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APPROVED BY:

Assist Prof. Olcay Taner YILDIZ Işık University
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LEARNING TO RANK

Abstract

The web has grown so rapidly in the last decade and it brought the need for

proper ranking. Learning to rank (LTR) is the collection of machine learning technolo-

gies that construct a ranking model using training data. The model can sort documents

according to their degrees of relevance or preference.

In this thesis, we introduce LTR technologies and divide them into three ap-

proaches: the point-wise, pair-wise and list-wise. We review the theoritical aspects of

each category and introduce the representative algorithms of them.

We also introduce a new LTR method GRwC which uses classification and graph

algorithms. We reduce the ranking problem to a two class classification problem and

apply KNN algorithm on a modified LTR dataset. We compared it with the popular

ranking algorithm RankingSVM.

Experiments on the well-known ranking datasets show that our proposed method

gives slightly worse results than RankingSVM.
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SIRALAMA ÖĞRENİMİ

Özet

Sıralama öğrenimi örnek verileri kullanarak bunlardan bir sıralama modeli oluşturan

makine öğrenimi metotlarıdır. Bu model dökümanları önemine ya da uygunluğuna

bağlı olarak sıralayabilir. Birçok Bilgiye Erişim teknolojisinin temelinde sıralama vardır.

Bu yüzden Sıralama öğrenimi teknolojisi ile varolan bu teknolojiler daha da iyileştirilebilir.

Sıralama öğrenimi son yıllarda artan bir popülariteye sahip olmuştur. Bunun

temel sebebi Sıralama öğrenimi metotlarının arama motorları tarafından kullanılmaya

başlanmış olmasıdır. Büyük arama motoru şirketleri son zamanlarda bir çok Sıralama

öğrenimi algoritmaları geliştirmiş ve bu algoritmaları arama sistemlerinde kullanarak

iyi sonuçlar almışlardır.

Bu tezde, Sıralama öğrenimi teknolojilerini inceledik ve üç ayrı kategoriye ayırdık:

nokta-bazlı, çift-bazlı ve liste-bazlı yaklaşımlar. Ayrıca yeni bir Sıralama öğrenimi

algoritması tasarlayıp bunu popüler bir algoritma olan RankingSVM ile karşılatırdık.
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Chapter 1

Introduction

The web develops so rapidly that everyone experience a flood of information. It

is estimated that there are 14 billion pages on the web as of December 2010. This

situation makes it very hard for everyone to find the desired information by browsing

the web. As a result, effective and efficient information retrieval (IR) has become very

important and today search engines are an essential tool for many people.

Ranking is an important problem in IR. Most of the IR problems are naturally

ranking problems, i.e. document retrieval, collaborative filtering [1], key term ex-

traction [2], definition finding [3], important email routing [4], sentiment analysis [5],

product rating [6], and anti web spam [7]. In this thesis, we will focus on document

retrieval where academic papers, web pages, news articles, emails are just a few exam-

ples of documents. There are many kinds of interesting ranking problems in document

retrieval:

• The documents are ranked only in terms of relevance to the query.

• Relational ranking [8] which gives importance to the relationship of web site

structure, completeness of documents in the ranking.

• Combining more than one candidate ranking lists to create a better one. The

lists can come from different index servers or vertical search engines and the final

ranking list is the result presented to users.

• Finding in what degree a feature of a web page effects the ranking result. This
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approach is called reverse engineering in search engine optimization (SEO).

Ranking in document retrieval is not an easy problem, so many ranking algo-

rithms have been proposed in IR. In recent years, to create good ranking models,

researchers started to use machine learning techniques due to possibility to reach large

set of training data. The data come from either machine learning conferences like

TREC or commercial web search engines. The methods that learn the ranking model

from the training data are called “learning to rank” (LTR) methods. These methods

learn how to combine the specified features of documents for ranking.

One can define LTR as the following: LTR is a set of algorithms that utilize ma-

chine learning techniques to solve the ranking problems. Usually the existing ranking

models include human calculated equations of features and weights for feature param-

eters of score calculations. LTR algorithms try to learn the best way of combining the

features of a document query pair. If a ranking method has following two features, we

call them learning to rank methods.

• Method is feature based: The documents of the queries are represented as feature

vectors. Most commonly used features in LTR are the frequency information of

the query terms, PageRank and BM25 scores etc.

• Training: The learning of the model is in four components of discriminative

learning. LTR algorithm has an input, output and hypothesis spaces and a loss

function.

Some LTR methods also have online learning process which is preferred by com-

mercial search engines. Given hundreds of thousands feedbacks from the users, it is

very important to learn from the feedback to improve the ranking mechanisms.

LTR has become an active research topic in the latest years. Due to this trend,
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significiant number of algorithms are proposed ( [9–28]). It is predicted that LTR will

have a bigger impact on IR in the next years.

Since learning to rank is a new research area, there are some questions arisen by

the researchers:

• What are the similar and different aspects of the LTR algorithms?

• Which LTR algorithm performs the best? How can we compare different LTR

algorithms?

• Can ranking be defined as a new kind machine learning problem or can it be

reduced to existing machine learning problems? Are there any unique theoretical

problems of ranking?

