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Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electronics Engineering
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GROUND PLANE DETECTION USING AN RGB-D

CAMERA FOR QUADCOPTER LANDING

Abstract

The purpose of this study is to build an autonomous quadcopter which is capable

of automated detection of landing zones and landing. To ensure this there are

important steps linked together.

The first step is to build a quadcopter that can fly. We have used a commercially

available quadcopter platform and an Ardu Pilot Mega control card to build a low

cost, easy to implement, and stable platform. An open source firmware, named

Arducopter, is used for the control card. This system can take-off, land, hover,

and follow a given flight path.

In order to detect of landing zones and safe landing, we propose to use an RGB-D

camera as a sensor and a small onboard pc as the computing engine. Hence, we

have modified the acquired quadcopter frame to integrate additional components.

In this thesis, we propose a novel and robust ground plane and obstacle detec-

tion algorithm based on depth information using RGB-D camera. Moreover, our

method was compared with V-disparity algorithm from the literature. It has been

shown that our algorithm performs better than V-disparity method and produces

useful ground plane-obstacle segmentations, even for difficult cases. The method

is able to work in highly dynamic platforms. This algorithm is generic in the sense

that it can be used for different forward-facing RGB-D placements, for example

in ground vehicles or robots.

Moreover, we developed a pre-process to allow the use of the method for down-

facing sensor view positions as the core method is inadequate for landing zone

detection. The proposed method compensates the movements of the camera

caused by the air vehicle, and detects the ground plane obstacles successfully. It

has been shown that the use of RGB-D camera allows ground plane and landing

zone detection even in no-light conditions.

All necessary components in this thesis were financed by FMV Işık University

internal research funds BAP-10B302 project.
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QUADCOPTER İNİŞİ İÇİN RGB-D KAMERASI İLE

ZEMİN DÜZLEMİ ALGILAMA

Özet

Bu çalışmadaki amaç bir dört rotorlu ufak hava aracına özerk bir şekilde gü-

venli iniş alanı belirleme ve iniş yapma özelliği kazandırmaktır. Bunu sağlamak

için birbirine bağlı önemli aşamalar vardır. Bu aşamaların ilki kararlı bir şekilde

uçabilen dört rotorlu bir aracın kurulmasıdır.

Bu amaçla, düşük maliyetli, kolay kurulabilir, ve kararlı bir platform sunduğun-

dan, ticari olarak mevcut olan ArduCopter ve Ardu Pilot Mega kontrol kartından

oluşan platform ve açık kaynaklı ArduCopter yerleşik yazılımı kullanılmıştır. Bu

haliyle sistem komutlar verilerek kalkış, iniş, asılı kalma ve uçuş rotasını takip

etme fonksiyonlarını gerçekleştirebilmektedir.

Bu çalışmada güvenli inişe uygun iniş sahalarının belirlenmesi için RGB-Derinlik

kamerası kullanılarak bir yöntem geliştirilmiştir. Bu nedenle, dört rotorlu hava

aracı platformu değiştirilerek RGB-Derinlik kamerası ve bir güverte bilgisayarı

entegre edilmiştir.

Bu çalışmada, Kinect derinlik kamerasından elde edilen derinlik bilgisine dayalı

yeni ve gürbüz bir zemin düzlemi algılama algoritması önerilmektedir. Birçok

farklı veri seti ile yöntemin başarılı bir şekilde çalıştığı gözlenmiştir. Yapılan kar-

şılaştırmalı deneyler, önerilen algoritmanın mevcut V-disparity yönteminden daha

iyi çalıştığını göstermektedir. Önerilen algoritma oldukça devinimli ortamlarda

çalışabilmektedir. Ayrıca genele uygulanabilir bir yöntemdir.

Önerilen zemin düzlemi algılama yönteminin aşağı-dönük bir platform için uygun

olmaması dolayısıyla; güvenli iniş alanı belirlemekte yetersiz olmasından dolayı;

mevcut yöntemin kullanılmasına olanak sağlayacak bir ön işlem tanımlanmıştır.

Önerilen yöntem, hava aracının hareketlerinden kaynaklı olan kamera görüş açı-

sındaki değişimleri başarılı bir şekilde telafi edebilmekte ve zemin düzlemi üze-

rindeki nesneleri algılayabilmektedir. Önerilen yöntemin ışık olmayan koşullarda

dahi başarılı bir biçimde çalıştığı yapılan deneylerle gösterilmiştir.

Bu projedeki ekipmanların tümü FMV Işık Üniversitesi iç araştırma BAP-10B302

projesi fonu ile finanse edilmiştir.
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Özet iii

Acknowledgements iv

List of Tables viii

List of Figures ix

List of Symbols xi

List of Abbreviations xii

1 Introduction 1

2 Quadcopter 5

2.1 Hardware System . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Multirotor Frame . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2.1 Main Components . . . . . . . . . . . . . . . . . 10

2.1.2.2 Secondary Components . . . . . . . . . . . . . . 13

2.1.2.3 Componenets for Autonomous Landing . . . . . . 14

2.1.2.4 Useful Payload . . . . . . . . . . . . . . . . . . . 16

2.1.3 Overall System . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Software System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Onboard Software . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Ground Control Station . . . . . . . . . . . . . . . . . . . 21

2.2.3 MAVLink . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 RAVLAB Control Station . . . . . . . . . . . . . . . . . . 22

3 Ground Plane Detection Using an RGB-D Sensor 26

3.1 Ground Plane Detection . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Detection for fixed pitch . . . . . . . . . . . . . . . . . . . 28

3.1.2 Detection for changing pitch and roll . . . . . . . . . . . . 29

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



3.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Landing zone detection 43

4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Conclusion 61

References 64

Curriculum Vitae 71



List of Tables

2.1 LiPo specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Complete system weight . . . . . . . . . . . . . . . . . . . . . . . 19

viii



List of Figures

1.1 Examples to the different categories of UAVs . . . . . . . . . . . . 2

2.1 Brief system layout . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Multirotor configuration examples . . . . . . . . . . . . . . . . . . 8

2.3 Quadcopter frames . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Quadcopter flight principles . . . . . . . . . . . . . . . . . . . . . 10

2.5 LiPo charger, storage bag, damaged LiPo . . . . . . . . . . . . . . 11

2.6 RC Transmitter & receiver . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Ardu pilot mega cards . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Secondary components . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 FitPC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10 Camera and downlink system . . . . . . . . . . . . . . . . . . . . 17

2.11 Gimbal system and 1/3′′ CCD camera . . . . . . . . . . . . . . . 18

2.12 Complete system layout . . . . . . . . . . . . . . . . . . . . . . . 18

2.13 Our quadcopters . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.14 Flow chart of roll control . . . . . . . . . . . . . . . . . . . . . . . 21

2.15 APM planner screens . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.16 RAVLAB Control Station screenshot . . . . . . . . . . . . . . . . 25

3.1 Axes & effect of the projection . . . . . . . . . . . . . . . . . . . . 29

3.2 Example depth map & effect of the pitch change . . . . . . . . . . 31

3.3 Exclusion rule explanation . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Mobile robot platform . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 ROC curves & accuracy for data set 1 . . . . . . . . . . . . . . . 37

3.6 ROC curves & accuracy for data set 2 . . . . . . . . . . . . . . . 38

3.7 Experimental results for ground plane detection from different scenes 40

3.8 Experimental results for ground plane detection-cont. . . . . . . . 41

4.1 Viewing perception & axes . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Depth envelope for negative pitch angle . . . . . . . . . . . . . . . 47

4.3 Experimental results for landing zone detection-1 . . . . . . . . . 50

4.4 Experimental results for landing zone detection-2 . . . . . . . . . 51

4.5 Experimental results for landing zone detection-3 . . . . . . . . . 52

4.6 Experimental results for landing zone detection-4 . . . . . . . . . 53

4.7 Experimental results for landing zone detection-5 . . . . . . . . . 54

4.8 Experimental results for landing zone detection-6 . . . . . . . . . 55

ix



4.9 Experimental results for landing zone detection-7 . . . . . . . . . 56

4.10 Experimental results for landing zone detection-8 . . . . . . . . . 57

4.11 Experimental results for landing zone detection-9 . . . . . . . . . 58

4.12 Experimental results for landing zone detection-10 . . . . . . . . . 59



List of Symbols

y Vertical position

x Horizontal position

f Pixel’s depth value

T Curve comparison threshold

D Depth image

CR Reference ground plane curve

CU Column of depth map

hr Histogram of rth row

R Number of rows

C Number of columns

θ Rotation angle

r Row number

Dθ Rotated depth image

E Depth envelope

A1 Fixed method

A2 Pitch compensated method

A3 Pitch and roll compensated method

xi



List of Abbreviations

APM Ardu Pilot Mega

ESC Electronic Speed Controller

GCS Ground Control Station

GPS Global Positioning System

GUI Graphical User Interface

ILS Instrument Landing System

IMU Inertial Measurement Unit

LADAR LAzer Detection And Ranging

LED Light Emitting Diode

LIDAR LIght Detection And Ranging

LiFePo4 Lithium Iron Phosphate

LiPo Lithium Polymer

MAV Micro Aerial Vehicle

MAVLink Micro Air Vehicle Communication Protocol

NAV Nano Aerial Vehicle

PID Proportional Integral Derivative

PWM Pulse Width Modulation

RC Radio Control

RGB Red Green Blue

RGB-D Red Green Blue Depth

ROC Receiver Operating Curves

ROS Robot Operating System

RPV Remotely Piloted Vehicle

SIFT Scale Invariant Feature Transform

xii



SLAD Safe Landing Area Determination

SURF Speeded Up Robust Features

TLS Transponder Landing System

U-SURF Upright Speeded Up Robust Features

UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

VTOL Vertical Take Off and Landing

PC Personal Computer

LMedS Least Median Squares

xiii



Chapter 1

Introduction

Development of unmanned air vehicles (UAVs) has been rapidly increasing in the

recent years. UAVs offer advantages when used for aerial surveillance, reconnais-

