).. sum((day4), q(stud ,day4))-w4(stud)=l=2;

soft5(stud).. sum((day5), q(stud ,day5))-w5(stud)=l=2;

soft6(stud).. sum((day6), q(stud ,day6))-w6(stud)=l=2;

soft7(stud).. sum((day7), q(stud ,day7))-w7(stud)=l=2;

soft8(stud).. sum((day8), q(stud ,day8))-w8(stud)=l=2;

soft9(stud).. sum((day9), q(stud ,day9))-w9(stud)=l=2;

soft10(stud).. sum((day10), q(stud ,day10))-w10(stud)=l=2;

undesired(c).. sum(s, undsr(c,s)*x(c,s))-e(c) =e= 0 ;

seda(stud ,c,s).. cou(stud ,c)*x(c,s)=l=q(stud ,s);

Model final /all/;

Solve final using mip minimizing z ;

Display z.l,x.l;

63

64

	Abstract
	Özet
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Outline of Thesis

	2 Integer Programming Formulations
	2.1 Final Exam Scheduling at Işık University
	2.1.1 Core Model
	2.1.1.1 Index sets
	2.1.1.2 Parameters
	2.1.1.3 Decision variables
	2.1.1.4 Formulation

	2.1.2 Model With No 3 Exam Rule
	2.1.2.1 Index sets
	2.1.2.2 Parameters
	2.1.2.3 Decision variables
	2.1.2.4 Formulation

	3 Genetic Algorithm (GA) and Exam Scheduling
	3.1 GA
	3.1.1 Initialization
	3.1.2 Evaluation
	3.1.3 Selection
	3.1.4 Recombination
	3.1.5 Mutation
	3.1.6 Replacement

	3.2 GA for Exam Scheduling
	3.2.1 Construction Heuristic
	3.2.2 Improvement Algorithm
	3.2.3 Solution Representation
	3.2.4 Crossover and Mutation Operators

	4 Experiments
	4.1 Problem Instances
	4.2 Preliminary Experiments
	4.3 Memetic Algorithm

	Conclusion
	References
	Curriculum Vitae
	Appendices