In this thesis, we will briefly review LTR algorithms and try to answer the first

question. We also reduce the ranking problem to a two-class classifier problem and solve

it using KNN classification algorithm. This thesis is organized as follows: In Chapter

2, a brief introduction on ranking in IR will be given. The ranking models and the

evaluation measures will be studied. In Chapter 3, LTR algorithms will be studied

more detailed. In Chapter 4, we propose a classification based LTR algorithm and in

Chapter 5 we compare its performance with the populer LTR algorithm RankingSVM.

We conclude in Chapter 6.

3



Chapter 2

Ranking in Information Retrieval

2.1. Ranking Models in IR

In information retrieval, there are many known ranking models. To give a brief in-

troduction, we will divide them into two categories as query-dependent ranking models

and query-independent ranking models.

2.1.1. Query-dependent Ranking Models

The very first ranking models rank documents according to the occurrences of

query terms in documents. We can give the Boolean model as an example. These

kinds of models cannot predict the degree of relevance truly but they can predict if

the document is relevant to the document or not. To improve the relevance degree,

vector space model was introduced. In this model, documents and queries are modeled

as vectors in the Euclidean space. The inner product of these two vectors can be used

to measure the similarity between the document and the query. To get a reasonable

similarity, an effective vector representation of query and documents should be built.

For this purpose TF-IDF weighting is widely used. The TF (Term Frequency) of term t

in a vector is the normalized number of its occurrences in the document. IDF (Inverse

Document Frequency) is

IDF (t) = log
N

n(t)
(2.1)
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where N is the number of documents and n(t) is the number of documents with term

t.

In addition above, researchers developed ranking models based on the probabilis-

tic ranking principle [29]. Examples of this kind of models include BM25 and language

model for information retrieval.

BM25 is used to rank the documents by the log-odds of their relevance. Actually,

it is not a single ranking model; it uses a variety of ranking models with slightly different

components and parameters. General representation of the model is

BM25(d, q) =
M∑
i=1

IDF (ti)TF (ti, D(k1 + 1)

TF (ti, D) + k1(1− b+ bLEN(d)
avdl

)
(2.2)

where q is the given query, containing the terms t1, ....., tM , d is given the document,

TF(t,d) is the term frequency of term t in the document d, LEN(d) is length of the

document d (number of words), avdl is the average document length of the main index,

k1 and b are free parameters, IDF(t) is the IDF of t.

Language model for information retrieval [30] is another ranking model which uti-

lizes statistical language model on information retrieval. A statistical language model

developed to assign a probability to the terms. When we use it in information retrieval,

the language model is associated with the document. Documents are ranked based on

the probability that document’s language model generates the terms in the query. We

define this probability as follows:

P (q|d) =
M∏
i=1

P (ti|d) (2.3)

where q is the query which contains the terms t1, ....., tM .
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Training the document’s language model is done with the maximum likelihood

method. One point we should be careful is the smoothing of the estimate. For this

puporse, a background language model estimated using the entire index. Then the

language model of the document is

p(ti|d) = (1− λ)
TF (ti, d)

LEN(d)
+ λp(ti|C) (2.4)

where p(ti|C) is the background language model for ti and λ ∈ [0, 1] is the smoothing

factor.

There are also other ranking models that try to find the relevance between the

documents and queries. These models use different approaches. Some give more im-

portance to the relationship between documents in terms of content similarity, web site

structure, hyper-link structure, and topic diversity; some consider the proximity of the

query terms more.

2.1.2. Query-independent Ranking Models

The models we mentioned so far rank documents based on the query and doc-

ument relationship, this is why we call them query-dependent models. On the other

hand, query-independent ranking models rank the documents based on their impor-

tance compared to other documents. We will explain PageRank as an example.

PageRank [31] is mostly applicable to web searching because it uses the hyperlink

structure of the web. The probability that a user randomly clicks through the links

and arrives to a web page is

PR(du) =
∑
dv∈Bu

PR(dv)

U(dv)
(2.5)
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where PR(du) is the PageRank value of page d, Bu is the collection of the web pages

linking to du, and U(dv) is the number of outer links from the page dv.

In addition above, there is a possibility that a user does not follow the hyperlink

structure of the web and visits a web page directly. The probability of this event is

called the damping factor which is calculated as (1 − α). So the PageRank of the

document dv is

PR(du) = α
∑
dv∈Bu

PR(dv)

U(dv)
+

1− α
N

(2.6)

where N is the total number of pages in the index.

In addition to PageRank, there are other link analysis models like hyperlink

induced topic search [32] and TrustRank [7]. Some of these use content or topic infor-

mation in addition to the link analysis.

2.2. Query-level Evaluation in Information Retrieval

From the large collection of ranking models a standard and correct evaluation

function is required to select the best model. The general procedure for doing this

evaluation is as follows:

• A sufficient number of queries are collected and they form a test set.

• The following steps are applied for each query in the set:

– Gather the documents in the queries’ result set

– Use human judgments for getting the relevance value of each document

– Apply a ranking model on queries.