sance, and inspection in complex and dangerous environments. Indeed, UAVs are

preferred for dull, dirty, or dangerous missions because of their expense compared

to a full scale manned vehicle. Research and production of UAVs, especially mi-

cro aerial vehicles (MAVs), usually named as drones, are popular due to cheaper

and more robust electronics. UAVs are being used mostly by military but they

are also used in a small but growing number of civil applications because of the

infinite possibilities of utilizing their characteristics for civil applications. Some

examples of these applications are firefighting, surveillance, aerial photography,

mapping, and agricultural-chemical spraying.

UAV platforms can be classified according to their flight characteristics in four

categories: fixed wings, rotorcrafts, blimps and flapping wings. Fixed wing UAVs

require a runway to take-off and land, or catapult launching. As the vertical lift

is achieved from the wings, they can have long flight times and can fly at high

cruising speeds (Figure 1.1(a)-(b)). Rotorcrafts are vertical take-off and landing

(VTOL) capable vehicles that have the advantages of hovering capability and

high maneuverability (Figure 1.1(c)-(d)). However as the lift is produced by the

rotors, they are more power hungry than any other system. Blimps are lighter

than air so they float in the air (Figure 1.1(e)). They are generally large sized,
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(a) (b)

(c) (d)

(e) (f)

Figure 1.1: Examples of different UAVs: (a) TAI Anka [1]; (b) Northrop Grum-
man RQ-4 Global Hawk [2]; (c) Yamaha Rmax [3]; (d) ETH Zurich PIXHAWK
[4]; (e) Lockheed Martin High Altitude Airship [5]; (f) AeroVironment NAV [6]

slow flying vehicles with high endurance. Flapping wing UAVs also called as

ornithopters (Figure 1.1(f)), have wings inspired from birds and flying insects,

also they are usually nano aerial vehicles (NAVs).

There are also some hybrid configurations which can take-off vertically as rotor-

craft than transform into a fixed wing aircraft by tilting their rotors.
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UAVs come in two varieties: some are controlled from a remote location, called

as remotely piloted vehicles (RPVs), and others fly autonomously based on pre-

programmed flight plans using more complex dynamic automation systems. Re-

mote controlled ones are becoming less preferred as they still need humans and

hours of training is required to use them. On the other hand, autonomous flight

requires complex algorithms and expensive hardware. Under the autonomous

controller, the tasks can be categorized as: take-off, flight planning, landing zone

detection and landing, while flight planning can be straight forward or a more

complex depending on the environment.

Because of the physical complexity of a rotorcraft vehicle and required complex

movement algorithms, fixed wing UAVs like USAF’s MQ-1 Predator[7] and RQ-4

Global Hawk[2], are preferred. As they need to fly horizontally to stay in the air,

their algorithms are simply going in the direction where there are no obstacles.

Helicopter UAVs like Austrian Schiebel Camcopter S-100[8] and United States’

Northrop Grumman MQ-8 Fire Scout[9] become available in 2003 and both of

them are not fully autonomous when they were introduced, fully autonomous

flight with a full scale helicopter achieved in 2004 with Boeing Little Bird[10].

The navigational control decides the route to the GPS point that is given by the

user. The main concern is avoiding the obstacles while maintaining a continuous

flight. Ground plane detection and obstacle detection are essential tasks to de-

termine passable regions for autonomous navigation. To detect the ground plane

in a scene the most common approach is to utilize depth information (i.e. depth

map). Various methods and sensors have been used to compute the depth map

of the scene. The methods can be categorized as active or passive [11]. Active

methods use additional sensors such as 3D lasers, ultrasonic range finders or IR

projectors. Passive methods consist of optical flow and stereo vision algorithms

where the computation is more emphasized.

Moreover, many researches are focused on complex autonomous flight planning

as in [12, 13]. At the end of the flight planning task, after the final destination

3



point is reached it is important to find a proper place for landing. For larger

aircrafts landing zone is usually a runway in an airfield, where already available

systems like ILS or TLS can be used. If similar systems are not present, vision

based methods can be used as in [14]. Smaller aircrafts also requires a runway but

a road or an empty field can be used as landing zone. However VTOL vehicles

like helicopters, require an empty space slightly larger than the vehicle itself as a

landing zone, which is the main advantage of the VTOL vehicles. So the detection

of landing zone for VTOL vehicles is more complex than the detection for the

fixed-wing aircrafts. Advances in unmanned rotorcraft systems are studied in

[15].

In this thesis, we aim to build an autonomous quadcopter which is capable of

automated landing. Our autonomous quadcopter flight software is based on a

popular framework “ArduCopter” [16], which is capable of: take-off, landing,

hovering, and point to point navigation on command. While we aim to automate

all of these tasks, we are mainly focused on automated landing .

In Chapter 2, we discussed the hardware and software components of our quad-

copter platform. Every component and the key aspects of selecting those compo-

nents are investigated.

In Chapter 3, a novel ground plane detection algorithm using an RGB-D camera

is introduced for mobile robot navigation. Introduced method is compared with

an existing method from the literature, i.e. V-disparity algorithm [17].

In Chapter 4, we adapted the method that we describe in Chapter 3 to detect

possible safe landing zones. Thus, we propose a new improved method to detect

landing using an RGB-D camera.
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Chapter 2

Quadcopter

Interest for multirotor aircrafts are increasing rapidly due to smaller and lower

cost microprocessors and sensors. Individuals are building small multirotor plat-

forms and flying them with RC remotes as a hobby (Remotely Piloted Vehicles).

Meanwhile academic and research communities around the world are working on

the development of autonomous multirotors for specialized missions.

This thesis is a part of a project in which we aim to build an autonomous multi-

rotor platform, a.k.a. quadcopter. Our autonomous quadcopter system consists

of a base quadcopter frame, motor control electronics, a control card, sensors

for flight control, a small size compact PC, an RGB-D (Red Green Blue-Depth)

camera, a sonar sensor and useful payload such as a camera. A brief layout of our

system can be seen in Figure 2.1. The factors which affected our choice for the

quadcopter platform and our modifications on it are explained in Section 2.1.1.

In Section 2.1 hardware components of the system, in Section 2.2 software sys-

tems are explained in more detail. Electronic components in the quadcopter

including necessary, optional components and as useful payload are discussed in

Section 2.1.2, completed platform is discussed in Section 2.1.3.

5



Figure 2.1: Brief system layout

2.1 Hardware System

Multirotors use two or more propellers to obtain the lift required to fly. Con-

ventional helicopters are not accepted as multirotors since the tail rotor does not

provide lift. The forces that apply on a multirotor platform should be dynam-

ically controlled to obtain a stable flight. In this way crashes are avoided and

hovering is possible. Calculating the position and the movements of the platform

and controlling the variations of each rotor’s lift, also known as the attitude con-

trol [18, 19], is essential. Control cards with an inertial measurement unit (IMU)

are used to overcome this problem.

All necessary components in this thesis were financed by FMV Işık University

internal research funds BAP-10B302 project.
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2.1.1 Multirotor Frame

Multirotor platforms can be built in any shape desired with different number of

rotors as long as the motor locations are known. Common multirotor configura-

tions are shown in Figure 2.2. It can be seen that a single frame can be used for

different configurations by changing the orientation of the control card. Adding

more than four rotors does not show much improvement for stability, however one

can gain more lifting capacity and fault tolerance with more motors. We have

chosen to use quadcopter configuration which provided high stability with least

number of motors, in addition to being cost effective.

There are many manufacturers that offer multirotor frames. We used Jdrones

Arducopter Quad Frame V1(Figure 2.3(a)) and HobbyKing Quadcopter Frame

V1(Figure 2.3(b)). Jdrones frame is 62cm wide (rotor to rotor) and has alu-

minum rotor arms whereas HobbyKing frame is 55cm wide and completely made

of plywood. Although they use the same equipment these two frames exhibit

different flight characteristics because of the width of the frame and the con-

struction material. Wider rotor arms give more stability but slower response

to inputs. Aluminum rotor arms conduct any vibration caused by the rotating

propellers whereas plywood absorbs most of the vibration. Any vibration that

is transmitted to the center of the frame, where all the electronics are placed,

reduce the stability by causing sensor measurement errors.