– Compute the difference between the ground truth ranking list and the result

of the ranking model using an evaluation measure.

7



• Evaluate the performance of the given ranking model using the average measure.

Collecting the documents for the test set is a critical job, because we need qual-

ity data for the ranking models. There are many different ways to collect the data.

One example is the pooling strategy. This method is used in TREC (Text REtrieval

Conference). The procedure of this strategy is as follows:

• Create sample queries.

• Collect documents associated with each query. At this step many predefined

ranking models can be used to gather the relevant documents, for example existing

search engines.

• Merge the documents of each query from different sources to a pool for human

judgment.

• Use human assessment to create a ground truth ranking list for each query from

the associated documents in the pool.

Assessments made by human are also a critical factor. There are three method-

ologies used in IR for this purpose:

• Defining the document as relevant or not relevant. The relevance can be defined

in multiple levels like perfect, good, bad.

• Specifying the relative preference between the documents of the query. The judg-

ments are done only in document pairs.

• Specifying the total orders of the queries’ document.

Human assessment is a time and resource consuming process. Due to this fact,

it is not always possible to do right judgments on the documents of a query. As a

consequence, there are always not-judged documents in the index. These documents

are labeled as irrelevant in common practice.
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There are other evaluation measures introduced in IR. These measures also state

the true objectives of the ranking. Some of the measures are as follows:

Mean reciprocal rank (MRR) : The ranking position of the first relevant document

of a query is shown as r(q). So, 1
r(q)

is used to formulate the MRR for the query q. The

documents with the position below r(q) is not in MRR.

Precision at position k (P@k): The precision at position k is defined as

P@k(q) =
#{relevant documents in the top k positions}

k
(2.7)

Mean average precision (MAP): The average precision calculated as

AP (q) =

m∑
k=1

P@k(q)lk

#{relevant documents}
(2.8)

where m is the number of the documents of the query q, lk is the judgment made about

the relevance of the document at position k. This judgment is binary. MAP is defined

as the mean AP value of all queries in the collection.

Discounted cumulative gain (DCG): MRR and MAP are used for binary judgment

and thus they are not very useful when documents are ranked as in multiple levels of

judgments or in total order as list. DCG [33] is defined to be used in these situations.

Let π be the ranked document list of query q, then DCG at position k is

DCG@k(q) =
k∑
r=1

G(π−1(r))µ(r) (2.9)
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where π−1(r) is the rth document in the document list π. G(·) is called the rating of

the document and µ(r) is the position discount factor which is calculated as

µ(r) =
1

log2(r + 1)
(2.10)

Normalized DCG (NDCG) is the normalized value of DCG@k

NDCG@k(q) =
1

Zk

k∑
r=1

G(π−1(r))µ(r) (2.11)

where Zk is the maximum value of DCG@k

These evaluation measures have some common properties:

• They are all query level. The values of the measures are different for each query,

since they are calculated separately. The average value of these calculations on all

the queries is used. This way the quality of the test set is increased, because the

loss from the poorly selected relevant documents is decreased on overall collection.

• Rank position is used for all of them so they are position based. So they are

not sensitive to the small changes in the documents scores but they give more

importance to the order in the list.
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Chapter 3

Learning to Rank

Learning to rank algorithms can be designed with a variety of methodologies.

Looking at the literature, we see that there are three main approaches in LTR. The

differences derive from the input, output, hypothesis spaces, and loss functions. Now

we will review the main differences of the approaches and give example algorithms

associated with these approaches.

3.1. The point-wise approach

The goal of this approach is to determine the relevance degree of each document.

Thus, the input space of this approach is the feature vector of all documents. The

algorithm’s output space is formed with the relevance degrees of every document in

the collection. The collection of functions that take the feature vector as input and

give the relevance degree of a document are the hypothesis space of this approach. Loss

functions of point-wise approach analyze the relevance prediction of every document

to the ground truth degree. Different point-wise approach algorithms have different

loss functions as the ranking model can be different like regression, ordinal regression

and classification. So, the loss becomes regression loss, classification loss, etc. Example

algorithms of point-wise approach are ( [17, 19,22–24,26,34–36]).
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3.1.1. Multi-class Classification for Ranking

McRank was proposed by Li et al [23] where multi-class classification is used to

build ranking models. Lets say document collection X = {xj}mj=1 and the relevance

labels Y = {yj}m(j=1) are associated with query q. Then we are able to say that we have

a multi-class classifier which predicts ŷj on xj. The loss function for this classifier is

defined as

L(ŷj, yj) = Iyj 6=ŷj (3.1)

where I is the indicator function.

To convert the classification results into ranking scores, the classifier results are

converted to a probability distribution, which shows the probability of a document to

be under a category. We can define this probability as P (ŷj = k), k = 0, ..., K − 1

where K is the number of the categories. Then the final ranking score function is

H(xj) =
K−1∑
k=0

kP (ŷj = k) (3.2)

3.1.2. Subset Ranking with Regression

Cossock and Zahn [19] propose to solve the ranking problem by reducing it to

a regression problem. Suppose scoring function f is used to rank a set of documents

X = {xj}mj=1 belonging to query q with the relevance labels Y = {yj}mj=1. They

formulate the loss function as regression loss

L(f ; xj,yj) = (yj − f(xj))
2 (3.3)

12



3.1.3. Other Point-wise Algorithms

Chu and Ghahramani [34] propose a probabilistic kernel approach to ordinal

regression Gaussian process. They use two interference techniques which are based

on Laplace approximation and the expectation propagation algorithm.They compare

these techniques with the previous ordinal regression models and report that the data

sets they use satisfy the usefulness of their approach.

Cooper et al [35] combine the methods of statistical independence assumptions

and multiple regression analysis without causing additional computational complexity.

The most important element in their approach is that the regression analysis is carried

out in two or more levels (stages). Such approach allows composite or grouped retrieval

clues to be analyzed in an order, first within groups and then between the groups.

Crammer and Singer [17] discuss the problem of ranking. In their framework,

each instance is associated with a rank or a rating which from one to k. The goal is to

find a rank prediction rule which has the minimum loss value. They explain an online

ranking algorithm to minimize the cost of their rank prediction rule, PRank.

Gey [36] proposes a model for probabilistic text and document retrieval and this

model utilizes logistic regression techniques. They call the model as logistic inference.

They use the principle that when one transforms the distribution of each statistical

clue into its standardized distribution (µ = 0 and σ = 1), their method allows to apply

logistic coefficients derived from a training collection to the other one. They apply the

model to the well-known data sets and have good results.

Nallapati [24] explores the applicability of discriminative classifiers for IR. They

compare two popular discriminative models, maximum entropy and support vector

machines with language modeling. The experiments show that maximum entropy is

13



significantly worse than language model and SVM’s are on par with language modeling.

3.2. Pair-wise Approach

Instead of finding each document’s relevance to the query like point-wise ap-

proach, pair-wise approach finds the relative order between two documents. We can

say that pair-wise approach is closer to the ranking concept than point-wise approach.

The ranking problem is taken as a classification on document pairs. The goal of learning

is to have minimum amount of miss-classified document pairs. So, if all the document

pairs are correctly classified, then it means that the whole document list of a query q

is correctly ranked.

The pair-wise approach has an input space of document pairs that are represented

as feature vectors. The output space is the preference label between the documents

of the pairs. Then we can say the output space has the values of 1,-1 to represent

the preference. The hypothesis space has the functions h that compute the relative

order between the given document pairs. The loss function examines the inconsistency

between the output of h functions and the ground truth labels. There are many

algorithms in this category such as [9, 11,12,15,21,27].

3.2.1. RankBoost

RankBoost [18] inherits the AdaBoost [37] algorithm for classification on docu-

ment pairs. AdaBoost classifies each single document, where RankBoost classifies the

document pairs. The algorithm defines a distribution over the document pairs and

updates it according to the current selected weak ranker’s loss value. The pseudocode

of RankBoost is give in Figure 3.1.

14



1 Given: initial distribution D over XxX

2 Initialize: D1 = D

3 For t = 1, ....., T :

4 Train weak learner using distribution D1

5 Get weak ranking ht : X → R

6 Choose αt ∈ R

7 Update Dt+1(x0,x1) = Dt+1(x0,x1)exp(αt(ht(x0)−ht(x1)))
Zt

,

where Zt is the normalization factor

8 End For

9 Output the final ranking H(x) =
∑T

t=1 αtht(x)

Figure 3.1. Algorithm RankBoost.

For a document pair (x1,x2), the distribution D value is defined as

D(x1, x2) = cmax{0, φ(x1,x2)} (3.4)

where φ is the feedback function that outputs the ground truth pair-wise preference

between x1 and x2 which either -1 if x1 is preferred over x2, 0 if both preferred equally

and +1 if x2 is preferred over x1. c is the normalization factor since

∑
x1,x2

D(x1,x2) = 1 (3.5)

The final ranking is formed by selecting weak rankings during the training and

weights assigned to them. RankBoost defines the rankers as functions that output the

linear ordering of each feature in the document’s feature vector.
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In each iteration, a weak ranker ht is selected and a weight αt is assigned to it.

There are three approaches to assign the weight αt

1. For any weak ranker ht, the normalization factor Zt can be represented as a

function of αt. The unique minimum of the factor value gives as the value of αt.

2. This approach is applicable when ht has the value in range of [0, 1]. Zt is mini-

mized as follows: For b ∈ {−1, 0, 1}

Wt,b =
n∑
i=1

∑
u,v:y

(i)
u,v=1

Dt(xu
(i),xv

(i))I{ht(xu
(i))−ht(xv

(i))=b} (3.6)

Then

αt =
1

2
log(

Wt,−1

Wt,1

) (3.7)

3. This approach is based on the approximation of Zt, which is the applicable when

ft has the value in range of [0,1]. We define :

rt =
n∑
i=1

∑
u,v:y

(i)
u,v=1

Dt(xu
(i),xv

(i))(ft(xu
(i))− ft(xv

(i))) (3.8)

Then

αt =
1

2
log

(
1 + rt
1− rt

)
(3.9)

The designers of the algorithm selected the third method for finding αt. r value
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for a given ranker is defined as

r =
∑
x0,x1

D(x0,x1)(h(x1)− h(x0)) (3.10)

=
∑
x

h(x)π(x) (3.11)

where π(x) =
∑

x′(D(x,x′)−D(x′,x)) is called the potential of the document x. Note

that, π(x) is calculated from the current distribution in each iteration.