Quadcopter X configuration’s flight principles are shown in Figure 2.4. Lift is

obtained from the rotors’ total force. In order to move forward, quad has to pitch

by rear rotors speed up while front rotors slow down (Figure 2.4(a)). To move to

the sides rotors in the desired direction slow down and the ones in the opposite

side speed up as shown in Figure 2.4(b). Anti rotational force is the key factor

for yaw control, to turn clockwise rotors that are turning counter-clockwise speed

up and the ones which spin clockwise slow down, as the anti-rotational force is

no longer in equilibrium, the quad yaws (Figure 2.4(c), [18]).

7



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Figure 2.2: Multirotor configuration examples: (a) tricopter; (b) hexa tricopter
(Y6); (c) quadcopter plus configuration; (d) quadcopter X configuration; (e) quad-
copter H configuration; (f) octa quadcopter; (g) hexacopter plus configuration;
(h) hexacopter X configuration; (i) octacopter plus configuration; (j) octacopter
X configuration; (k) octacopter V configuration

8



(a) (b)

Figure 2.3: Quadcopter frames: (a) Jdrones Arducopter quad frame V1[20]; (b)
HobbyKing quadcopter frame V1[21]

We mostly use Jdrones frame because of its rigidity and slower response and easy

to modify. However we made some changes to the frame for our needs. First of all

ground clearance of the original frame was very low and the supplied plexiglass

landing skids and dome was very fragile. Thus we removed the dome and landing

skids and installed 130mm carbon fiber landing gears for planes. After earning

sufficient ground clearance we added extra brackets made of PVC foam board,

for on board FitPC computer and our payloads. Also we have built demountable

collision protection bumpers made of Styrofoam to reduce damages from possible

bad landing and crashes.

Because of the simplicity we first set the quadcopter in the plus configuration

but then we used the X configuration to give a forward-looking camera an unob-

structed field of view (Figure 2.2(d) vs Figure 2.2(c)).

2.1.2 Electronics

Electronics that are used in the quadcopter can be categorized as main compo-

nents such as control card, electronic speed controllers (ESCs), secondary compo-

nents like battery monitor, telemetry, and useful payload like camera and gimbal.
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(a) (b)

(c)

Figure 2.4: Quadcopter X configuration’s flight principles: (a) pitch control; (b)
roll control; (c) yaw control

2.1.2.1 Main Components

All the lift that is required for the platform to fly comes from the static thrust

generated by the propellers. Because of that brushless outrunner motors are used

in multirotors which are fast, strong and durable. Moreover motor and prop

combination directly affects lifting capacity and flight time. We have 2 different

motors smaller, 62gr, 850KV (KV= 103 rpm per volt) one and a bigger, 72gr,

880KV one ,and two different size propellers 10′′x4,5′′ and 12′′x4,5′′. Smaller size

10



(a) (b) (c)

Figure 2.5: (a)up-left: DC power supply, down-left: LiPo balance charger, down-
right: LiPo battery; (b)fireproof charging and storage bags with LiPo batteries;
(c) one cell damaged LiPo battery

850KV motor with 10′′x4,5′′ prop is the most efficient setup with 970gr maximum

thrust while bigger 880KV motor with 12′′x4,5′′ prop gives 1380gr maximum

thrust for each rotor.

To drive brushless motors, ESCs are used. ESCs are simply high speed step motor

drivers that take PWM signal as input. PWM signals generated by the control

card are used to determine the speed of the motors.

Selection of battery is one of the key important aspects of a multirotor setup.

Lithium polymer batteries (Figure 2.5) are commonly used as they give the best

energy density (power/weight ratio) among all known batteries but LiFePo4[22]

batteries are also used because of fast charging capabilities, lower discharge volt-

age drop and longer life. However LiPo batteries should be used with caution

such that: they should never be over charged; over discharged; special charg-

ers (Figure 2.5(a)) should be used to balance each cell properly; should be stored

carefully preferably in a fireproof LiPo bags(Figure 2.5(b)) and damaged or puffed

batteries (Figure 2.5(c)) must never be used, in case of misuse there is a high risk

of explosion and fire damage. We have chosen to use 3 cell-series LiPo batteries

as they provide around 12 volts as other components like FitPC, downlink system

and Kinect also requires 12V supply voltage. Specifications of the batteries that

we used can be seen in Table 2.1. We mostly use Zippy 4000 mAh as it has

maximum capacity/weight ratio, and Turnigy 5000 mAh as having the biggest

capacity.
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Table 2.1: LiPo specifications
Brand Capacity weight Discharge Rate
Zippy 3000 mAh 236 gr 20C
Zippy 4000 mAh 300 gr 20C
Turnigy 1000 mAh 90 gr 20C
Turnigy 3300 mAh 295 gr 30C
Turnigy 4000 mAh 350 gr 30C
Turnigy 5000 mAh 410 gr 25C
Raiden 2000 mAh 200 gr 25C

(a) (b)

Figure 2.6: (a)Turnigy 9X Transmitter; (b)Turnigy 9X8C-V2 8-channel receiver

To manually control the quadcopter and as a safety precaution while in au-

tonomous mode, an RC transmitter and receiver with at least 6 channels are

required. In addition, as we explain later the on board flight control software we

use requires RC transmitter to be used in arming/disarming of the motors. We

acquired a Turnigy 9X Transmitter[21] with Turnigy RF9X-V2 module and LCD

backlight kit as transmitter (Figure 2.6(a)) ,and bind it with Turnigy 9X8C-V2

8-channel receiver(Figure 2.6(b))

The control card is the brain of the quadcopter. The data obtained from inertial

measurement unit (IMU) are processed at the control card to achieve the stabil-

ity. For the control card, we acquired Arduino-compatible [23] Ardu Pilot Mega

with Atmega 1280 processor (APM V1) and Ardu pilot Mega with Atmega 2560

processor (APM V2.5, Figure 2.7). Both cards have a 16MHz processor however

APM V1 has 128KB of flash program memory while APM V2.5 has 256KB of

flash program memory. The main difference is APM V1 does not have any sensors
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(a) (b)

Figure 2.7: (a) Up: APM V1 with IMU oilpan, down: APM V2.5 with case; (b)
Up: APM V1, middle: IMU oilpan, down: APM V2.5

and requires an IMU oilpan whereas APM V2.5 has all the sensors embedded.

Also the sensors differ from card to card but they still measure the same data

with different resolution and accuracy. Available sensors are: 3-axis gyro, ac-

celerometer and magnetometer, along with a high-performance barometer, GPS

also comes with the cards but it is off-board.

After uploading the firmware which will be mentioned, later and assembling the

components quadcopter is ready to fly via remote control.

2.1.2.2 Secondary Components

In this section components that are optional will be mentioned. Depending on

the mission these components might be necessary.

Although the APM boards has an barometer and GPS to measure altitude, an

ultrasonic range finder (i.e. sonar, Figure 2.8(a)) is useful especially when hov-

ering below 10m. The sonar sensor generates and transmits a high frequency

sound wave and measures the duration of the reflected signal to return. Using

the elapsed time and speed of sound in air, the distance is calculated. For low

altitude hovering with APM V1 the sonar is necessary. However the barometric

sensor in APM V2.5 has a higher resolution and accuracy that the use of sonar

is not needed for altitude reading.
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(a) (b)

Figure 2.8: (a) Maxbotix LV-MaxSonar-EZ0 Sonar; (b) 3DR radio kit 433MHz

APM boards can be connected to a PC via an ordinary USB cable. On the other

hand, if a ground station wanted to be used, APM board and the computer should

communicate wirelessly. For this purpose a telemetry kit like Xbee or 3DR radio

kit can be used. We used 433MHz 3DR radio kit (Figure 2.8(b)) with baudrate

57600.

As mentioned before LiPo batteries must be used with caution. Discharging

the battery below 3V per cell might damage the batteries and a high voltage

drop will happen below this level. Motors on the quadcopter will shut down due

to the sudden change in the supply voltage, which may result in a crash and

serious damage to the quadcopter if it was flying in high altitude. ESCs have

a programmable soft cutoff voltage that protects the batteries and reduces the

crash damage. Even a safe landing of the quadcopter might be possible as the

throttle is reduced softly. Also unbalanced cell voltages might cause a failure

of the operation. Because of that each cell’s voltage should be monitored and

balanced rather than total voltage. Due to these reasons we use an external

battery monitor to measure each cell’s voltage and sounds an audible warning

and flashes a bright LED when it is less than the programmed low voltage value.

2.1.2.3 Componenets for Autonomous Landing

A lightweight computer (FitPC2 Figure 2.9 [24]) with Intel Atom Z530 working

at 1.GHz and 1GB of memory is installed on the quadcopter for onboard image

processing, data set gathering etc. 4 USB ports allows us to connect APM, Kinect
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Figure 2.9: FitPC2

and any other required USB devices, also the integrated wireless adapter allows

us to connect it remotely. The computer has a built in voltage regulator and can

be powered by the 3 cell series Li-Po that powers the quadcopter. However we

found out that the computation capabilities of the processor may not be enough

for using Kinect in the highest frame rates.

Kinect[25] is the one the key components in our system since our methods rely

on depth information. Recent introduction of RGB-D sensors (Red-Green-Blue-

Depth) allowed affordable and easy computation of depth maps. Microsoft Kinect

is a pioneer of such sensors which was initially marketed as a peripheral input

device for computer games. It integrates an infrared (IR) projector, a RGB

camera, a monochrome IR camera, a tilt motor and a microphone array. The

device can be used to obtain 640x480 pixel depth map and RGB video stream at

a rate of 30fps.

Kinect uses an IR laser projector to cast a structured light pattern to the scene.

Simultaneously, an image of the scene is acquired by a monochrome CMOS cam-

era. The disparities between the expected and the observed patterns are used
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to estimate a depth value for each pixel. Kinect works quite well for indoor en-

vironments. However, the depth reading is not reliable for regions that are far

more than 5 meters; at the boundaries of the objects because of the shadowing;

reflective or IR absorbing surfaces; and at the places that are illuminated directly

by sunlight which causes IR interference. Accuracy of the sensor under different

conditions were studied in [26–28].

Kinect requires 12V supply voltage and very intolerant to voltage changes. Be-

cause of that a voltage regulator placed between quadcopter’s LiPo battery and

Kinect ensuring stable 12V supply voltage. For Chapter 3 a forward facing place-

ment is adequate while for Chapter 4 placement is perpendicular to the ground.

2.1.2.4 Useful Payload

In an aircraft a useful payload is any extra equipment carried to the something

specific to the mission. This can be a camera for inspection mapping mission

whereas a fire extinguisher might be payload for fire intervention missions.

Other than the cameras used for capturing high resolution videos or image pro-

cessing purposes, we wanted to get a live stream video feedback from the quad to

see the point of view. In order to do that a 1/3′′ CCD camera with a downlink

system (Figure 2.10(a)) is installed on the platform. We have tried two different

analog video transmitters, a 800mW, 900MHz one and a 1000mW, 2.4GHz one.

Each one working with 12V supply voltage making it compatible with our main

battery. In open field 2.4GHz transmitter gives better stream, while in closed

environments especially filled with Wi-Fi access points both systems give noisy

streams. In order to view live stream and be able to record the video a video

capture card is used at the ground station (Dazzle, Figure 2.10(b)). First thought

was to record the streamed video on the ground but with respect to the findings

streamed video was used just for viewing and inspection purposes.
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(a) (b)

Figure 2.10: (a) 1000mW 2.4GHz video transmitter, 12 channel receiver, 1/3′′

CCD camera; (b) Dazzle video capture card

Another problem about installing a camera to quadcopter platform is that, pitch

and roll angles of the quad change in order to change the global position. A

fixed camera installment gives too much movement distortion due to continuous

changing pitch and roll angles. To obtain a more stable video, a two axis camera

gimbal is installed (Figure 2.11). Gimbal’s tilt and roll positions are changed with

respect to the pitch and roll angle measurements obtained from IMU, making the

inverse movements of the quadcopter platform so that camera position stays still

with respect to the ground.

2.1.3 Overall System

Complete layout of the system can be seen in Figure 2.12 and our ready to fly

quadcopters can be seen in Figure 2.13. Payloads might be added or removed with

respect to the mission. As long as lift capacity of the quadcopter is not exceeded,

another battery can be added for longer flight times. As the quadcopter is a flying

platform the weight of the complete system is important, a heavy configuration

will result bad flying times, even not able to fly if the lifting capacity is exceeded.

Also the placement of the components is important; the center of the gravity of

the system should be at the center and below the rotor height for stability. Our

systems overall weight can be seen from Table 2.2
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Figure 2.11: Gimbal system and 1/3′′ CCD camera

Figure 2.12: Complete system layout
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(a) (b)

(c) (d)

Figure 2.13: Our quadcopters:(a) Jdrones frame; (b) HobbyKing frame; (c) quad
flying indoors; (d) quad flying outdoors at Işık Spring Fest

Table 2.2: Complete system weight
Component Weight (gr) Quantity Total Weight (gr)
Main frame 490 1 490

Props 10 4 40
Motors 62 4 248
ESC 20 4 80

Receiver 24 1 24
APM 55 1 55
Battery 415 1 415
Sonar 10 1 10

Battery monitor 22 1 22
Telemetry 14 1 14
Camera 20 1 20
Gimbal 30 1 30
FitPC 412 1 412

Downlink transmitter 90 1 90
Kinect 450 1 450

Overall System 2400
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2.2 Software System

There are two parts of the software that used in quadcopter setup which are the

onboard software (i.e. firmware) and the ground control station software. For

communication between the APM and PC MAVLink protocol is used.

2.2.1 Onboard Software

Arducopter, an open source project, offers almost a complete UAV solution for

different multirotor frames and helicopters[16]. Arducopter originally was an

extension to the Ardupilot project started in May 2010. It become a main project

in December 2010 and first beta codes released in May 2011. Since then we are

testing and using the Arducopter firmware. Firmware has many flight modes

including stable, acrobatic, altitude hold, return to home, loiter and follow me

modes. On the other hand the latest Arducopter code is not compatible with

APM V1 as the flash memory of the board is not sufficient. Latest code for APM

V1 is Arducopter 2.3. By removing some of the codes that are unnecessary for

our purpose we were able to upload Arducopter 2.6 which has the newer serial

communication protocol which will be mentioned in Section 2.2.3. Arducopter

2.9.1 is the latest firmware and can be uploaded to APM V2.5. The firmware

continuously reads IMU and make corrections to be able to fly continuously.

Attitude control is achieved by a nested PI ->PID loop. In the control mechanism,

desired rate of angular rotation is compared that to the raw gyro output in the

inner PID loop. The difference is fed back into PID controller and motors speed

change to correct the rotation. Desired rate of angular rotation is generated by

outer PI loop. The input for this loop is either user input or autopilot input.

As an example to the control mechanism, flow chart of roll control is shown in

Figure 2.14. Tuning the inner PID loop directly affects the stability whereas the

outer PI loop affects mostly the style of flying (fast or slow response).
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Figure 2.14: Flow chart of roll control [16]

2.2.2 Ground Control Station

UAVs require ground control stations (GCSs) for mission planning, manual con-

trolling or for observation purposes. For MAVs there are many open source GCS

software and some of the compatible ones with APM board and Arducopter soft-

ware are APM planner, HK GCS, QGroundControl. We are using APM planner

which is created by Michael Oborne[16] and does a lot more than a GCS (Fig-

ure 2.15). First of all, the firmware of APM can be updated using the graphical

user interface (GUI), compiled firmware automatically downloads from the server
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and uploads. The on board software configuration can be done in the most com-

prehensive way with a user friendly GUI. Raw sensor data can be obtained which

can be used to detect any vibration or sensor measurement error. Missions can

be created on Google Maps and can be uploaded to the APM board. By using a

telemetry kit, real time data coming from the quad can be seen; instead of offline

mission planning commands can be given on the fly; and last but not least in-

stead of a RC transmitter a USB joystick can be used as a controller via Mission

planner.

2.2.3 MAVLink

MAVLink is an open source communication protocol with lightweight serialization

functions for microcontrollers [30]. It is a header only message marshaling library.

It allowed different GCS software to be reusable for different platforms where it

is integrated. Some of the autopilots that use MAVLink are: ArduPilotMega[31],

pxFMU Autopilot[32] and SLUGS Autopilot[33]; some of the GCS software that

use MAVLink are: QGroundControl[34], HK GCS[35], APM Planner[29]. Also

the open source Robot Operating System(ROS, [36]) developed by Stanford Ar-

tificial Intelligence Laboratory, is compatible with MAVLink protocol[37].

2.2.4 RAVLAB Control Station

It is possible to write a program that uses MAVLink protocol to give commands to

quadcopter. It is important to understand the structure of MAVLink commands

and firmware capabilities. To obtain the command of the quadcopter some steps

are necessary, which can be simplified as:

1. Find the system state: MAVLink protocol uses a periodic signal called

as “heartbeat” to show that the system is alive and working. First to

understand the condition of the system periodic heartbeat signal should be
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(a)

(b)

(c)

Figure 2.15: APM planner screens:(a) Flight data screen; (b) firmware selection
screen; (c) PID parameters tuning screen[29]
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decoded which has the information of if the quadcopter is booting, idle,

landing or flying.

2. Request data stream: The heartbeat signal has limited information about

the system, for more information a data stream request command should

be used.

3. Decode data stream: Returning messages from data stream request com-

mand should be decoded.

4. Arm motors: When powered up, to prevent unwanted reaction from the

motors due to the manual movements of the platform like relocating for

take-off, system stays in disarmed condition. To arm the motors, full right

rudder RC input with zero throttles should be given for 2 seconds or using

MAVLink protocol, arm motors command should be given. When the mo-

tors are armed APM records to current GPS position as home position, if

the GPS information is not available the first position is taken when GPS

information is available.