To minimize αt at each iteration step, we select the weak ranker which maximizes

r. At the end of the iterations, the selected weak rankers along with their weights form

the final ranking function.

3.2.2. Ranking SVM

Ranking SVM [21] uses SVM for pair-wise classification. Given the query set of

{qi}ni=1 we generate the document pairs of (xi
u,x

i
u). Note that the document pairs are

generated for each query. So we don’t pair the documents from different queries. The

ground truth label of pair-wise preference between (xi
u,x

i
u) is denoted as yiu,v.

The formulation of Ranking SVM is given as

min1/2‖ w ‖2 + C

n∑
i=1

∑
u,v;yiu,v=1

ξiu,v

s.t.wT(xi
u − xi

u) ≥ 1− ξiu,v, ifyiu,v = 1,

ξiu,v ≥ 0, i = 1, ..., n
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The term 1
2
‖ w ‖2 controls the complexity of the model w. Unlike SVM, the

constraints are constructed from the document pairs. The loss function in Ranking

SVM is the hinge loss defined on the document pairs.

Since Ranking SVM inherits many features from SVM framework, with the help

of margin maximization, it can have good generalization. Also, Kernel tricks can be

applied to Ranking SVM, so it can handle complex non-linear problems.

3.2.3. Other Pair-wise Algorithms

Burges et al [11] investigate the gradient descent methods for learning ranking

functions. They propose a simple probabilistic cost function and a neural network

based learning algorithm RankNet to minimize their cost function.

Cohen et al [15] introduce an on-line learning algorithm based on the “Hedge”

algorithm to find a good linear combination of ranking experts. They also show that

finding an ordering that agrees best with a preference function is NP-complete.

Tsai et al [27] conduct further study on RankNet [11] and propose a new loss

function named Fidelity to measure loss of ranking. To efficiently minimize Fidelity

loss, they propose a learning algorithm called FRank.

3.3. List-wise approach

Unlike the two other approaches that does predictions on document level or doc-

ument pair level, list-wise approach try to minimize the difference between the ground

truth ranking list of a document and the output ranking list of the ranking model.

The input space of this approach is formed of the entire collection of the docu-
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ments belonging to query q. The output space contains the ranked list of the documents

of a query. The hypothesis space contains the set of ranking functions that predict the

ranking order of the given documents. The loss function computes the difference be-

tween the output ranking list of the hypothesis and the ground truth list from the

input space. Example algorithms of this approach include [10,13,25,38–41].

3.3.1. RankCosine

Qin et al proposed a list-wise LTR algorithm called RankCosine [41] which uses

cosine similarity as the loss function.

Suppose there are n(q) documents for a query q. The ground truth ranking list

for this query is g(q) which is a n(q)-dimension vector. The documents are listed from

one to n and the kth element of the ranking list is the rating of document k in the list.

For example, if we have document collection such as A, B, C, D ; one instance of the

ranking list of this collection would be 2, 3, 1, and 4. The absolute value of the scores

is not important, in RankCosine (and in most of the other list-wise algorithms) only

the difference between scores matters which is the linear ordering of the documents.

The output of learning algorithm for a query q is defined as H(q). This output is also

an n(q)-dimension vector same as g(q). Also, the kth element in the output list is the

rating of the kth document given by the algorithm.

The ranking loss for a query q is defined as follows:

L(g(p),H(q)) =
1

2
(1− cos(g(q),H(q))) =

1

2
(1− g(q)TH(q)

‖ g(q) ‖‖ H(q) ‖
) (3.12)

where ‖ · ‖ is L-2 norm of a vector. Since they use cosine similarity in this function, it

is called as cosine loss.

19



The goal of learning in this setting is to minimize the total loss function value

over all the queries that are in training set Q ;

L(H) =
∑
q∈Q

L(g(p),H(q)) (3.13)

For the final ranking function an additive model is used

H(q) =
T∑
t=1

αtht(q) (3.14)

where αt is the combination weight and ht(q) is the weak learner which maps an input

matrix whose one row is the feature vector of a document, to an output vector whose

elements are the scores of the documents.

ht(q) : Rn(q)xd → Rn(q) (3.15)

where d is the dimension of the feature vector.

To train the parameters of the final ranking, a stage-wise greedy search strategy

is used. At each step a new weak learner is selected whose cosine loss is minimum.

When the new weak learner is selected, it is combined with the previously selected

weak learners.