5. Take-off: Take-off command with desired altitude can be given after arming

the motors.

6. Change system state: While hovering in the air drifting in a direction is

common. To ensure hovering in the same spot system state should be

changed to loiter if GPS is available. For indoor environment an optical

flow sensor, which our system does not have, is required to obtain same

position.

7. Go to GPS position: To move the quadcopter to a new position two different

command type can be used. First a GPS position can be given to APM

and the firmware will give required commands to go to the position.

8. Move position: Secondly, by using RC channel override command, quad-

copter’s position can be changed as it is controlling by an RC remote, thus

this is the only way if the environment is indoors.

9. Land: The last step is to land, again using MAVLink’s land command.

APM changes its state to disarm after a successful landing.
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Figure 2.16: RAVLAB Control Station screenshot

At the beginning of this thesis we wanted to get the full control of the quad but we

decided to follow an alternative approach afterwards. But we have written a little

program that connects to the quadcopter, understand the heartbeat message,

requests data stream from the APM, and decodes the received messages which

can be GPS data or IMU readings etc. (Figure 2.16). Possible future work is

discussed in Conclusion.
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Chapter 3

Ground Plane Detection Using an RGB-D Sensor

Regardless of the method or the device that is used to obtain depth information

there are several works which approach to the ground plane detection problem

based on the relationship between a pixel’s position and it is disparity [17, 38–42]

Li et al. show that the vertical position (y) of a pixel of the ground plane is

linearly related to its disparity D(y) such that one can seek a linear equation

D(y) = K1 +K2 ∗ y , where K1 and K2 are constants which are determined by

the sensor’s intrinsic parameters, height, and tilt angle. However, ground plane

can be directly estimated on the image coordinates using the plane equation based

on disparity D(x, y) = ax + by + c without determining mentioned parameters.

A least squares estimation of the ground plane can be performed offline (i.e. by

pre-calibration) if a ground plane only depth image of the scene is available [39].

Another common approach is to use RANSAC algorithm which allows fitting of

the ground plane even the image includes other planes and surfaces [38, 43, 44].

Since RANSAC is used to estimate linear planes, the ground plane is assumed to

be the dominant linear plane in the image.

There are some other works of segmentation of the scene into relevant planes

[44, 45]. The work of Holz et al. clusters surface normals to segment planes and

reported to be accurate in close ranges [44].
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In [17] row histograms of the disparity image are used to model the ground plane.

In the image formed of the row histograms (named as V-disparity), the ground

plane appears as a diagonal line. This line, which is detected by Hough Transform,

was used as the ground plane model.

In this chapter, a novel and simple algorithm is presented to detect the ground

plane without the assumption of that it is the largest region. The method is based

on the fact that if a pixel is from the ground plane, its depth value must be on

a rationally increasing curve placed on its vertical position. However, the degree

of this rational function is not fixed due to reasons which will be explained later.

Nevertheless, it can be easily estimated by an exponential curve fit which can be

used as a ground plane model. Later, the pixels which are consistent with the

model are detected as ground plane whereas the others are marked as obstacles.

While this is the base model which can be used for a fixed viewing angle scenario,

an extension of it, is provided for dynamic environments where sensor viewing

angle changes from frame to frame. Moreover, the relation of our approach to the

V-disparity approach [17] is noted, which rely on the linear increase of disparity

and fitting of a linear line to model the ground plane. Thus, experiments are

provided which test and compare both approaches on the same data.

This chapter is organized as follows: In Section 3.1 the proposed method is pre-

sented. Section 3.2 presents the results of the experiments. Conclusion and future

work are presented in Section 3.3.

3.1 Ground Plane Detection

Presented method consists of two sub-approaches: First, simple base approach

which works quite well for a fixed sensor view is explained. However, it requires an

image of the ground plane (without any obstacles) to perform a pre-calibration.

The second approach is developed for non-fixed sensor viewing angle. It suits

better to dynamic environments.
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3.1.1 Detection for fixed pitch

In a common scenario, the sensor views the ground plane with an angle (i.e.

pitch angle). The sensor’s pitch angle (Figure 3.1(a)) causes allocation of more

pixels for the closer locations of the scene than the farther parts. So that linear

distance from the sensor is projected on the depth map as a rational function.

This is demonstrated by an example of the intensity coded depth map image

obtained from Kinect (Figure 3.2(a)). Any column of the depth image will show

that the depth value increases not linearly but exponentially from bottom to top

(i.e. right to left in Figure 3.2(b)).

In this section it is assumed that the sensor’s viewing angle is fixed and its roll

angle is zero (Figure 3.1(a)). Furthermore, a “ground plane only” depth image

will have all columns equal to each other. These columns are estimable by an

exponential function.

Thus, a curve can be fitted to any (or average) vertical line of the depth map. By

trial and error it is found that a good fit is possible with sum of two exponential

functions in the following form:

f(y) = aeby + cedy (3.1)

, where f(y) is the pixel’s depth value and y is the its vertical location (i.e. row

index) in the image. The coefficients (a, b, c, d) depend on the intrinsic parameters,

pitch angle, and the height of the sensor.

These coefficients are estimated by a least squares fitting method. Then it is

possible to reconstruct a curve, which is named here as the reference ground

plane curve (CR).

In order to detect ground plane pixels in a new depth map, the columns of the

new depth map (CU) are compared to CR. Any value that is under CR represents

an object (or any protrusion), whereas values above the reference curve represent
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(a) (b)

Figure 3.1: (a) Roll & pitch axis, (b) sensor view pitch causes linearly spaced
points to mapped as a exponential increasing function.

drop-offs, holes (e.g. intrusions, downstairs, edge of a table) in the scene. Hence

the absolute difference against a pre-defined threshold value T is compared; mark

the pixels as ground plane if difference is less than T .

For the comparison depth values which are equal to zero are ignored as they

indicate sensor reading errors. The experiments concerning this part are presented

in Section 3.2.

3.1.2 Detection for changing pitch and roll

The fixed pitch angle scheme explained above is quite robust. However, it is not

suitable for the scenarios where the pitch and roll angles of the sensor changes.

Generally the mobile robots exhibit movements on the sensors’ platform. Pitch

and roll movements can be compensated by using an additional gyroscopic sta-

bilization [46]. However, here a computational solution is proposed. In this

approach a reference ground curve from a reference pre-calibration image is not

calculated but it is estimated each time from the particular input frame.

A higher pitch angle (sensor almost parallel to the ground) will increase the slope

of the ground plane curve. Whereas a non-zero roll angle (horizontal angular

change) of the sensor forms different ground plane curves along columns of the

depth map (Figure 3.2(c)). Such that at one end the depth map exhibits curves
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of higher pitch angles while towards the other end we observe curves of lower

pitch angles. These variations complicate the use of a single reference curve for

that particular frame.

To overcome roll angle affects presented approach aims to rotate the depth map

to make it orthogonal to the ground plane. If the sensor is orthogonal to the

ground plane it is expected to produce equal or very similar depth values along

every horizontal line (i.e. rows). And this similarity can be simply captured by

calculating a histogram of the row values such that a higher histogram peak value

indicates more similar values along a row. Let hr shows the histogram of the rth

row of a depth image (D) of R rows, and let us denote the rotation of depth

image with Dθ.

argmaxθ(
R∑

r=1

argmaxi(hr(i,Dθ)) (3.2)

Thus for each angle value θ in a predefined set, the depth map is rotated with

an angle θ and the histogram hr is computed for every row r. Then, the angle

θ that gives the total maximum peak histogram value (summed over rows) is

estimated as the best rotation angle. This angle is used to rotate the depth map

prior to the ground plane curve estimation. After the roll affect is removed the

pitch compensation curve estimation scheme can start.

As explained, changes of pitch angle create different projection and different

curves (Figure 3.2(c)). Moreover, since the scene may contain obstacles we must

define a new approach for ground plane curve estimation.

In a scene that consists of both the ground plane and objects, as in Figure 3.2(d),

maximum value along a particular row of the depth map must be due the ground

plane, unless an object is covering the whole row. This is because the objects

that are closer to the sensor than the ground plane surface that they occlude.

Therefore, if the maximum value across each row (r) of the depth map (D) is

taken, which we name as the depth envelope (E), it can be used to estimate the
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Figure 3.2: (a) An example depth map image, (b) one column (y=517) of the
depth map and its fitted curve representing the ground plane (the values left to the
index of the maximum value (vertical index=150) are excluded from fitting, (c)
ground plane curves for different pitch angles, (d) depth map in three dimensions
showing the drop-offs caused by the objects.

reference ground plane curve (CR) for this particular depth frame.

E(r) = maxi(D(ci, r)) (3.3)

The estimation is again performed by fitting the aforementioned exponential curve

(3.1). Prior to the curve fitting median filtering is performed to smooth the depth

envelope. Moreover, depth values must increase exponentially from bottom of the

scene to the top. However, when the scene ends with a wall or group of obstacles

this is reflected as a plateau in the depth envelope. Hence the envelope (E) is

scanned from right to left and the values after the highest peak are excluded from

fitting as they cannot be a part of the ground plane.

There are two conditions which affect the ground plane curve fit adversely. First,
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when one or more objects cover an entire row, this will produce a plateau in the

profile of the depth map. However, if the rows of the “entire row covering object

or group” do not form the highest plateau in the image, ground plane continues

afterwards curve continues and the object will not affect the curve estimation.

Second, any drop-offs (e.g. hole, stairs) exhibit higher depth values than the

ground plane: drop-offs cause sudden increases (hills) on the depth envelope. If

a hill is found on the depth envelope, the estimated curve will be produced by a

higher fitting error.

In order to ensure that fitting is not done on objects which can be seen on the

depth envelope, an exclusion rule is applied. Depth value increases from bottom

of the scene to the top as long as the ground plane continues. Thus, values

that comes after the maximum depth value are excluded from left of the depth

envelope(Figure 3.3(a)). It is also known that the zero valued pixels are non-

reading zones and readings above 5000 are not consistent so these are excluded

as well. If a row covering object exists in the scene, it can be seen in the depth

envelope as a discontinuity. In order to detect a row covering object first derivative

of the depth envelope is taken. Then a negative peak followed by a positive peak

is searched which indicates the row covering object (Figure 3.3(c)). Index values

between these peaks are excluded (Figure 3.3(b)). However if the row covering

object is located at the bottom of the scene (Figure 3.3(d)) it can not be located

with this approach (Figure 3.3(e)).

After estimating the ground plane reference curve coefficients for the frame, every

column is compared with the reference curve as it was done for the fixed pitch

angle algorithm. The pixels are classified as ground plane and non-ground plane

by comparing against a threshold T . The value of T was determined by overall

accuracy.
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Figure 3.3: (a) values before the maximum depth value are excluded, (b) row
covering object, shown in red, are exculuded, (c) first derivative of (b) is shown,
red parts show found row covering object, (d) row covering object at the bottom
of the scene, (e) first derivative of (d) is shown, only one peak caused by the row
covering object is visible
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Figure 3.4: Mobile robot platform

3.2 Experiments

The algorithm is tested on four different multi-frame data sets that were not used

in the development phase. The dimensions of the depth map and RGB images are

640x480. Two of these datasets (dataset-1 and dataset-2) were manually labeled

to provide ground truth and were used in plotting ROC (Receiver Operating

Curves), whereas the other two were manually (visually) examined. Dataset-1

and dataset-2 composed of 300 frames captured on a mobile robot platform (Fig-

ure 3.4[47]) which moves in the laboratory floor which included many obstacles,

different surfaces, and walls. Dataset-3 (300 frames) created with the same plat-

form; however, the pitch and roll angles change excessively. Dataset-4 included

12 individual frames acquired from difficult scenes such as narrow corridors, wall

only scenes etc. Three different versions are compared for presented approach:

A1-fixed pitch, A2-pitch compensated, A3-pitch and roll compensated. There is

only one free parameter for A1 and A2 that is threshold T , which is estimated by
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ROC analysis; whereas the 3rd roll compensation algorithm requires pre-defined

angle set to search for best rotation angle: {−30◦, −28◦,..,+30◦}. Least squares

fit was performed by Matlab curve fitting function with default parameters. How-

ever, the depth values which are equal to zero, or above 5000 are excluded due to

inaccurate sensor readings. Additionally, as explained previously, for algorithm

A2 and A3 the indices positioned to left of the maximum of the column depth

value must be excluded from the fits since they do not represent ground plane.

Finally, note that A1 requires a onetime pre-calibration and estimation of the

coefficients for the reference ground plane curve, whereas A2 and A3 estimate

coefficients separately for each new frame.

Moreover, the results are compared with V-disp method [17]. We note that V-

disp is originally developed for stereo depth calculation where disparity is available

before depth. To implement V-disp method by Kinect depth stream, disparity is

calculated from the depth map (i.e. 1/D), row histograms are calculated to form

V-disp image, and then Hough transform is used to estimate ground plane line.

We had to put a constraint on the Hough line search in [−60◦,−30◦] range to

have relevant results.

Since A3 and A2 algorithms are same except for the roll compensation, the results

of A2 to A1 and V-disp will be examined and compared; however A3 results are

compared only against A2 to show the effect of roll compensation scheme.

Figure 3.6(a) and 3.6(b) show ROC curves and overall accuracies plotted for pre-

sented fixed and pitch compensated algorithms (A1 and A2) and V-disp method

on dataset-2 (dataset-1 is similar). Here, true detection (y-axis) represents the

ratio of correctly detected ground plane pixels to all; false detection (x-axis) rep-

resents the ratio of ground plane pixels which are misclassified as obstacle pixels

to all ground plane pixels. It can be seen that presented pitch compensated algo-

rithm is superior to both V-disp which is better than presented fixed algorithm.

However, note that dataset-2 has frames taken in a dynamic environment and the
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fixed pitch algorithm performs a pre-calibration with one frame and evaluates all

frames.

When the best accuracy point thresholds are selected and algorithms are ran on

dataset-2, accuracy vs. frames result is obtained(Figure 3.6(c)). In addition curve

fitting error is recorded for pitch compensated algorithm (A2). It can be seen that

both methods are quite stable with the exception being high curve fitting error

frames for A2. It is also easy to spot these frames on live data sequences.

Beside multi-frame datasets, here some example single input-output pairs are

included(Figure 3.7 3.8). Here ground plane is marked with black and obstacles

were marked with white to ease viewing. In Figure 3.7(a), a cluttered scene is

observed. Note that its depth map contained sensor reading errors (zeros) because

of the lighting and reflective patches (Figure 3.7(b)). The output of A2 is shown

in right column (Figure 3.7(c)). It can be seen that algorithm is quite successful

in the regions where there is depth reading. Despite that it is possible to reduce

the spurious noisy detections; we show here the raw (not post-processed) outputs.

Figure (3.7(d),3.7(e),3.7(f)) show another difficult scene where the robot with

sensor is positioned in front of a stairs going down. Due to reflective marble floor

the sensor produce many zeros in the close ground plane. In addition, many zeros

are observed in distant walls. However, the output is quite successful in the sense

that the close plan ground floor and the edge of the stairs is correctly identified.

Despite that dataset-1 and 2 are similar, dataset-3 contains excessive roll changes

which were used to test roll compensation (A2 vs. A3). The outputs show that

roll compensation is able to detect and correct rotations. Figure 3.7(g)) show

one of the frames from dataset-3, where the sensor is rolled almost 20◦ degrees.

Figure 3.7(h),3.7(i) shows the respective outputs of A2 and A3. It can be seen

that roll compensation provides a significant advantage if sensor can roll.

Finally, Figure 3.8 shows two output pairs (overlayed on RGB) for A2 and V-

disp. It can be seen that both methods can detect ground planes in scenes where
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Figure 3.5: (a) ROC curves comparing V-disp and our fixed and pitch compen-
sated algorithms (A1-A2) for data set 1, (b) average accuracy over 300 frames vs.
thresholds, (c) accuracy and curve fit error of A2 for individual frames.
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Figure 3.6: (a) ROC curves comparing V-disp and our fixed and pitch compen-
sated algorithms (A1-A2) for data set 2, (b) average accuracy over 300 frames vs.
thresholds, (c) accuracy and curve fit error of A2 for individual frames.
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ground plane is not the largest or dominant plane. Both methods thresholds are

fixed as they produce the highest respective overall accuracies in 300 frames of

datasets 1 and 2. Note that V-disp marked more non-passable regions as ground

plane.

If the frames are buffered beforehand and worked offline, our pitch compensated

algorithm A2 processed 83 fps while running on a notebook computer with Pen-

tium i5 480m processor using Matlab 2011a.

Additional experimental results , test frames and datasets can be found from the

RAV LAB’s web site1.

1
ravlab.isikun.edu.tr
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Experimental results from different scenes. RGB, depth-map and
pitch compensated method output (white pixels represent objects whereas black
pixels represent ground plane): (a),(b),(c) lab environment with many objects
and reflections; (d),(e),(f) stairs; (g),(h),(i) respective outputs of pitch compen-
sated (A-2) and pitch&roll compensated method on an image where sensor was
positioned with a roll angle (A-3).

40



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.8: Comparison of pitch compensated (left) and V-disp method (right)
in different scenes (red areas indicate pixels that are detected as objects): (a),(b)
wall surface as dominant plane; (c),(d),(e),(f) narrow corridor; (g),(h) narrow
complex passage
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3.3 Discussions

In this chapter a novel, simple, and robust ground plane detection algorithm which

uses depth information obtained from an RGB-D sensor is presented. Presented

approach includes two different algorithms, where the first one is simple but quite

robust for fixed pitch and no-roll angle scenarios, whereas the second one is more

suitable for dynamic environments (e.g. moving robots or cars). Both algorithms

are based on an exponential curve fit to model the ground plane which exhibits

rational decreasing depth values. We compared ours to V-disp [17] method which

is based on detection of a ground plane model line by Hough transform which

relied on linear increasing disparity values.