If we define the final ranking function as

Hk(q) =
k∑
t=1

αtht(q) (3.16)

where ht(q) is the weak learner selected at step t, we can define the cosine loss at step
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t as

L(Hk) =
∑
q

1

2

(
1− g(q)T (Hk−1(q) + αthk(q))√

(Hk−1(q) + αthk(q))T (Hk−1(q) + αthk(q))

)
(3.17)

When we set the derivative of L(Hk) with respect to αt to zero, we get the optimal

value of αt as

αt =

∑
q W1,k

T (q)hk(q)∑
q W2,k

T (q)(hk(q)gT (q)hk(q)− g(q)hk
T (q)hk(q)

(3.18)

where W1,k(q) and W2,k(q) are given as

W1,k(q) =
gT (q)Hk−1(q)Hk−1(q)−Hk−1

T (q)Hk−1(q)g(q)

‖ Hk−1(q) ‖3/2
(3.19)

W2,k(q) =
Hk−1(q)

‖ Hk−1(q) ‖3/2
(3.20)

Using these equations we calculate the optimal weight of αt, evaluate cosine loss

for each weak learner candidate, and select the one with the smallest loss as the kth

weak learner. At the end, we get a collection of weak learners and their combination

coefficient which makes the final ranking function.

Figure 3.2 shows the pseudocode of RankCosine. Here, en(q) is an n(q)-dimensional

vector with all elements equal to one.
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1 Given: ground truth g(q) for all queries Q, weak learner candidates hi(q), i = 1, 2...

2 Initialize: W1,1(q) = W2,1(q) =
en(q)

n(q)

3 For t = 1, 2, ..., T

4 For each weak learner candidate hi

5 Compute optimal αt,i

6 Compute the cosine loss εt,i

7 End For each

8 Choose weak learner ht,i which has the minimal loss as ht.

9 Choose coefficient αt,i as αt.

10 Update query weight vectors W1,t(q) and W2,t(q)

11 End For

12 Output the final ranking function H(q) =
∑T

t=1 αtht(q)

Figure 3.2. Algorithm RankCosine

3.3.2. ListNet

ListNet [13] is another LTR algorithm that has a list-wise ranking loss based

on the probability distribution on permutations. The distribution on permutations

is well-studied in probability theory. There are famous distribution models like Luce

model and the Mallows model. Since we can treat a ranked list as a permutation of

the document list, these models can be applied easily. ListNet applies Luce model to

the LTR.

The relevance scores are given by the scoring function h like s = sj
m
j=1 where

sj = h(xj). The Luce model assigns a probability to each possible permutation π of
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the documents.

P (π|s) =
m∏
j=1

ϕ(sπ1(j)

m∑
u=j

ϕ(s− 1π(u))
(3.21)

where π−1(j) points the document that is ranked at position j of the list, or permutation

π. ϕ is a transformation function. Each item
ϕ(sπ−1(j))
m∑
u=1

ϕ(sπ−1(u))
is a conditional probability

shown as the following example.

Assume that we have three documents X,Y and Z belonging to the query q.

The permutation probability π = (X,Y,Z) is the product of the following three prob-

abilities, Pπ = P1P2P3

• P1: The probability X being ranked at the top position in π

• P2: The conditional probability of Y being at second in the permutation after

X.

• P3: The conditional probability of Z being at third position after X and Y. In

this simple case, P3 equals to 1.

For a given query q, ListNet computes the permutation probability distribution

based on the scores of function f. Also, it defines another permutation probability

distribution py(π) based on the ground truth list. Then it uses K-L divergence between

these two distributions and computes the loss function

L(f ; x, πy) = D(P (π|ϕ(f(w,x))) ‖ Py(π)) (3.22)

Then, the algorithm uses gradient descent based neural network to minimize the

K-L divergence loss.
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3.3.3. Other List-wise Algorithms

LambdaRank [10] is a class of simple flexible algorithms which use implicit const

functions. Burges et al [10] note that the quality measures in IR are difficult to optimize

since they depend on the model scores only through the sorted order of the documents

returned for a given query. Derivatives of the cost with respect to the model parameters

are either zero or undefined. Thus they give the necessary conditions for the resulting

implicit cost function to be convex.

Taylor et al [38] present a new family of training objectives that are derived from

the ranks distributions of the documents. They call this approach SoftRank. Most

IR applications use evaluation metrics that depend only upon the ranks of documents.

However, most ranking functions generate document scores, which are sorted to pro-

duce a ranking. Hence IR metrics are non-smooth with respect to the scores, due to

the sorting. They also did approximation on Normalized Discounted Cumulative Gain

(NDCG) and proposed SoftNDCG.

Yue et al [40] states that few learning tecniques have been developed to directly

optimize for mean average precision (MAP) and the existing methods don’t find a glob-

ally optimal solution. They present a general SVM learning algorithm that efficiently

finds a globally optimal solution to a straightforward relaxation of MAP.
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Chapter 4

Graph Ranking with Classification

In this chapter, we will give the details of our novel LTR algorithm which first

transforms the ranking problem into a two-class classification problem and then use

KNN to classify the documents.

Every query q has the set of associated documents X which is either ordered

linearly or labeled in terms of relevancy. Every document xi ∈ X has a set of features

f1, ...., fk which have numerical values of the corresponding ranking models. The goal

here is to find the weights of each feature on the final scoring function and linearly

combine them. Since a document x is the vector of its feature values, we will do

classification on feature values of the documents.