It has been shown that the proposed method is better than V-disp and pro-

duces acceptable and useful ground plane-obstacle segmentations for many diffi-

cult scenes, which included many obstacles, walls, different floor surfaces, stairs,

and narrow corridors.

Presented method can produce erroneous detections especially when the curve

fitting is not successful. However, these situations are easy to detect by checking

the RMS error of the fit which has been shown to be highly correlated with

the accuracy of segmentation. Our future work will include an iterative refining

procedure for curve fitting for the frames which are detected to produce high

RMS fitting errors.

A point to note is about non-planar ground surfaces that few other studies in liter-

ature have devised strategies for [17, 40]. We assume here a planar ground plane

model which will probably cause problems if the floor has bumps or significant

inclination or declination [17]. Our future work will focus on these conditions.

Kinect has proved itself as a powerful depth sensor to be used in robotics. How-

ever, it has some limitations. Sunlight or reflective surfaces like marble floor

prevent Kinect to construct a successful depth map.
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Chapter 4

Landing zone detection

Automated landing zone detection is an important component to automated land-

ing of VTOL vehicles, and there are many works which study the problem as

explained in the introduction.

The work of Scherer et al. shows an advanced LIDAR based landing zone detection

on a full-scale helicopter[48]. Point cloud data obtained from LIDAR is used to

find a landing zone considering terrain/skid interaction, rotor and tail clearance,

wind direction and clear approach paths. In a medium-scale platform a similar

hardware configuration can be seen in [49]. LADAR sensor used to collect point

cloud data and uses fuzzy logic to rank the areas to find best possible landing

zone. However it is impossible to carry such an advanced sensor and its required

equipment on a MAV.

One of the common approaches to detect landing zones for MAVs is to use com-

puter vision. Sharp et al. [50] used a special ground mark (sign) to designate

landing zones. The target sign is designed so that the segmentation could be

easily performed by a standard connected components labeling algorithm ([51])

in grayscale. After the segmentation, corner detection is done over the specially

designed sign to detect the ground mark. A similar approach can be seen in [52],

but this time a more conventional sign for helipads, letter H is used to detect

landing zones given that the helipad is easily distinguishable in the scene. These
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two approaches depend on the landing zone mark to be visible; requiring a low

altitude that ensures mark is clearly visible.

However Cesetti et al. [53] suggest a more general solution by using natural land-

marks, in a partially known environment. User given visual inputs of natural

landmarks are matched using Scale Invariant Feature Transform (SIFT, [54]) al-

gorithm. Other matching algorithms like Speeded Up Robust Features (SURF,

[55]) , upright SURF (U-SURF [55]) and Adaptive SIFT, are also tested in their

work but it is indicated that the best results are obtained using the original SIFT.

To measure surface flatness, they used the variance of the optical flow, which was

estimated using SIFT. These works predesignate a known safe landing zone and

try to locate them when landing is commanded.

In contrast to above, in some works no safe landing zone is assumed. For example,

in [56] objects or obstacles are detected by assuming that the contrast is higher

at the boundaries of the obstacles than elsewhere so that the objects are distin-

guishable from the ground. The circular area that has a lower contrast below a

threshold is chosen as landing zone. Bosch et al. [57] suggests a monocular image

processing technique that consist of detecting planar surfaces between 2D image

homographies, whereas an altimeter was used together with a single camera to

construct structure from motion in [58]. Using the depth information obtained

from the altimeter and two consecutive frames a digital elevation map of the

scene is constructed. A point cloud is projected into the constructed structure

than divided into square regions the size of the vehicle footprint. In each region

a plane is fitted using least median squares (LMedS, [59]). Finally roughness and

slope of the scene are examined to determine a safe landing zone.

In this chapter a new method is introduced to find a collision free landing zone

using RGB-D camera. The advantage of our method is that there is no designated

landing zone or mark is necessary and it can be used at night landing as the

RGB-D cameras can work in pitch darkness. Also the depth is much reliable

than light vision to estimate ground structure. Moreover an RGB-D camera can
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be easily carried by a MAV. RGB-D camera is placed underneath the vehicle,

facing directly to ground. A similar installation can be seen in [60], where the

RGB-D camera is used for hovering at a certain altitude. Depth map obtained

from RGB-D camera is used to detect any obstacles that may interfere with the

landing process.

4.1 Method

We assume that a scene that only consists of a flat ground plane is a safe landing

zone. In this scene if an RGB-D camera is placed perpendicular to ground, values

in the depth image D should be equal to each other which could be an ideal

landing site. However, it is difficult to assume a perfect parallelity of the quad

axis to ground plane. Because air vehicles change their pitch and roll angle, even

when they hover. Depending on the stabilization characteristics of the vehicle,

these movements complicate quad’s viewing angle and make difficult to interpret

the ground structure (Figure 4.1(a)). Although our quad has gyroscopic sensors

to stabilize the roll and pitch, additional stabilization hardware can be used to

minimize affects to the camera axis. Nevertheless, if an image of the scene is

acquired with a non-zero pitch angle to the ground, the linear distance from

the sensor will not be projected to the depth map linearly, but exponentially.

This phenomena and its solution was discussed in detail in Chapter 3. Hence

this allows us to use roll and pitch compensating ground plane detection method

explained in Section 3.1.2 with an additional preprocess.

Axis movements have different affects on the depth map, due to the change in

the projection of the depth map. Roll axis movements of the sensor only rotates

the image but has no longer any effect on the depth map values. However yaw

axis movements (Figure 4.1(b)) can change depth map values as they change the

projected scene. It should be taken into consideration that the mentioned axes are

for the camera movements but not for the vehicle movements. Method presented

in Chapter 3 works on the principle that the ground plane curve is a constant or
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(a) (b)

Figure 4.1: (a) Viewing perception from quad; (b) Axes of the camera

increasing function from bottom of the image to the top. Because of that there

are three different important conditions, which must be taken into account.

Change in the roll axis leads to a crosswise increasing ground plane curve. How-

ever the method introduced in Section 3.1.2, searches for a lengthwise ground

plane curve. To solve this problem the depth image must be rotated from the

center so that every horizontal line will have close depth values and the values

increase vertically. Roll compensation method presented in Section 3.1.2 can be

used here, however due to the fact that yaw angle with zero pitch causes crosswise

ground plane curve, the rotation search angle range must be increased to−90◦ to

90◦.

Any positive pitch axis movement changes the ground plane curve from planar

to an decreasing rational function. So positive change in the pitch axis does not

require any additional process before using our ground plane detection method.

But if there is a negative change in the pitch axis, ground plane curve becomes an

increasing function (Figure 4.2) . Without any changes the previously mentioned

method can not find a ground plane curve as it relies on an decreasing function.

Hopefully a simple approach as flipping the image upside down, change the ori-

entation of the ground plane curve and ensures that it is an decreasing function.

In order to check if a flipping is required, derivative of the depth envelope is used.
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Figure 4.2: Depth envelope (E) for negative pitch angle

Let, (E) denote depth envelope, (C) number of columns, d(E)/dx must be a

positive function if the ground plane is an increasing function. If it is found to

be an increasing function, the image is flipped upside down.

S =
C∑

x=1

dE

dx
(4.1)

S value shows total derivative of the depth envelope (E). By taking these 3

conditions into consideration, any outcome from combination of these conditions

have been solved.

Acquired image is rotated until equal or very similar depth values along every

horizontal line (i.e. rows) is acquired. Then the image is flipped if S>0 then A2

method given in Section 3.2 is applied.

4.2 Experiments

We captured different ground scenes about 2m height, 11 from our lab environ-

ment, 40 from outside including sunlight illuminated scenes and night scenes.

Scenes includes possible landing zones and non-landable zones with flat surface
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objects like desks, chairs and other kind of objects like cones, garden lightings

and small trees. Outdoor scenes captured at different times of the day to see

the affect of sunlight. It was known that it is not possible to get a depth map

reading from a scene that directly illuminated by the sun light. However as it is a

hardware limitation such scenes with no usable depth readings are excluded from

experiments. While capturing the scenes no information about the system’s axes

or the sensor’s axes has been recorded. Success of the algorithm is tested for the

objects that are at least 5cm wide. Response to smaller objects like spikes in the

ground is not tested due to occurrence of the situation.

The results can be seen from Figure(4.3-4.12). For each scene RGB image, depth

image, rotation corrected RGB, rotation corrected depth image and method out-

put is shown. Rotation correction is done automatically by the given method.

Black pixels represents ground plane and white pixels represents objects as used

before. Figure 4.3 shows hovering position at the edge of a desk. Desk is success-

fully detected. Figure 4.4 shows a cone as a small obstacle which prevent safe

landing. Figure 4.5 shows a crowded scene. Figure 4.6 only consists of the ground

plane. Boundaries of objects can be seen at the edges of the RGB image however

depth readings are not available for these parts.