Before doing any training, we need to prepare the data set for classification. Thus,

we create two groups of pairs, + and -. Every entry under a group is a feature vector

pair aligned side by side. For example, a pair consists of two documents xi and xj.

Then each entry in our data set is the features of two documents combined together

as f0,i, f1,i, ...., fk,i, f0,j, f1,j, ...., fk,j. If a pair is in group +, it means that the ranking

of the first document is higher than the second. If a pair is in group -, then the second

document is ranked higher than the first document.

The document pairs should be created from the same query. So, we can’t pair

the documents from different queries because this would be same as comparing apples
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Figure 4.1. Conversion of dataset for GRwC

to oranges. Since we prepare the data set from the scratch, we can work on two types

of data sets, relevance labeled queries and linear ordered queries. In relevance labeled

queries, we can easily generate the pairs and put them to the corresponding group by

comparing their relevance label. If they are equal, we don’t put them to any group. If

the data set is formed of linear ordered queries, then we can do the same as labeled

data. The difference is that if a query has n documents, then there are n different

relevance labels, meaning the ranking of the document in the ordered list. To generate

the pairs, we only take the top k documents of each query, avoiding large memory

footprint. Figure 4.1 illustrates the conversion of one query to GRwC format.

After preparing the dataset, a classification algorithm (in our case KNN) is ap-

plied which predicts the pair-wise preferences for each document pair. Since we have

to output the ranked list of the documents, we have to generate a linear ordering of

the documents from the prediction results of the classification algorithm. To do this,

we build a document graph in which each node is a document in the query and each

directed edge indicates the value of preference function between two documents. The

direction of the edges are determined from the prediction results of the classification

algorithm. For example, if the document A is preferred over document B according to

the prediction, then there should be an edge from node A to node B in the document
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graph.

Figure 4.2. Generating ordered list of documents from the document graph

After building the document graph, we run topological sort algorithm to get the

linear order of the documents. To sort a graph topologically, we need to have at least

one node without incoming edges. However, since we have prediction errors, we will

have cycles in the document graph, thus we can’t apply topological sort directly. So

we use a modified topological sort algorithm which selects the node with minimum

incoming edge instead of the node with no incoming edges. At the end, the result of

our algorithm is the output of the topological sort on the document graph.

Figure 4.2 shows an example of topological sort. We see four document (A,B,C,D)

with incoming edges count as (1,2,3,0) respectively. At the first iteration, we choose

D as it has the minimum number of incoming edges. We remove D and its outgoing

edges from the graph. After D, documents (A,B,C ) remain in the graph with incoming

edges count as (0,1,2) respectively. This time we remove A and its outgoing edges.

Documents (B,C ) remain in the graph with incoming edges count as (0,1) respectively.

We remove B from graph and lastly we remove C which is the last document remaining

in the graph. At the end we have the linear order of document as (D,A,B,C ).
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Chapter 5

Experiments and Results

5.1. Setup

We use Letor dataset [42] in our experiments. Letor contains two differents

datasets, namely OHSUMED [43] and TREC Web Track [44]. OHSUMED is a dataset

on medicine. It has three levels of relevance judgements: “definitely relevant”, “possibly

relevant” and “not relevant”. TREC dataset contains web pages crawled from the .gov

domain in the early 2002. The ground truths of the sample queries in the dataset are

provided by TREC committee as binary judgements. Table 5.1 shows the list of the

features we used in these datasets.

We used Weka [45] for training and predicting the pair-wise preference of the

documents. We have to convert the dataset from Letor format to the ARFF format.

In the ARFF format, we need to provide the attributes values in the header. So, we

define 93 attributes from which 92 attributes are features of documents and 1 attribute

is class attribute which has values Positive and Negative. In Letor dataset, there are

46 features. The reason we have 92 features for Weka tool is that we align the features

of two documents side by side. If the first document is preferred over the second,

then 93th attribute is labeled as Positive, otherwise Negative. Note that we don’t put

documents side by side if they are equally judged. After converting the dataset, we

train the model using K -nearest neighbor (KNN) classification algorithm, where we

save the model for later use.
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To test our model, we need to do processing on the test dataset. We prepare

80 test queries from test dataset and converted each of them to ARFF format. The

result of tests from Weka don’t contain the identities of the documents so we have to

generate another file which contains the document id of all pairs in the test queries. For

example, if the first line of the test query file contains the feature values of documents

X and Y, then the identity files’ first line contains the id of documents X and Y. So

this way, we know what documents are pointed with each prediction.

When the prediction is finished for a test query, we still don’t have the linear

ordering of the documents for that query. We have only the pair-wise preference judge-

ments for each document pair. So, to get a linear ordering, we build the graph of all

documents in that query and apply topological ordering. To use topological ordering

the graph should have at least one vertex which does not have any incoming edges.

However, since our prediction has some error, the document graph don’t have any ver-

tex obeying this rule. So, we use a modified version of topological ordering algorithm.

In this version, we chose the next vertex having minimum number of incoming edges.

This way, we construct the linear ordering of our test queries.

5.2. Results

We compare GRwC to the well-known LTR algorithm RankingSVM. We use

SVMlight tool [46] to train RankingSVM on Letor datasets. For RankingSVM, we use

the same training and test queries that we prepared for GRwC.

To evaluate the results, MAP and P@k metrics are used. Figures 5.1 and 5.3

show MAP comparison of the algorithms. Numerical values of MAP metric can be

seen in Tables 5.2 and 5.3. Figures 5.2 and 5.4 show P@k comparison. Numerical P@k

values are given in Tables 5.3 and 5.5. We see that both algorithms perform better on

OHSUMED dataset.
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From the results we see that, RankingSVM performs better than GRwC. One

reason is that the classification error rate causes to form cycles on document graph

of GRwC. Since we choose the vertex that has minimum incoming edge, some lower

ranked documents have higher positions in the ordering. This causes lower values in

the evaluation metrics. Also, from the prediction results, we see that relevant docu-

ments are predicted better than the documents that are irrelevant. Since the irrelevant

documents have very small feature values and since their feature values are almost

identical, KNN can not classify them correctly. To avoid this situation, we try to de-

crease the number of irrelevant documents in the queries. Although this approach is

more successful, we don’t count on them in favor of fairness.

Figure 5.1. MAP comparison on OHSUMED
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Figure 5.2. P@k comparison on OHSUMED

31



Table 5.1. List of the document features in Letor.

Col. Description Col. Description

1 TF(Term frequency) of body 24 BM25 of URL

2 TF of anchor 25 BM25 of whole document

3 TF of title 26 LMIR.ABS of body

4 TF of URL 27 LMIR.ABS of anchor

5 TF of whole document 28 LMIR.ABS of title

6 IDF(Inverse document frequency) of body 29 LMIR.ABS of URL

7 IDF of anchor 30 LMIR.ABS of whole document

8 IDF of title 31 LMIR.DIR of body

9 IDF of URL 32 LMIR.DIR of anchor

10 IDF of whole document 33 LMIR.DIR of title

11 TF*IDF of body 34 LMIR.DIR of URL

12 TF*IDF of anchor 35 LMIR.DIR of whole document

13 TF*IDF of title 36 LMIR.JM of body

14 TF*IDF of URL 37 LMIR.JM of anchor

15 TF*IDF of whole document 38 LMIR.JM of title

16 DL(Document length) of body 39 LMIR.JM of URL

17 DL of anchor 40 LMIR.JM of whole document

18 DL of title 41 PageRank

19 DL of URL 42 Inlink number

20 DL of whole document 43 Outlink number

21 BM25 of body 44 Number of slash in URL

22 BM25 of anchor 45 Length of URL

23 BM25 of title 46 Number of child page

32



Table 5.2. MAP comparison of RankingSVM and GRwC on OHSUMED.

MAP

RankingSVM 0.4134

GRwC 0.3810

Table 5.3. P@k comparison of RankingSVM and GRwC on OHSUMED.

RankingSVM GRwC

P@1 0.5914 0.4602

P@2 0.5314 0.4391

P@3 0.5327 0.4281

P@4 0.5313 0.4201

P@5 0.5309 0.3854

P@6 0.5203 0.3743

P@7 0.5017 0.3621

P@8 0.4813 0.3581

P@9 0.4760 0.3209

P@10 0.4714 0.3210

Table 5.4. MAP comparison of RankingSVM and GRwC on TREC.

MAP

RankingSVM 0.3613

GRwC 0.2094
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Table 5.5. P@k comparison of RankingSVM and GRwC on TREC.

RankingSVM GRwC

P@1 0.4325 0.3752

P@2 0.3381 0.2861

P@3 0.3264 0.2374

P@4 0.3104 0.2301

P@5 0.3012 0.2153

P@6 0.2792 0.1926

P@7 0.2647 0.1635

P@8 0.2562 0.1357

P@9 0.2501 0.1227

P@10 0.2035 0.1183

Figure 5.3. MAP comparison on TREC
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Figure 5.4. P@k comparison on TREC
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Chapter 6

Conclusion

In this thesis, we review three approaches to learning to rank. The first approach

is the point-wise approach which reduces ranking problem to regression or classification

on single documents. The second is the pair-wise approach which reduces ranking to

pair-wise classification problem. The third is the list-wise approach which takes ranking

as a completely new problem and tries to minimize ranking losses. We review the most

important algorithms of these three approaches.

We also propose a new LTR method GRwC, where we use a different kind of

dataset format than those popular LTR algorithms use, by changing the structure of the

dataset. We create positive and negative instances in terms of preference, by putting

the document features side by side. Then we use KNN classifier to get predictions

on pair-wise preference over all document pairs. By using these predictions, we build

the graph of all documents for each query and at the end, we rank the documents by

applying a modified toplogical sort algorithm on this graph.

Experiments on two LTR datasets OHSUMED and TREC show that our algo-

rithm does not give as good results as well-known LTR algorithm RankingSVM. But

with using distinct classification algorithm and preprocessing the features using feature

selection and/or feature extraction algorithms one can get better results.
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