To test as many different scenes as possible Figure(4.7,4.8) shows a scene from

the ceiling which includes a row covering object. Ventilation pipe, fire alarm and

lighting can be seen as obstacles. Ventilation pipe covers whole row at the scene.

In Figure 4.8 it can be seen that there are some error at the top of the rotated

image, which is caused by the row covering object at the bottom of the rotated

image. However the method indicates this is not a valid landing zone.

Outdoor environment test result are shown in Figure(4.9-4.12). For scenes cap-

tured during daytime, it must be noted that there is no direct sunlight. Fig-

ure 4.10 and Figure 4.9 shows the same spot during daytime and night. Night

scenes (Figure 4.10, 4.11) shows the big advantage of the RGB-D cameras, regular
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RGB cameras inadequate at capturing images at low light or no light conditions

while RGB-D cameras are not affected at all.

4.3 Discussions

In this chapter a novel and simple safe landing zone detection algorithm which

uses only the depth information obtained from an RGB-D sensor is presented.

Presented approach consists of a preprocessing stage and our ground plane de-

tection algorithm (Chapter 3).

Initial experiments have shown that the proposed method is successful in de-

tecting ground plane obstacles. Pitch and yaw axis movements of the camera

is successfully compensated with the preprocess and objects are successfully de-

tected using ground plane detection algorithm.

Only drawback of this technique is that if there is a whole row covering object at

the bottom of the processed depth image, the method is inadequate at finding the

object position (Figure 4.8). But the outcome gives the information that there

exists an object at landing zone, indicating an inappropriate landing zone.

In the preprocess stage, turning the depth image to compensate the yaw angle

method is computationally costly. However yaw and pitch angle is already known

for the quadcopter. If these values are obtained from the IMU, the algorithm will

run much more faster. Although synchronizing the IMU data and RGB-D data

will be an issue in that case as both devices give the data when it is available on

request.

Slope of the surface (inclination or declination) is not detectable with the pro-

posed algorithm and so it is not taken into account. If the data obtained from the

IMU is used with the current state of the algorithm, slope of the surfaces might

be detected. Then the maximum level of inclination can be determined for safe

landing zone. It would also advance the speed of the method as the axis move-

ments can be neutralized in one step with the IMU data. Use of the depth and
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(a) (b)

(c) (d)

(e)

Figure 4.3: Scene with partial desk and ground plane. (a) RGB image, (b)
depth-map, (c) rotation corrected RGB image, (d) rotation corrected depth-map;
(e) method output, white pixels represent objects whereas black pixels represent
ground plane
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(a) (b)

(c) (d)

(e)

Figure 4.4: Scene with a cone and ground plane. (a) RGB image, (b) depth-map,
(c) rotation corrected RGB image, (d) rotation corrected depth-map; (e) method
output, white pixels represent objects whereas black pixels represent ground plane
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(a) (b)

(c) (d)

(e)

Figure 4.5: Scene with desk,chair and ground plane. (a) RGB image, (b) depth-
map, (c) rotation corrected RGB image, (d) rotation corrected depth-map; (e)
method output, white pixels represent objects whereas black pixels represent
ground plane
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(a) (b)

(c) (d)

(e)

Figure 4.6: Scene with only ground plane, possible landing zone. (a) RGB image,
(b) depth-map, (c) rotation corrected RGB image, (d) rotation corrected depth-
map; (e) method output, white pixels represent objects whereas black pixels
represent ground plane
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(a) (b)

(c) (d)

(e)

Figure 4.7: Ceiling with obstacles (tested for row covering object). (a) RGB
image, (b) depth-map, (c) rotation corrected RGB image, (d) rotation corrected
depth-map; (e) method output, white pixels represent objects whereas black pix-
els represent ground plane
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Figure 4.8: Ceiling with obstacles (tested for row covering object). (a) RGB
image, (b) depth-map, (c) rotation corrected RGB image, (d) rotation corrected
depth-map; (e) method output, white pixels represent objects whereas black pix-
els represent ground plane, (f) depth envelope of the scene and erroneous fitted
curve
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(a) (b)

(c) (d)

(e)

Figure 4.9: Outdoor environment. (a) RGB image, (b) depth-map, (c) rotation
corrected RGB image, (d) rotation corrected depth-map; (e) method output,
white pixels represent objects whereas black pixels represent ground plane
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(a) (b)

(c) (d)

(e)

Figure 4.10: Outdoor environment of Figure 4.9 at night. (a) RGB image, (b)
depth-map, (c) rotation corrected RGB image, (d) rotation corrected depth-map;
(e) method output, white pixels represent objects whereas black pixels represent
ground plane
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(a) (b)

(c) (d)

(e)

Figure 4.11: Outdoor environment at night, as there is no light source RGB
image is shown black. (a) RGB image, (b) depth-map, (c) rotation corrected
RGB image, (d) rotation corrected depth-map; (e) method output, white pixels
represent objects whereas black pixels represent ground plane
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(a) (b)

(c) (d)

(e)

Figure 4.12: Outdoor environment. (a) RGB image, (b) depth-map, (c) rotation
corrected RGB image, (d) rotation corrected depth-map; (e) method output,
white pixels represent objects whereas black pixels represent ground plane
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IMU data would be enough for obstacle detection on planar surfaces. However

to detect obstacles on sloped surfaces, our method would be also required.

Since the method locates, detects obstacles, it is possible to categorize the scenes

as not-safe/safe landing zones by simply obstacle presence. However, in cluttered

environments and outside scenes, it must be crucial to rate how safe or how non-

safe is that landing area. This can be performed by taking into account the ratio

of obstacles to the non-obstacle regions as well as quad’s height, obstacle height,

ground flatness etc. These issues must be addressed in the future.
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Conclusion

The aim of this thesis is to build an autonomous quadcopter which is capable of

automated landing. To achieve this goal there are two essential tasks: equipping

a flyable quadcopter platform with several sensors; detection of the ground plane

and potential obstacles for safe landing area detection.

In this study we acquired two different commercially available quadcopter frames

and a Ardu Pilot Mega control card to build a low cost, easy to implement, and

stable platform. An open source firmware, named Arducopter[16], is used for the

control card. This framework has the abilities of take-off, landing, hovering, and

point to point navigation on command and performing a pre-programmed flight

path navigation. We modified the acquired frame to integrate a sonar sensor, a

small size pc (FitPC[24]), and a Microsoft Kinect[25] RGB-Depth camera. Addi-

tionally, we installed a CCD-camera attached to a two-axis gimbal and a downlink

(radio) system to transmit real time video to ground station, as useful payloads.

After building the quadcopter platform and integrating the necessary equipment,

we focused on ground plane detection problem, as it is an essential task for au-

tomated navigation and landing. We introduced a novel, simple, and robust

ground plane detection method[61] which uses depth information obtained from

an RGB-D camera ,and presented it in 21st Signal Processing and Communica-

tions Applications Conference in Girne, Turkish Republic of Northern Cyprus. It

has been shown that the method is able to compensate for changing pitch and

roll view angles. Moreover, our method was compared with an existing method

from the literature, i.e. V-disparity algorithm [17]. It has been shown that our

algorithm is better than V-disparity method and produces useful ground plane-

obstacle segmentations for many different cases. This algorithm is generic in the
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sense that it can be used for different forward facing RGB-D placements, for

example in ground vehicles or robots.

It has been shown that our generic ground plane detection method is inadequate

for landing zone detection and had to be improved to adjust to down-facing view

projections of the quadcopter. To detect possible landing zones for quadcopter

landing, a novel and simple safe landing zone detection method is introduced.

The method combines a preprocessing stage and our ground plane detection al-

gorithm. The preprocessing stage successfully compensated the angular change in

the camera’s down-facing position and our ground plane detection algorithm suc-

cessfully segmented the ground plane and obstacles in the scene. It is also shown

that the use of RGB-D camera allows the ground plane detection and landing

zone detection even in no-light conditions, thanks infra-red projection and sens-

ing. However in scenes that are directly illuminated by the sunlight RGB-D does

not work due to infra-red interference from the sun.

The proposed methods are very accurate and applicable to most aerial vehicles

(MAV) since that the payload weight is very convenient for small aircrafts and

also that the processing power needed for the methods is achievable onboard. The

usability of the methods in very low light conditions, such as the night time or

even in the pitch dark is another advantage.

The ground plane detection method can produce erroneous detections; however

our method has the ability to detect these situations. To handle these errors, it

may be possible to develop an iterative refining procedure for curve fitting, which

may improve the consistency of the method further.

While detecting the safe landing zones, the algorithm ignores height information

and does not consider surface inclination or declination. It is possible to use

quad’s inertial state information, with RGB-D data (including height) for better

classification of zones. Finally, as we could not implement the RAVLAB Control

Station completely, currently; we cannot command the quadcopter to land, even
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though we detect safe landing zones. In the future, we plan to complete the

integration to achieve a fully autonomous landing.
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Doğan Kırcalı was born on 20 April 1987, in İstanbul. He received his B.S. degree
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